coreboot-kgpe-d16/src/northbridge/amd/lx/raminit.c
Aurelien Guillaume 6f22ecc2c9 * Adds support for PC Engines Alix.2D(1)3 board to Coreboot.
* DRAM initialization done message is now printed in debug-mode only, rather than everytime.

Signed-off-by: Aurelien Guillaume <aurelien@iwi.me>
Acked-by: Patrick Georgi <patrick.georgi@coresystems.de>


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5739 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2010-08-24 12:58:17 +00:00

776 lines
22 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <cpu/amd/lxdef.h>
#include <arch/io.h>
#include <spd.h>
#include "southbridge/amd/cs5536/cs5536.h"
static const unsigned char NumColAddr[] = {
0x00, 0x10, 0x11, 0x00, 0x00, 0x00, 0x00, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};
static void banner(const char *s)
{
printk(BIOS_DEBUG, " * %s\n", s);
}
static void hcf(void)
{
print_emerg("DIE\n");
/* this guarantees we flush the UART fifos (if any) and also
* ensures that things, in general, keep going so no debug output
* is lost
*/
while (1)
print_emerg_char(0);
}
static void auto_size_dimm(unsigned int dimm)
{
uint32_t dimm_setting;
uint16_t dimm_size;
uint8_t spd_byte;
msr_t msr;
dimm_setting = 0;
banner("Check present");
/* Check that we have a dimm */
if (spd_read_byte(dimm, SPD_MEMORY_TYPE) == 0xFF) {
return;
}
banner("MODBANKS");
/* Field: Module Banks per DIMM */
/* EEPROM byte usage: (5) Number of DIMM Banks */
spd_byte = spd_read_byte(dimm, SPD_NUM_DIMM_BANKS);
if ((MIN_MOD_BANKS > spd_byte) || (spd_byte > MAX_MOD_BANKS)) {
print_emerg("Number of module banks not compatible\n");
post_code(ERROR_BANK_SET);
hcf();
}
dimm_setting |= (spd_byte >> 1) << CF07_UPPER_D0_MB_SHIFT;
banner("FIELDBANKS");
/* Field: Banks per SDRAM device */
/* EEPROM byte usage: (17) Number of Banks on SDRAM Device */
spd_byte = spd_read_byte(dimm, SPD_NUM_BANKS_PER_SDRAM);
if ((MIN_DEV_BANKS > spd_byte) || (spd_byte > MAX_DEV_BANKS)) {
print_emerg("Number of device banks not compatible\n");
post_code(ERROR_BANK_SET);
hcf();
}
dimm_setting |= (spd_byte >> 2) << CF07_UPPER_D0_CB_SHIFT;
banner("SPDNUMROWS");
/*; Field: DIMM size
*; EEPROM byte usage: (3) Number of Row Addresses
*; (4) Number of Column Addresses
*; (5) Number of DIMM Banks
*; (31) Module Bank Density
*; Size = Module Density * Module Banks
*/
if ((spd_read_byte(dimm, SPD_NUM_ROWS) & 0xF0)
|| (spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF0)) {
print_emerg("Assymetirc DIMM not compatible\n");
post_code(ERROR_UNSUPPORTED_DIMM);
hcf();
}
banner("SPDBANKDENSITY");
dimm_size = spd_read_byte(dimm, SPD_BANK_DENSITY);
banner("DIMMSIZE");
dimm_size |= (dimm_size << 8); /* align so 1GB(bit0) is bit 8, this is a little weird to get gcc to not optimize this out */
dimm_size &= 0x01FC; /* and off 2GB DIMM size : not supported and the 1GB size we just moved up to bit 8 as well as all the extra on top */
/* Module Density * Module Banks */
dimm_size <<= (dimm_setting >> CF07_UPPER_D0_MB_SHIFT) & 1; /* shift to multiply by # DIMM banks */
banner("BEFORT CTZ");
dimm_size = __builtin_ctz(dimm_size);
banner("TEST DIMM SIZE>8");
if (dimm_size > 8) { /* 8 is 1GB only support 1GB per DIMM */
print_emerg("Only support up to 1 GB per DIMM\n");
post_code(ERROR_DENSITY_DIMM);
hcf();
}
dimm_setting |= dimm_size << CF07_UPPER_D0_SZ_SHIFT;
banner("PAGESIZE");
/*; Field: PAGE size
*; EEPROM byte usage: (4) Number of Column Addresses
*; PageSize = 2^# Column Addresses * Data width in bytes (should be 8bytes for a normal DIMM)
*
*; But this really works by magic.
*;If ma[12:0] is the memory address pins, and pa[12:0] is the physical column address
*;that MC generates, here is how the MC assigns the pa onto the ma pins:
*
*;ma 12 11 10 09 08 07 06 05 04 03 02 01 00
*;-------------------------------------------
*;pa 09 08 07 06 05 04 03 (7 col addr bits = 1K page size)
*;pa 10 09 08 07 06 05 04 03 (8 col addr bits = 2K page size)
*;pa 11 10 09 08 07 06 05 04 03 (9 col addr bits = 4K page size)
*;pa 12 11 10 09 08 07 06 05 04 03 (10 col addr bits = 8K page size)
*;pa 13 AP 12 11 10 09 08 07 06 05 04 03 (11 col addr bits = 16K page size)
*;pa 14 13 AP 12 11 10 09 08 07 06 05 04 03 (12 col addr bits = 32K page size)
*; *AP=autoprecharge bit
*
*;Remember that pa[2:0] are zeroed out since it's a 64-bit data bus (8 bytes),
*;so lower 3 address bits are dont_cares.So from the table above,
*;it's easier to see what the old code is doing: if for example,#col_addr_bits=7(06h),
*;it adds 3 to get 10, then does 2^10=1K. Get it?*/
spd_byte = NumColAddr[spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF];
banner("MAXCOLADDR");
if (spd_byte > MAX_COL_ADDR) {
print_emerg("DIMM page size not compatible\n");
post_code(ERROR_SET_PAGE);
hcf();
}
banner(">12address test");
spd_byte -= 7;
if (spd_byte > 5) { /* if the value is above 6 it means >12 address lines */
spd_byte = 7; /* which means >32k so set to disabled */
}
dimm_setting |= spd_byte << CF07_UPPER_D0_PSZ_SHIFT; /* 0=1k,1=2k,2=4k,etc */
banner("RDMSR CF07");
msr = rdmsr(MC_CF07_DATA);
banner("WRMSR CF07");
if (dimm == DIMM0) {
msr.hi &= 0xFFFF0000;
msr.hi |= dimm_setting;
} else {
msr.hi &= 0x0000FFFF;
msr.hi |= dimm_setting << 16;
}
wrmsr(MC_CF07_DATA, msr);
banner("ALL DONE");
}
static void checkDDRMax(void)
{
uint8_t spd_byte0, spd_byte1;
uint16_t speed;
/* PC133 identifier */
spd_byte0 = spd_read_byte(DIMM0, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
if (spd_byte0 == 0xFF) {
spd_byte0 = 0;
}
spd_byte1 = spd_read_byte(DIMM1, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
if (spd_byte1 == 0xFF) {
spd_byte1 = 0;
}
/* I don't think you need this check.
if (spd_byte0 >= 0xA0 || spd_byte1 >= 0xA0){
print_emerg("DIMM overclocked. Check GeodeLink Speed\n");
post_code(POST_PLL_MEM_FAIL);
hcf();
} */
/* Use the slowest DIMM */
if (spd_byte0 < spd_byte1) {
spd_byte0 = spd_byte1;
}
/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
speed = 20000 / (((spd_byte0 >> 4) * 10) + (spd_byte0 & 0x0F));
/* current speed > max speed? */
if (GeodeLinkSpeed() > speed) {
print_emerg("DIMM overclocked. Check GeodeLink Speed\n");
post_code(POST_PLL_MEM_FAIL);
hcf();
}
}
const uint16_t REF_RATE[] = { 15, 3, 7, 31, 62, 125 }; /* ns */
static void set_refresh_rate(void)
{
uint8_t spd_byte0, spd_byte1;
uint16_t rate0, rate1;
msr_t msr;
spd_byte0 = spd_read_byte(DIMM0, SPD_REFRESH);
spd_byte0 &= 0xF;
if (spd_byte0 > 5) {
spd_byte0 = 5;
}
rate0 = REF_RATE[spd_byte0];
spd_byte1 = spd_read_byte(DIMM1, SPD_REFRESH);
spd_byte1 &= 0xF;
if (spd_byte1 > 5) {
spd_byte1 = 5;
}
rate1 = REF_RATE[spd_byte1];
/* Use the faster rate (lowest number) */
if (rate0 > rate1) {
rate0 = rate1;
}
msr = rdmsr(MC_CF07_DATA);
msr.lo |= ((rate0 * (GeodeLinkSpeed() / 2)) / 16)
<< CF07_LOWER_REF_INT_SHIFT;
wrmsr(MC_CF07_DATA, msr);
}
const uint8_t CASDDR[] = { 5, 5, 2, 6, 3, 7, 4, 0 }; /* 1(1.5), 1.5, 2, 2.5, 3, 3.5, 4, 0 */
static u8 getcasmap(u32 dimm, u16 glspeed)
{
u16 dimm_speed;
u8 spd_byte, casmap, casmap_shift=0;
/************************** DIMM0 **********************************/
casmap = spd_read_byte(dimm, SPD_ACCEPTABLE_CAS_LATENCIES);
if (casmap != 0xFF) {
/* IF -.5 timing is supported, check -.5 timing > GeodeLink */
spd_byte = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_2ND);
if (spd_byte != 0) {
/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
dimm_speed = 20000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F));
if (dimm_speed >= glspeed) {
casmap_shift = 1; /* -.5 is a shift of 1 */
/* IF -1 timing is supported, check -1 timing > GeodeLink */
spd_byte = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_3RD);
if (spd_byte != 0) {
/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
dimm_speed = 20000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F));
if (dimm_speed >= glspeed) {
casmap_shift = 2; /* -1 is a shift of 2 */
}
} /* SPD_SDRAM_CYCLE_TIME_3RD (-1) !=0 */
} else {
casmap_shift = 0;
}
} /* SPD_SDRAM_CYCLE_TIME_2ND (-.5) !=0 */
/* set the casmap based on the shift to limit possible CAS settings */
spd_byte = 31 - __builtin_clz((uint32_t) casmap);
/* just want bits in the lower byte since we have to cast to a 32 */
casmap &= 0xFF << (spd_byte - casmap_shift);
} else { /* No DIMM */
casmap = 0;
}
return casmap;
}
static void setCAS(void)
{
/*;*****************************************************************************
;*
;* setCAS
;* EEPROM byte usage: (18) SDRAM device attributes - CAS latency
;* EEPROM byte usage: (23) SDRAM Minimum Clock Cycle Time @ CLX -.5
;* EEPROM byte usage: (25) SDRAM Minimum Clock Cycle Time @ CLX -1
;*
;* The CAS setting is based on the information provided in each DIMMs SPD.
;* The speed at which a DIMM can run is described relative to the slowest
;* CAS the DIMM supports. Each speed for the relative CAS settings is
;* checked that it is within the GeodeLink speed. If it isn't within the GeodeLink
;* speed, the CAS setting is removed from the list of good settings for
;* the DIMM. This is done for both DIMMs and the lists are compared to
;* find the lowest common CAS latency setting. If there are no CAS settings
;* in common we out a ERROR_DIFF_DIMMS (78h) to port 80h and halt.
;*
;* Entry:
;* Exit: Set fastest CAS Latency based on GeodeLink speed and SPD information.
;* Destroys: We really use everything !
;*****************************************************************************/
uint16_t glspeed;
uint8_t spd_byte, casmap0, casmap1;
msr_t msr;
glspeed = GeodeLinkSpeed();
casmap0 = getcasmap(DIMM0, glspeed);
casmap1 = getcasmap(DIMM1, glspeed);
/********************* CAS_LAT MAP COMPARE ***************************/
if (casmap0 == 0) {
spd_byte = CASDDR[__builtin_ctz(casmap1)];
} else if (casmap1 == 0) {
spd_byte = CASDDR[__builtin_ctz(casmap0)];
} else if ((casmap0 &= casmap1)) {
spd_byte = CASDDR[__builtin_ctz(casmap0)];
} else {
print_emerg("DIMM CAS Latencies not compatible\n");
post_code(ERROR_DIFF_DIMMS);
hcf();
}
msr = rdmsr(MC_CF8F_DATA);
msr.lo &= ~(7 << CF8F_LOWER_CAS_LAT_SHIFT);
msr.lo |= spd_byte << CF8F_LOWER_CAS_LAT_SHIFT;
wrmsr(MC_CF8F_DATA, msr);
}
static void set_latencies(void)
{
uint32_t memspeed, dimm_setting;
uint8_t spd_byte0, spd_byte1;
msr_t msr;
memspeed = GeodeLinkSpeed() / 2;
dimm_setting = 0;
/* MC_CF8F setup */
/* tRAS */
spd_byte0 = spd_read_byte(DIMM0, SPD_tRAS);
if (spd_byte0 == 0xFF) {
spd_byte0 = 0;
}
spd_byte1 = spd_read_byte(DIMM1, SPD_tRAS);
if (spd_byte1 == 0xFF) {
spd_byte1 = 0;
}
if (spd_byte0 < spd_byte1) {
spd_byte0 = spd_byte1;
}
/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
spd_byte1 = (spd_byte0 * memspeed) / 1000;
if (((spd_byte0 * memspeed) % 1000)) {
++spd_byte1;
}
dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2PRE_SHIFT;
/* tRP */
spd_byte0 = spd_read_byte(DIMM0, SPD_tRP);
if (spd_byte0 == 0xFF) {
spd_byte0 = 0;
}
spd_byte1 = spd_read_byte(DIMM1, SPD_tRP);
if (spd_byte1 == 0xFF) {
spd_byte1 = 0;
}
if (spd_byte0 < spd_byte1) {
spd_byte0 = spd_byte1;
}
/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
++spd_byte1;
}
dimm_setting |= spd_byte1 << CF8F_LOWER_PRE2ACT_SHIFT;
/* tRCD */
spd_byte0 = spd_read_byte(DIMM0, SPD_tRCD);
if (spd_byte0 == 0xFF) {
spd_byte0 = 0;
}
spd_byte1 = spd_read_byte(DIMM1, SPD_tRCD);
if (spd_byte1 == 0xFF) {
spd_byte1 = 0;
}
if (spd_byte0 < spd_byte1) {
spd_byte0 = spd_byte1;
}
/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
++spd_byte1;
}
dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2CMD_SHIFT;
/* tRRD */
spd_byte0 = spd_read_byte(DIMM0, SPD_tRRD);
if (spd_byte0 == 0xFF) {
spd_byte0 = 0;
}
spd_byte1 = spd_read_byte(DIMM1, SPD_tRRD);
if (spd_byte1 == 0xFF) {
spd_byte1 = 0;
}
if (spd_byte0 < spd_byte1) {
spd_byte0 = spd_byte1;
}
/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
++spd_byte1;
}
dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2ACT_SHIFT;
/* tRC = tRP + tRAS */
dimm_setting |= (((dimm_setting >> CF8F_LOWER_ACT2PRE_SHIFT) & 0x0F) +
((dimm_setting >> CF8F_LOWER_PRE2ACT_SHIFT) & 0x07))
<< CF8F_LOWER_ACT2ACTREF_SHIFT;
msr = rdmsr(MC_CF8F_DATA);
msr.lo &= 0xF00000FF;
msr.lo |= dimm_setting;
msr.hi |= CF8F_UPPER_REORDER_DIS_SET;
wrmsr(MC_CF8F_DATA, msr);
/* MC_CF1017 setup */
/* tRFC */
spd_byte0 = spd_read_byte(DIMM0, SPD_tRFC);
if (spd_byte0 == 0xFF) {
spd_byte0 = 0;
}
spd_byte1 = spd_read_byte(DIMM1, SPD_tRFC);
if (spd_byte1 == 0xFF) {
spd_byte1 = 0;
}
if (spd_byte0 < spd_byte1) {
spd_byte0 = spd_byte1;
}
if (spd_byte0) {
/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
spd_byte1 = (spd_byte0 * memspeed) / 1000;
if (((spd_byte0 * memspeed) % 1000)) {
++spd_byte1;
}
} else { /* Not all SPDs have tRFC setting. Use this formula tRFC = tRC + 1 clk */
spd_byte1 = ((dimm_setting >> CF8F_LOWER_ACT2ACTREF_SHIFT) & 0x0F) + 1;
}
dimm_setting = spd_byte1 << CF1017_LOWER_REF2ACT_SHIFT; /* note this clears the cf8f dimm setting */
msr = rdmsr(MC_CF1017_DATA);
msr.lo &= ~(0x1F << CF1017_LOWER_REF2ACT_SHIFT);
msr.lo |= dimm_setting;
wrmsr(MC_CF1017_DATA, msr);
/* tWTR: Set tWTR to 2 for 400MHz and above GLBUS (200Mhz mem) other wise it stay default(1) */
if (memspeed > 198) {
msr = rdmsr(MC_CF1017_DATA);
msr.lo &= ~(0x7 << CF1017_LOWER_WR_TO_RD_SHIFT);
msr.lo |= 2 << CF1017_LOWER_WR_TO_RD_SHIFT;
wrmsr(MC_CF1017_DATA, msr);
}
}
static void set_extended_mode_registers(void)
{
uint8_t spd_byte0, spd_byte1;
msr_t msr;
spd_byte0 = spd_read_byte(DIMM0, SPD_DEVICE_ATTRIBUTES_GENERAL);
if (spd_byte0 == 0xFF) {
spd_byte0 = 0;
}
spd_byte1 = spd_read_byte(DIMM1, SPD_DEVICE_ATTRIBUTES_GENERAL);
if (spd_byte1 == 0xFF) {
spd_byte1 = 0;
}
spd_byte1 &= spd_byte0;
msr = rdmsr(MC_CF07_DATA);
if (spd_byte1 & 1) { /* Drive Strength Control */
msr.lo |= CF07_LOWER_EMR_DRV_SET;
}
if (spd_byte1 & 2) { /* FET Control */
msr.lo |= CF07_LOWER_EMR_QFC_SET;
}
wrmsr(MC_CF07_DATA, msr);
}
#undef TLA_MEMORY_DEBUG
#ifdef TLA_MEMORY_DEBUG
static void EnableMTest(void)
{
msr_t msr;
msr = rdmsr(GLCP_DELAY_CONTROLS);
msr.hi &= ~(7 << 20); /* clear bits 54:52 */
if (GeodeLinkSpeed() < 200) {
msr.hi |= 2 << 20;
}
wrmsr(GLCP_DELAY_CONTROLS, msr);
msr = rdmsr(MC_CFCLK_DBUG);
msr.hi |=
CFCLK_UPPER_MTST_B2B_DIS_SET | CFCLK_UPPER_MTEST_EN_SET |
CFCLK_UPPER_MTST_RBEX_EN_SET;
msr.lo |= CFCLK_LOWER_TRISTATE_DIS_SET;
wrmsr(MC_CFCLK_DBUG, msr);
print_info("Enabled MTest for TLA debug\n");
}
#endif
static void sdram_set_registers(const struct mem_controller *ctrl)
{
msr_t msr;
uint32_t msrnum;
/* Set Timing Control */
msrnum = MC_CF1017_DATA;
msr = rdmsr(msrnum);
msr.lo &= ~(7 << CF1017_LOWER_RD_TMG_CTL_SHIFT);
if (GeodeLinkSpeed() < 334) {
msr.lo |= (3 << CF1017_LOWER_RD_TMG_CTL_SHIFT);
} else {
msr.lo |= (4 << CF1017_LOWER_RD_TMG_CTL_SHIFT);
}
wrmsr(msrnum, msr);
/* Set Refresh Staggering */
msrnum = MC_CF07_DATA;
msr = rdmsr(msrnum);
msr.lo &= ~0xF0;
msr.lo |= 0x40; /* set refresh to 4SDRAM clocks */
wrmsr(msrnum, msr);
/* Memory Interleave: Set HOI here otherwise default is LOI */
/* msrnum = MC_CF8F_DATA;
msr = rdmsr(msrnum);
msr.hi |= CF8F_UPPER_HOI_LOI_SET;
wrmsr(msrnum, msr); */
}
static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
uint8_t spd_byte;
banner("sdram_set_spd_register");
post_code(POST_MEM_SETUP); // post_70h
spd_byte = spd_read_byte(DIMM0, SPD_MODULE_ATTRIBUTES);
banner("Check DIMM 0");
/* Check DIMM is not Register and not Buffered DIMMs. */
if ((spd_byte != 0xFF) && (spd_byte & 3)) {
print_emerg("DIMM0 NOT COMPATIBLE\n");
post_code(ERROR_UNSUPPORTED_DIMM);
hcf();
}
banner("Check DIMM 1");
spd_byte = spd_read_byte(DIMM1, SPD_MODULE_ATTRIBUTES);
if ((spd_byte != 0xFF) && (spd_byte & 3)) {
print_emerg("DIMM1 NOT COMPATIBLE\n");
post_code(ERROR_UNSUPPORTED_DIMM);
hcf();
}
post_code(POST_MEM_SETUP2); // post_72h
banner("Check DDR MAX");
/* Check that the memory is not overclocked. */
checkDDRMax();
/* Size the DIMMS */
post_code(POST_MEM_SETUP3); // post_73h
banner("AUTOSIZE DIMM 0");
auto_size_dimm(DIMM0);
post_code(POST_MEM_SETUP4); // post_74h
banner("AUTOSIZE DIMM 1");
auto_size_dimm(DIMM1);
/* Set CAS latency */
banner("set cas latency");
post_code(POST_MEM_SETUP5); // post_75h
setCAS();
/* Set all the other latencies here (tRAS, tRP....) */
banner("set all latency");
set_latencies();
/* Set Extended Mode Registers */
banner("set emrs");
set_extended_mode_registers();
banner("set ref rate");
/* Set Memory Refresh Rate */
set_refresh_rate();
}
/* Section 6.1.3, LX processor databooks, BIOS Initialization Sequence
* Section 4.1.4, GX/CS5535 GeodeROM Porting guide */
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
uint32_t i, msrnum;
msr_t msr;
/*********************************************************************
;* Turn on MC/DIMM interface per JEDEC
;* 1) Clock stabilizes > 200us
;* 2) Assert CKE
;* 3) Precharge All to put all banks into an idles state
;* 4) EMRS to enable DLL
;* 6) MRS w/ memory config & reset DLL set
;* 7) Wait 200 clocks (2us)
;* 8) Precharge All and 2 Auto refresh
;* 9) MRS w/ memory config & reset DLL clear
;* 8) DDR SDRAM ready for normal operation
;********************************************************************/
post_code(POST_MEM_ENABLE); // post_76h
#ifdef TLA_MEMORY_DEBUG
/* Only enable MTest for TLA memory debug */
EnableMTest();
#endif
/* If both Page Size = "Not Installed" we have a problems and should halt. */
msr = rdmsr(MC_CF07_DATA);
if ((msr.hi & ((7 << CF07_UPPER_D1_PSZ_SHIFT) | (7 << CF07_UPPER_D0_PSZ_SHIFT))) ==
((7 << CF07_UPPER_D1_PSZ_SHIFT) | (7 << CF07_UPPER_D0_PSZ_SHIFT))) {
print_emerg("No memory in the system\n");
post_code(ERROR_NO_DIMMS);
hcf();
}
/* Set CKEs */
msrnum = MC_CFCLK_DBUG;
msr = rdmsr(msrnum);
msr.lo &= ~(CFCLK_LOWER_MASK_CKE_SET0 | CFCLK_LOWER_MASK_CKE_SET1);
wrmsr(msrnum, msr);
/* Force Precharge All on next command, EMRS */
msrnum = MC_CFCLK_DBUG;
msr = rdmsr(msrnum);
msr.lo |= CFCLK_LOWER_FORCE_PRE_SET;
wrmsr(msrnum, msr);
/* EMRS to enable DLL (pre-setup done in setExtendedModeRegisters) */
msrnum = MC_CF07_DATA;
msr = rdmsr(msrnum);
msr.lo |= CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DDR_SET;
wrmsr(msrnum, msr);
msr.lo &= ~(CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DDR_SET);
wrmsr(msrnum, msr);
/* Clear Force Precharge All */
msrnum = MC_CFCLK_DBUG;
msr = rdmsr(msrnum);
msr.lo &= ~CFCLK_LOWER_FORCE_PRE_SET;
wrmsr(msrnum, msr);
/* MRS Reset DLL - set */
msrnum = MC_CF07_DATA;
msr = rdmsr(msrnum);
msr.lo |= CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DLL_RESET;
wrmsr(msrnum, msr);
msr.lo &= ~(CF07_LOWER_PROG_DRAM_SET | CF07_LOWER_LOAD_MODE_DLL_RESET);
wrmsr(msrnum, msr);
/* 2us delay (200 clocks @ 200Mhz). We probably really don't need this but.... better safe. */
/* Wait 2 PORT61 ticks. between 15us and 30us */
/* This would be endless if the timer is stuck. */
while ((inb(0x61))) ; /* find the first edge */
while (!(~inb(0x61))) ;
/* Force Precharge All on the next command, auto-refresh */
msrnum = MC_CFCLK_DBUG;
msr = rdmsr(msrnum);
msr.lo |= CFCLK_LOWER_FORCE_PRE_SET;
wrmsr(msrnum, msr);
/* Manually AUTO refresh #1 */
/* If auto refresh was not enabled above we would need to do 8 refreshes to prime the pump before these 2. */
msrnum = MC_CF07_DATA;
msr = rdmsr(msrnum);
msr.lo |= CF07_LOWER_REF_TEST_SET;
wrmsr(msrnum, msr);
msr.lo &= ~CF07_LOWER_REF_TEST_SET;
wrmsr(msrnum, msr);
/* Clear Force Precharge All */
msrnum = MC_CFCLK_DBUG;
msr = rdmsr(msrnum);
msr.lo &= ~CFCLK_LOWER_FORCE_PRE_SET;
wrmsr(msrnum, msr);
/* Manually AUTO refresh */
/* The MC should insert the right delay between the refreshes */
msrnum = MC_CF07_DATA;
msr = rdmsr(msrnum);
msr.lo |= CF07_LOWER_REF_TEST_SET;
wrmsr(msrnum, msr);
msr.lo &= ~CF07_LOWER_REF_TEST_SET;
wrmsr(msrnum, msr);
/* MRS Reset DLL - clear */
msrnum = MC_CF07_DATA;
msr = rdmsr(msrnum);
msr.lo |= CF07_LOWER_PROG_DRAM_SET;
wrmsr(msrnum, msr);
msr.lo &= ~CF07_LOWER_PROG_DRAM_SET;
wrmsr(msrnum, msr);
/* Allow MC to tristate during idle cycles with MTEST OFF */
msrnum = MC_CFCLK_DBUG;
msr = rdmsr(msrnum);
msr.lo &= ~CFCLK_LOWER_TRISTATE_DIS_SET;
wrmsr(msrnum, msr);
/* Disable SDCLK DIMM1 slot if no DIMM installed to save power. */
msr = rdmsr(MC_CF07_DATA);
if ((msr.hi & (7 << CF07_UPPER_D1_PSZ_SHIFT)) ==
(7 << CF07_UPPER_D1_PSZ_SHIFT)) {
msrnum = GLCP_DELAY_CONTROLS;
msr = rdmsr(msrnum);
msr.hi |= (1 << 23); /* SDCLK bit for 2.0 */
wrmsr(msrnum, msr);
}
/* Set PMode0 Sensitivity Counter */
msr.lo = 0; /* pmode 0=0 most aggressive */
msr.hi = 0x200; /* pmode 1=200h */
wrmsr(MC_CF_PMCTR, msr);
/* Set PMode1 Up delay enable */
msrnum = MC_CF1017_DATA;
msr = rdmsr(msrnum);
msr.lo |= (209 << 8); /* bits[15:8] = 209 */
wrmsr(msrnum, msr);
banner("DRAM controller init done.\n");
post_code(POST_MEM_SETUP_GOOD); //0x7E
/* make sure there is nothing stale in the cache */
/* CAR stack is in the cache __asm__ __volatile__("wbinvd\n"); */
/* The RAM dll needs a write to lock on so generate a few dummy writes */
/* Note: The descriptor needs to be enabled to point at memory */
volatile unsigned long *ptr;
for (i = 0; i < 5; i++) {
ptr = (void *)i;
*ptr = (unsigned long)i;
}
/* SWAPSiF for PBZ 4112 (Errata 34) */
/* check for failed DLL settings now that we have done a memory write. */
msrnum = GLCP_DELAY_CONTROLS;
msr = rdmsr(msrnum);
if ((msr.lo & 0x7FF) == 0x104) {
/* If you had it you would need to clear out the fail boot count flag */
/* (depending on where it counts from etc). */
/* The reset we are about to perform clears the PM_SSC register in the */
/* 5536 so will need to store the S3 resume flag in NVRAM otherwise */
/* it would do a normal boot */
/* Reset the system */
msrnum = MDD_SOFT_RESET;
msr = rdmsr(msrnum);
msr.lo |= 1;
wrmsr(msrnum, msr);
}
print_info("RAM DLL lock\n");
}