2854f40668
Change-Id: Id93aab5630e928ee4d7e957801e15a4cc8739fae Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/c/coreboot/+/44594 Reviewed-by: Michael Niewöhner <foss@mniewoehner.de> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
264 lines
8.4 KiB
C
264 lines
8.4 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
#include <types.h>
|
|
#include <string.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <device/pci_ops.h>
|
|
#include <cpu/x86/mp.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/x86/smm.h>
|
|
#include <cpu/intel/em64t101_save_state.h>
|
|
#include <cpu/intel/smm_reloc.h>
|
|
#include <console/console.h>
|
|
#include <smp/node.h>
|
|
#include <soc/cpu.h>
|
|
#include <soc/msr.h>
|
|
#include <soc/pci_devs.h>
|
|
#include <soc/systemagent.h>
|
|
|
|
static void update_save_state(int cpu, uintptr_t curr_smbase,
|
|
uintptr_t staggered_smbase,
|
|
struct smm_relocation_params *relo_params)
|
|
{
|
|
u32 smbase;
|
|
u32 iedbase;
|
|
|
|
/* The relocated handler runs with all CPUs concurrently. Therefore
|
|
* stagger the entry points adjusting SMBASE downwards by save state
|
|
* size * CPU num. */
|
|
smbase = staggered_smbase;
|
|
iedbase = relo_params->ied_base;
|
|
|
|
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
|
smbase, iedbase);
|
|
|
|
/* All threads need to set IEDBASE and SMBASE to the relocated
|
|
* handler region. However, the save state location depends on the
|
|
* smm_save_state_in_msrs field in the relocation parameters. If
|
|
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
|
* the SMM handler in parallel, and each CPUs save state area is
|
|
* located in their respective MSR space. If smm_save_state_in_msrs
|
|
* is zero then the SMM relocation is happening serially so the
|
|
* save state is at the same default location for all CPUs. */
|
|
if (relo_params->smm_save_state_in_msrs) {
|
|
msr_t smbase_msr;
|
|
msr_t iedbase_msr;
|
|
|
|
smbase_msr.lo = smbase;
|
|
smbase_msr.hi = 0;
|
|
|
|
/* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
|
* not clear why it differs from the SMBASE MSR. */
|
|
iedbase_msr.lo = 0;
|
|
iedbase_msr.hi = iedbase;
|
|
|
|
wrmsr(SMBASE_MSR, smbase_msr);
|
|
wrmsr(IEDBASE_MSR, iedbase_msr);
|
|
} else {
|
|
em64t101_smm_state_save_area_t *save_state;
|
|
|
|
save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
|
|
sizeof(*save_state));
|
|
|
|
save_state->smbase = smbase;
|
|
save_state->iedbase = iedbase;
|
|
}
|
|
}
|
|
|
|
/* Returns 1 if SMM MSR save state was set. */
|
|
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
|
{
|
|
msr_t smm_mca_cap;
|
|
|
|
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
|
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
|
msr_t smm_feature_control;
|
|
|
|
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
|
smm_feature_control.hi = 0;
|
|
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
|
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
|
relo_params->smm_save_state_in_msrs = 1;
|
|
}
|
|
return relo_params->smm_save_state_in_msrs;
|
|
}
|
|
|
|
/* The relocation work is actually performed in SMM context, but the code
|
|
* resides in the ramstage module. This occurs by trampolining from the default
|
|
* SMRAM entry point to here. */
|
|
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
|
|
uintptr_t staggered_smbase)
|
|
{
|
|
msr_t mtrr_cap;
|
|
struct smm_relocation_params *relo_params = &smm_reloc_params;
|
|
|
|
printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
|
|
|
|
/* Determine if the processor supports saving state in MSRs. If so,
|
|
* enable it before the non-BSPs run so that SMM relocation can occur
|
|
* in parallel in the non-BSP CPUs. */
|
|
if (cpu == 0) {
|
|
/* If smm_save_state_in_msrs is 1 then that means this is the
|
|
* 2nd time through the relocation handler for the BSP.
|
|
* Parallel SMM handler relocation is taking place. However,
|
|
* it is desired to access other CPUs save state in the real
|
|
* SMM handler. Therefore, disable the SMM save state in MSRs
|
|
* feature. */
|
|
if (relo_params->smm_save_state_in_msrs) {
|
|
msr_t smm_feature_control;
|
|
|
|
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
|
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
|
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
|
} else if (bsp_setup_msr_save_state(relo_params))
|
|
/* Just return from relocation handler if MSR save
|
|
* state is enabled. In that case the BSP will come
|
|
* back into the relocation handler to setup the new
|
|
* SMBASE as well disabling SMM save state in MSRs. */
|
|
return;
|
|
}
|
|
|
|
/* Make appropriate changes to the save state map. */
|
|
update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
|
|
|
|
/* Write PRMRR and SMRR MSRs based on indicated support. */
|
|
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
|
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
|
write_smrr(relo_params);
|
|
|
|
if (mtrr_cap.lo & PRMRR_SUPPORTED) {
|
|
write_prmrr(relo_params);
|
|
/* UNCORE_PRMRR msrs are package level. Therefore, only
|
|
* configure these MSRs on the BSP. */
|
|
if (cpu == 0)
|
|
write_uncore_prmrr(relo_params);
|
|
}
|
|
}
|
|
|
|
static void fill_in_relocation_params(struct smm_relocation_params *params)
|
|
{
|
|
uintptr_t tseg_base;
|
|
size_t tseg_size;
|
|
u32 prmrr_base;
|
|
u32 prmrr_size;
|
|
int phys_bits;
|
|
/* All range registers are aligned to 4KiB */
|
|
const u32 rmask = ~((1 << 12) - 1);
|
|
|
|
/* Some of the range registers are dependent on the number of physical
|
|
* address bits supported. */
|
|
phys_bits = cpuid_eax(0x80000008) & 0xff;
|
|
|
|
/* The range bounded by the TSEGMB and BGSM registers encompasses the
|
|
* SMRAM range as well as the IED range. However, the SMRAM available
|
|
* to the handler is 4MiB since the IEDRAM lives TSEGMB + 4MiB.
|
|
*/
|
|
smm_region(&tseg_base, &tseg_size);
|
|
|
|
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
|
params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
|
|
params->smrr_base.hi = 0;
|
|
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
|
params->smrr_mask.hi = 0;
|
|
|
|
smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size);
|
|
|
|
/* The PRMRR and UNCORE_PRMRR are at IEDBASE + 2MiB */
|
|
prmrr_base = (params->ied_base + (2 << 20)) & rmask;
|
|
prmrr_size = params->ied_size - (2 << 20);
|
|
|
|
/* PRMRR has 46 bits of valid address aligned to 4KiB. It's dependent
|
|
* on the number of physical address bits supported. */
|
|
params->prmrr_base.lo = prmrr_base | MTRR_TYPE_WRBACK;
|
|
params->prmrr_base.hi = 0;
|
|
params->prmrr_mask.lo = (~(prmrr_size - 1) & rmask)
|
|
| MTRR_PHYS_MASK_VALID;
|
|
params->prmrr_mask.hi = (1 << (phys_bits - 32)) - 1;
|
|
|
|
/* UNCORE_PRMRR has 39 bits of valid address aligned to 4KiB. */
|
|
params->uncore_prmrr_base.lo = prmrr_base;
|
|
params->uncore_prmrr_base.hi = 0;
|
|
params->uncore_prmrr_mask.lo = (~(prmrr_size - 1) & rmask) |
|
|
MTRR_PHYS_MASK_VALID;
|
|
params->uncore_prmrr_mask.hi = (1 << (39 - 32)) - 1;
|
|
}
|
|
|
|
static void setup_ied_area(struct smm_relocation_params *params)
|
|
{
|
|
char *ied_base;
|
|
|
|
struct ied_header ied = {
|
|
.signature = "INTEL RSVD",
|
|
.size = params->ied_size,
|
|
.reserved = {0},
|
|
};
|
|
|
|
ied_base = (void *)params->ied_base;
|
|
|
|
/* Place IED header at IEDBASE. */
|
|
memcpy(ied_base, &ied, sizeof(ied));
|
|
|
|
/* Zero out 32KiB at IEDBASE + 1MiB */
|
|
memset(ied_base + (1 << 20), 0, (32 << 10));
|
|
}
|
|
|
|
void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
|
size_t *smm_save_state_size)
|
|
{
|
|
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
|
|
|
fill_in_relocation_params(&smm_reloc_params);
|
|
|
|
smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
|
|
|
|
setup_ied_area(&smm_reloc_params);
|
|
|
|
*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
|
}
|
|
|
|
void smm_initialize(void)
|
|
{
|
|
/* Clear the SMM state in the southbridge. */
|
|
smm_southbridge_clear_state();
|
|
|
|
/*
|
|
* Run the relocation handler for on the BSP to check and set up
|
|
* parallel SMM relocation.
|
|
*/
|
|
smm_initiate_relocation();
|
|
|
|
if (smm_reloc_params.smm_save_state_in_msrs)
|
|
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
|
}
|
|
|
|
/* The default SMM entry can happen in parallel or serially. If the
|
|
* default SMM entry is done in parallel the BSP has already setup
|
|
* the saving state to each CPU's MSRs. At least one save state size
|
|
* is required for the initial SMM entry for the BSP to determine if
|
|
* parallel SMM relocation is even feasible. */
|
|
void smm_relocate(void)
|
|
{
|
|
/*
|
|
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
|
* shall take place. Run the relocation handler a second time on the
|
|
* BSP to do * the final move. For APs, a relocation handler always
|
|
* needs to be run.
|
|
*/
|
|
if (smm_reloc_params.smm_save_state_in_msrs)
|
|
smm_initiate_relocation_parallel();
|
|
else if (!boot_cpu())
|
|
smm_initiate_relocation();
|
|
}
|
|
|
|
void smm_lock(void)
|
|
{
|
|
struct device *sa_dev = pcidev_path_on_root(SA_DEVFN_ROOT);
|
|
/* LOCK the SMM memory window and enable normal SMM.
|
|
* After running this function, only a full reset can
|
|
* make the SMM registers writable again.
|
|
*/
|
|
printk(BIOS_DEBUG, "Locking SMM.\n");
|
|
pci_write_config8(sa_dev, SMRAM, D_LCK | G_SMRAME | C_BASE_SEG);
|
|
}
|