The idea is to split the “mainboard” category into “variants” and “carrierboards”, in the case when we use the COMe module together with the Carrier Board instead of a single monolithic motherboard. Previously, the “variants” category defined the type of motherboard, which has a number of differences from the base one, for example, it differed in the size or type of memory, and in the configuration of the interfaces. Thus, there is no need to create a separate directory in src/mainboard for a board that is similar in configuration to the base board. But for a COMe module, “variants” contains different variants of only this module, and the entire Carrier Board configuration is allocated to a separate category - “carrierboards”, and each of the variants can be used with one of the many boards in “carrierboards”. For example, in the case of the Kontron mAL10 COMe module, variant refers to the COMe-mAL10 or COMe-m4AL10 module type. They differ in the type of memory (DDR3L or DDR4), and maybe they differ in some chips (see more in https://www.kontron.com/products). However, all variants contain the same type of processor/SoC. The "carrierboards" directory can be able contain both the Kontron's Evalution carrier boards (such as Eval Carrier2 T10 and COMe Ref.Carrier-i T10 TNI) and third party vendor backplanes that are compatible with the COMe modules from “variants”. Thus, the src/mainboard/<module-name> directory contains the common configuration code for all variants from src/mainboard/<module-name>/ variants, which can be supplemented/redefined with a configuration from src/mainboard/<module-name>/carrierboard/<vendor-carrierboard-name>. This architectural solution will be able to systematize and simplify understanding of the code structure for COMe modules and will allow vendors to add/maintain their code in a separate directory. This work is also the first step towards to union of all carrierboards into the global category in src/carrierboard on a par with all boards from src/mainboard. The patch takes this into account in the build system and adds CARRIER_DIR component to use the “carrierboards” category, as it has done for VARIANT_DIR. TEST = Build ROM image for Kontron mAL10 COMe module together with T10 TNI carrier board (https://review.coreboot.org/c/coreboot/+/39133). Change-Id: Ic6b2f8994b1293ae6f5bda8c9cc95128ba0abf7a Signed-off-by: Maxim Polyakov <max.senia.poliak@gmail.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/42609 Reviewed-by: Angel Pons <th3fanbus@gmail.com> Reviewed-by: Patrick Georgi <pgeorgi@google.com> Tested-by: build bot (Jenkins) <no-reply@coreboot.org> |
||
---|---|---|
3rdparty | ||
configs | ||
Documentation | ||
LICENSES | ||
payloads | ||
src | ||
tests | ||
util | ||
.checkpatch.conf | ||
.clang-format | ||
.editorconfig | ||
.gitignore | ||
.gitmodules | ||
.gitreview | ||
AUTHORS | ||
COPYING | ||
gnat.adc | ||
MAINTAINERS | ||
Makefile | ||
Makefile.inc | ||
README.md | ||
toolchain.inc |
coreboot README
coreboot is a Free Software project aimed at replacing the proprietary BIOS (firmware) found in most computers. coreboot performs a little bit of hardware initialization and then executes additional boot logic, called a payload.
With the separation of hardware initialization and later boot logic, coreboot can scale from specialized applications that run directly firmware, run operating systems in flash, load custom bootloaders, or implement firmware standards, like PC BIOS services or UEFI. This allows for systems to only include the features necessary in the target application, reducing the amount of code and flash space required.
coreboot was formerly known as LinuxBIOS.
Payloads
After the basic initialization of the hardware has been performed, any desired "payload" can be started by coreboot.
See https://www.coreboot.org/Payloads for a list of supported payloads.
Supported Hardware
coreboot supports a wide range of chipsets, devices, and mainboards.
For details please consult:
Build Requirements
- make
- gcc / g++
Because Linux distribution compilers tend to use lots of patches. coreboot
does lots of "unusual" things in its build system, some of which break due
to those patches, sometimes by gcc aborting, sometimes - and that's worse -
by generating broken object code.
Two options: use our toolchain (eg. make crosstools-i386) or enable the
ANY_TOOLCHAIN
Kconfig option if you're feeling lucky (no support in this case). - iasl (for targets with ACPI support)
- pkg-config
- libssl-dev (openssl)
Optional:
- doxygen (for generating/viewing documentation)
- gdb (for better debugging facilities on some targets)
- ncurses (for
make menuconfig
andmake nconfig
) - flex and bison (for regenerating parsers)
Building coreboot
Please consult https://www.coreboot.org/Build_HOWTO for details.
Testing coreboot Without Modifying Your Hardware
If you want to test coreboot without any risks before you really decide to use it on your hardware, you can use the QEMU system emulator to run coreboot virtually in QEMU.
Please see https://www.coreboot.org/QEMU for details.
Website and Mailing List
Further details on the project, a FAQ, many HOWTOs, news, development guidelines and more can be found on the coreboot website:
You can contact us directly on the coreboot mailing list:
https://www.coreboot.org/Mailinglist
Copyright and License
The copyright on coreboot is owned by quite a large number of individual developers and companies. Please check the individual source files for details.
coreboot is licensed under the terms of the GNU General Public License (GPL). Some files are licensed under the "GPL (version 2, or any later version)", and some files are licensed under the "GPL, version 2". For some parts, which were derived from other projects, other (GPL-compatible) licenses may apply. Please check the individual source files for details.
This makes the resulting coreboot images licensed under the GPL, version 2.