coreboot-kgpe-d16/util/nvramtool/coreboot_tables.h
Elyes Haouas fc2f304f06 util: Use C99 flexible arrays
Use C99 flexible arrays instead of older style of one-element or
zero-length arrays.
It allows the compiler to generate errors when the flexible array does
not occur at the end in the structure.

Change-Id: I6b87680ec9f501945ae266ae4e4927efd2399d56
Signed-off-by: Elyes Haouas <ehaouas@noos.fr>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/76815
Reviewed-by: Felix Singer <service+coreboot-gerrit@felixsinger.de>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2023-08-01 12:51:25 +00:00

208 lines
6.6 KiB
C

/*****************************************************************************\
* coreboot_tables.h
\*****************************************************************************/
#ifndef COREBOOT_TABLES_H
#define COREBOOT_TABLES_H
#include <stdint.h>
/* Note: The contents of this file were borrowed from the coreboot source
* code which may be obtained from https://www.coreboot.org/.
* Specifically, this code was obtained from LinuxBIOS version 1.1.8.
*/
/* The coreboot table information is for conveying information
* from the firmware to the loaded OS image. Primarily this
* is expected to be information that cannot be discovered by
* other means, such as querying the hardware directly.
*
* All of the information should be Position Independent Data.
* That is, it should be safe to relocate any of the information
* without changing its meaning/correctness. For tables that
* can reasonably be used on multiple architectures the data
* size should be fixed. This should ease the transition between
* 32 bit and 64 bit architectures etc.
*
* The completeness test for the information in this table is:
* - Can all of the hardware be detected?
* - Are the per-motherboard constants available?
* - Is there enough to allow a kernel to run that was written before
* a particular motherboard is constructed? (Assuming the kernel
* has drivers for all of the hardware but it does not have
* assumptions on how the hardware is connected together).
*
* With this test it should be straightforward to determine if a
* table entry is required or not. This should remove much of the
* long-term compatibility burden as table entries which are
* irrelevant or have been replaced by better alternatives may be
* dropped. Of course it is polite and expedite to include extra
* table entries and be backwards compatible, but it is not required.
*/
/* Since coreboot is usually compiled 32bit, gcc will align 64bit
* types to 32bit boundaries. If the coreboot table is dumped on a
* 64bit system, a uint64_t would be aligned to 64bit boundaries,
* breaking the table format.
*
* lb_uint64_t will keep 64bit coreboot table values aligned to 32bit
* to ensure compatibility.
*/
typedef __attribute__((aligned(4))) uint64_t lb_uint64_t;
struct lb_header {
union {
uint8_t signature[4]; /* LBIO */
uint32_t signature32;
};
uint32_t header_bytes;
uint32_t header_checksum;
uint32_t table_bytes;
uint32_t table_checksum;
uint32_t table_entries;
};
/* Every entry in the boot environment list will correspond to a boot
* info record, encoding both type and size. The type is obviously
* so you can tell what it is. The size allows you to skip that
* boot environment record if you don't know what it is. This allows
* forward compatibility with records not yet defined.
*/
struct lb_record {
uint32_t tag; /* tag ID */
uint32_t size; /* size of record (in bytes) */
};
#define LB_TAG_UNUSED 0x0000
#define LB_TAG_MEMORY 0x0001
struct lb_memory_range {
lb_uint64_t start;
lb_uint64_t size;
uint32_t type;
#define LB_MEM_RAM 1 /* Memory anyone can use */
#define LB_MEM_RESERVED 2 /* Don't use this memory region */
#define LB_MEM_TABLE 16 /* RAM configuration tables are kept in */
};
struct lb_memory {
uint32_t tag;
uint32_t size;
struct lb_memory_range map[];
};
#define LB_TAG_HWRPB 0x0002
struct lb_hwrpb {
uint32_t tag;
uint32_t size;
uint64_t hwrpb;
};
#define LB_TAG_MAINBOARD 0x0003
struct lb_mainboard {
uint32_t tag;
uint32_t size;
uint8_t vendor_idx;
uint8_t part_number_idx;
uint8_t strings[];
};
#define LB_TAG_VERSION 0x0004
#define LB_TAG_EXTRA_VERSION 0x0005
#define LB_TAG_BUILD 0x0006
#define LB_TAG_COMPILE_TIME 0x0007
#define LB_TAG_COMPILE_BY 0x0008
#define LB_TAG_COMPILE_HOST 0x0009
#define LB_TAG_COMPILE_DOMAIN 0x000a
#define LB_TAG_COMPILER 0x000b
#define LB_TAG_LINKER 0x000c
#define LB_TAG_ASSEMBLER 0x000d
struct lb_string {
uint32_t tag;
uint32_t size;
uint8_t string[];
};
#define LB_TAG_SERIAL 0x000f
#define LB_TAG_CONSOLE 0x0010
#define LB_TAG_FORWARD 0x0011
struct lb_forward {
uint32_t tag;
uint32_t size;
uint64_t forward;
};
/* The following structures are for the CMOS definitions table */
#define LB_TAG_CMOS_OPTION_TABLE 200
/* CMOS header record */
struct cmos_option_table {
uint32_t tag; /* CMOS definitions table type */
uint32_t size; /* size of the entire table */
uint32_t header_length; /* length of header */
};
/* CMOS entry record
* This record has a variable length. The name field may be
* shorter than CMOS_MAX_NAME_LENGTH. The entry may start
* anywhere in the byte, but can not span bytes unless it
* starts at the beginning of the byte and the length
* fills complete bytes.
*/
#define LB_TAG_OPTION 201
struct cmos_entries {
uint32_t tag; /* entry type */
uint32_t size; /* length of this record */
uint32_t bit; /* starting bit from start of image */
uint32_t length; /* length of field in bits */
uint32_t config; /* e=enumeration, h=hex, r=reserved */
uint32_t config_id; /* a number linking to an enumeration record */
#define CMOS_MAX_NAME_LENGTH 32
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name of entry in ascii,
variable length int aligned */
};
/* CMOS enumerations record
* This record has a variable length. The text field may be
* shorter than CMOS_MAX_TEXT_LENGTH.
*/
#define LB_TAG_OPTION_ENUM 202
struct cmos_enums {
uint32_t tag; /* enumeration type */
uint32_t size; /* length of this record */
uint32_t config_id; /* a number identifying the config id */
uint32_t value; /* the value associated with the text */
#define CMOS_MAX_TEXT_LENGTH 32
uint8_t text[CMOS_MAX_TEXT_LENGTH]; /* enum description in ascii,
variable length int aligned */
};
/* CMOS default record
* This record contains default settings for the CMOS RAM.
*/
#define LB_TAG_OPTION_DEFAULTS 203
struct cmos_defaults {
uint32_t tag; /* default type */
uint32_t size; /* length of this record */
uint32_t name_length; /* length of the following name field */
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name identifying the default */
#define CMOS_IMAGE_BUFFER_SIZE 128
uint8_t default_set[CMOS_IMAGE_BUFFER_SIZE]; /* default settings */
};
#define LB_TAG_OPTION_CHECKSUM 204
struct cmos_checksum {
uint32_t tag;
uint32_t size;
/* In practice everything is byte aligned, but things are measured
* in bits to be consistent.
*/
uint32_t range_start; /* First bit that is checksummed (byte aligned) */
uint32_t range_end; /* Last bit that is checksummed (byte aligned) */
uint32_t location; /* First bit of the checksum (byte aligned) */
uint32_t type; /* Checksum algorithm that is used */
#define CHECKSUM_NONE 0
#define CHECKSUM_PCBIOS 1
};
#endif /* COREBOOT_TABLES_H */