coreboot-kgpe-d16/Documentation/arch/riscv/index.md
Xiang Wang 3d5bb2a5df Documentatioan: update stage handoff protocol
Change-Id: I170fc16675c2701f6ea133cfce6e5fabdfb0e8d3
Signed-off-by: Xiang Wang <wxjstz@126.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/33460
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Patrick Rudolph <siro@das-labor.org>
Reviewed-by: Philipp Hug <philipp@hug.cx>
2019-06-21 09:28:56 +00:00

1.4 KiB

RISC-V architecture documentation

This section contains documentation about coreboot on RISC-V architecture.

Mode usage

All stages run in M mode.

Payloads have a choice of managing M mode activity: they can control everything or nothing.

Payloads run from the romstage (i.e. rampayloads) are started in M mode. The payload must, for example, prepare and install its own SBI.

Payloads run from the ramstage are started in S mode, and trap delegation will have been done. These payloads rely on the SBI and can not replace it.

Stage handoff protocol

On entry to a stage or payload (including SELF payloads),

  • all harts are running.
  • A0 is the hart ID.
  • A1 is the pointer to the Flattened Device Tree (FDT).

Additional payload handoff requirements

The location of cbmem should be placed in a node in the FDT.

Trap delegation

Traps are delegated in the ramstage.

SMP within a stage

At the beginning of each stage, all harts save 0 are spinning in a loop on a semaphore. At the end of the stage harts 1..max are released by changing the semaphore.

A possible way to do this is to have a pointer to a struct containing variables, e.g.

struct blocker {
	void (*fn)(); // never returns
}

The hart blocks until fn is non-null, and then calls it. If fn returns, we will panic if possible, but behavior is largely undefined.

Only hart 0 runs through most of the code in each stage.