40cb3fe94d
The prefix POSTCODE makes it clear that the macro is a post code. Hence, replace related macros starting with POST to POSTCODE and also replace every instance the macros are invoked with the new name. The files was changed by running the following bash script from the top level directory. sed -i'' '30,${s/#define POST/#define POSTCODE/g;}' \ src/commonlib/include/commonlib/console/post_codes.h; myArray=`grep -e "^#define POSTCODE_" \ src/commonlib/include/commonlib/console/post_codes.h | \ grep -v "POST_CODES_H" | tr '\t' ' ' | cut -d ' ' -f 2`; for str in ${myArray[@]}; do splitstr=`echo $str | cut -d '_' -f2-` grep -r POST_$splitstr src | \ cut -d ':' -f 1 | xargs sed -i'' -e "s/POST_$splitstr/$str/g"; grep -r "POST_$splitstr" util/cbfstool | \ cut -d ':' -f 1 | xargs sed -i'' -e "s/POST_$splitstr/$str/g"; done Change-Id: I25db79fa15f032c08678f66d86c10c928b7de9b8 Signed-off-by: lilacious <yuchenhe126@gmail.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/76043 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Subrata Banik <subratabanik@google.com>
516 lines
12 KiB
C
516 lines
12 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
|
|
/*
|
|
* C Bootstrap code for the coreboot
|
|
*/
|
|
|
|
#include <acpi/acpi.h>
|
|
#include <acpi/acpi_gnvs.h>
|
|
#include <adainit.h>
|
|
#include <arch/exception.h>
|
|
#include <boot/tables.h>
|
|
#include <bootstate.h>
|
|
#include <cbmem.h>
|
|
#include <commonlib/console/post_codes.h>
|
|
#include <commonlib/helpers.h>
|
|
#include <console/console.h>
|
|
#include <delay.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <program_loading.h>
|
|
#include <thread.h>
|
|
#include <timer.h>
|
|
#include <timestamp.h>
|
|
#include <types.h>
|
|
|
|
static boot_state_t bs_pre_device(void *arg);
|
|
static boot_state_t bs_dev_init_chips(void *arg);
|
|
static boot_state_t bs_dev_enumerate(void *arg);
|
|
static boot_state_t bs_dev_resources(void *arg);
|
|
static boot_state_t bs_dev_enable(void *arg);
|
|
static boot_state_t bs_dev_init(void *arg);
|
|
static boot_state_t bs_post_device(void *arg);
|
|
static boot_state_t bs_os_resume_check(void *arg);
|
|
static boot_state_t bs_os_resume(void *arg);
|
|
static boot_state_t bs_write_tables(void *arg);
|
|
static boot_state_t bs_payload_load(void *arg);
|
|
static boot_state_t bs_payload_boot(void *arg);
|
|
|
|
/* The prologue (BS_ON_ENTRY) and epilogue (BS_ON_EXIT) of a state can be
|
|
* blocked from transitioning to the next (state,seq) pair. When the blockers
|
|
* field is 0 a transition may occur. */
|
|
struct boot_phase {
|
|
struct boot_state_callback *callbacks;
|
|
int blockers;
|
|
};
|
|
|
|
struct boot_state {
|
|
const char *name;
|
|
boot_state_t id;
|
|
u8 post_code;
|
|
struct boot_phase phases[2];
|
|
boot_state_t (*run_state)(void *arg);
|
|
void *arg;
|
|
int num_samples;
|
|
bool complete;
|
|
};
|
|
|
|
#define BS_INIT(state_, run_func_) \
|
|
{ \
|
|
.name = #state_, \
|
|
.id = state_, \
|
|
.post_code = POSTCODE_ ## state_, \
|
|
.phases = { { NULL, 0 }, { NULL, 0 } }, \
|
|
.run_state = run_func_, \
|
|
.arg = NULL, \
|
|
.complete = false, \
|
|
}
|
|
#define BS_INIT_ENTRY(state_, run_func_) \
|
|
[state_] = BS_INIT(state_, run_func_)
|
|
|
|
static struct boot_state boot_states[] = {
|
|
BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device),
|
|
BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips),
|
|
BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate),
|
|
BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources),
|
|
BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_enable),
|
|
BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
|
|
BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
|
|
BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
|
|
BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
|
|
BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables),
|
|
BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
|
|
BS_INIT_ENTRY(BS_PAYLOAD_BOOT, bs_payload_boot),
|
|
};
|
|
|
|
void __weak arch_bootstate_coreboot_exit(void) { }
|
|
|
|
static boot_state_t bs_pre_device(void *arg)
|
|
{
|
|
return BS_DEV_INIT_CHIPS;
|
|
}
|
|
|
|
static boot_state_t bs_dev_init_chips(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_ENUMERATE);
|
|
|
|
/* Initialize chips early, they might disable unused devices. */
|
|
dev_initialize_chips();
|
|
|
|
return BS_DEV_ENUMERATE;
|
|
}
|
|
|
|
static boot_state_t bs_dev_enumerate(void *arg)
|
|
{
|
|
/* Find the devices we don't have hard coded knowledge about. */
|
|
dev_enumerate();
|
|
|
|
return BS_DEV_RESOURCES;
|
|
}
|
|
|
|
static boot_state_t bs_dev_resources(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_CONFIGURE);
|
|
|
|
/* Now compute and assign the bus resources. */
|
|
dev_configure();
|
|
|
|
return BS_DEV_ENABLE;
|
|
}
|
|
|
|
static boot_state_t bs_dev_enable(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_ENABLE);
|
|
|
|
/* Now actually enable devices on the bus */
|
|
dev_enable();
|
|
|
|
return BS_DEV_INIT;
|
|
}
|
|
|
|
static boot_state_t bs_dev_init(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_INITIALIZE);
|
|
|
|
/* And of course initialize devices on the bus */
|
|
dev_initialize();
|
|
|
|
return BS_POST_DEVICE;
|
|
}
|
|
|
|
static boot_state_t bs_post_device(void *arg)
|
|
{
|
|
dev_finalize();
|
|
timestamp_add_now(TS_DEVICE_DONE);
|
|
|
|
return BS_OS_RESUME_CHECK;
|
|
}
|
|
|
|
static boot_state_t bs_os_resume_check(void *arg)
|
|
{
|
|
void *wake_vector = NULL;
|
|
|
|
if (CONFIG(HAVE_ACPI_RESUME))
|
|
wake_vector = acpi_find_wakeup_vector();
|
|
|
|
if (wake_vector != NULL) {
|
|
boot_states[BS_OS_RESUME].arg = wake_vector;
|
|
return BS_OS_RESUME;
|
|
}
|
|
|
|
timestamp_add_now(TS_CBMEM_POST);
|
|
|
|
return BS_WRITE_TABLES;
|
|
}
|
|
|
|
static boot_state_t bs_os_resume(void *wake_vector)
|
|
{
|
|
if (CONFIG(HAVE_ACPI_RESUME)) {
|
|
arch_bootstate_coreboot_exit();
|
|
acpi_resume(wake_vector);
|
|
/* We will not come back. */
|
|
}
|
|
die("Failed OS resume\n");
|
|
}
|
|
|
|
static boot_state_t bs_write_tables(void *arg)
|
|
{
|
|
timestamp_add_now(TS_WRITE_TABLES);
|
|
|
|
/* Now that we have collected all of our information
|
|
* write our configuration tables.
|
|
*/
|
|
write_tables();
|
|
|
|
timestamp_add_now(TS_FINALIZE_CHIPS);
|
|
dev_finalize_chips();
|
|
|
|
return BS_PAYLOAD_LOAD;
|
|
}
|
|
|
|
static boot_state_t bs_payload_load(void *arg)
|
|
{
|
|
payload_load();
|
|
|
|
return BS_PAYLOAD_BOOT;
|
|
}
|
|
|
|
static boot_state_t bs_payload_boot(void *arg)
|
|
{
|
|
arch_bootstate_coreboot_exit();
|
|
payload_run();
|
|
|
|
printk(BIOS_EMERG, "Boot failed\n");
|
|
/* Returning from this state will fail because the following signals
|
|
* return to a completed state. */
|
|
return BS_PAYLOAD_BOOT;
|
|
}
|
|
|
|
/*
|
|
* Typically a state will take 4 time samples:
|
|
* 1. Before state entry callbacks
|
|
* 2. After state entry callbacks / Before state function.
|
|
* 3. After state function / Before state exit callbacks.
|
|
* 4. After state exit callbacks.
|
|
*/
|
|
static void bs_sample_time(struct boot_state *state)
|
|
{
|
|
static const char *const sample_id[] = { "entry", "run", "exit" };
|
|
static struct mono_time previous_sample;
|
|
struct mono_time this_sample;
|
|
long console;
|
|
|
|
if (!CONFIG(HAVE_MONOTONIC_TIMER))
|
|
return;
|
|
|
|
console = console_time_get_and_reset();
|
|
timer_monotonic_get(&this_sample);
|
|
state->num_samples++;
|
|
|
|
int i = state->num_samples - 2;
|
|
if ((i >= 0) && (i < ARRAY_SIZE(sample_id))) {
|
|
long execution = mono_time_diff_microseconds(&previous_sample, &this_sample);
|
|
|
|
/* Report with millisecond precision to reduce log diffs. */
|
|
execution = DIV_ROUND_CLOSEST(execution, USECS_PER_MSEC);
|
|
console = DIV_ROUND_CLOSEST(console, USECS_PER_MSEC);
|
|
if (execution) {
|
|
printk(BIOS_DEBUG, "BS: %s %s times (exec / console): %ld / %ld ms\n",
|
|
state->name, sample_id[i], execution - console, console);
|
|
/* Reset again to ignore printk() time above. */
|
|
console_time_get_and_reset();
|
|
}
|
|
}
|
|
timer_monotonic_get(&previous_sample);
|
|
}
|
|
|
|
#if CONFIG(TIMER_QUEUE)
|
|
static void bs_run_timers(int drain)
|
|
{
|
|
/* Drain all timer callbacks until none are left, if directed.
|
|
* Otherwise run the timers only once. */
|
|
do {
|
|
if (!timers_run())
|
|
break;
|
|
} while (drain);
|
|
}
|
|
#else
|
|
static void bs_run_timers(int drain) {}
|
|
#endif
|
|
|
|
static void bs_call_callbacks(struct boot_state *state,
|
|
boot_state_sequence_t seq)
|
|
{
|
|
struct boot_phase *phase = &state->phases[seq];
|
|
struct mono_time mt_start, mt_stop;
|
|
|
|
while (1) {
|
|
if (phase->callbacks != NULL) {
|
|
struct boot_state_callback *bscb;
|
|
|
|
/* Remove the first callback. */
|
|
bscb = phase->callbacks;
|
|
phase->callbacks = bscb->next;
|
|
bscb->next = NULL;
|
|
|
|
if (CONFIG(DEBUG_BOOT_STATE)) {
|
|
printk(BIOS_DEBUG, "BS: callback (%p) @ %s.\n",
|
|
bscb, bscb_location(bscb));
|
|
timer_monotonic_get(&mt_start);
|
|
}
|
|
bscb->callback(bscb->arg);
|
|
if (CONFIG(DEBUG_BOOT_STATE)) {
|
|
timer_monotonic_get(&mt_stop);
|
|
printk(BIOS_DEBUG, "BS: callback (%p) @ %s (%lld ms).\n", bscb,
|
|
bscb_location(bscb),
|
|
mono_time_diff_microseconds(&mt_start, &mt_stop)
|
|
/ USECS_PER_MSEC);
|
|
}
|
|
|
|
bs_run_timers(0);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* All callbacks are complete and there are no blockers for
|
|
* this state. Therefore, this part of the state is complete. */
|
|
if (!phase->blockers)
|
|
break;
|
|
|
|
/* Something is blocking this state from transitioning. As
|
|
* there are no more callbacks a pending timer needs to be
|
|
* ran to unblock the state. */
|
|
bs_run_timers(0);
|
|
}
|
|
}
|
|
|
|
/* Keep track of the current state. */
|
|
static struct state_tracker {
|
|
boot_state_t state_id;
|
|
boot_state_sequence_t seq;
|
|
} current_phase = {
|
|
.state_id = BS_PRE_DEVICE,
|
|
.seq = BS_ON_ENTRY,
|
|
};
|
|
|
|
static void bs_walk_state_machine(void)
|
|
{
|
|
|
|
while (1) {
|
|
struct boot_state *state;
|
|
boot_state_t next_id;
|
|
|
|
state = &boot_states[current_phase.state_id];
|
|
|
|
if (state->complete) {
|
|
printk(BIOS_EMERG, "BS: %s state already executed.\n",
|
|
state->name);
|
|
break;
|
|
}
|
|
|
|
if (CONFIG(DEBUG_BOOT_STATE))
|
|
printk(BIOS_DEBUG, "BS: Entering %s state.\n",
|
|
state->name);
|
|
|
|
bs_run_timers(0);
|
|
|
|
bs_sample_time(state);
|
|
|
|
bs_call_callbacks(state, current_phase.seq);
|
|
/* Update the current sequence so that any calls to block the
|
|
* current state from the run_state() function will place a
|
|
* block on the correct phase. */
|
|
current_phase.seq = BS_ON_EXIT;
|
|
|
|
bs_sample_time(state);
|
|
|
|
post_code(state->post_code);
|
|
|
|
next_id = state->run_state(state->arg);
|
|
|
|
if (CONFIG(DEBUG_BOOT_STATE))
|
|
printk(BIOS_DEBUG, "BS: Exiting %s state.\n",
|
|
state->name);
|
|
|
|
bs_sample_time(state);
|
|
|
|
bs_run_timers(0);
|
|
|
|
bs_call_callbacks(state, current_phase.seq);
|
|
|
|
if (CONFIG(DEBUG_BOOT_STATE))
|
|
printk(BIOS_DEBUG,
|
|
"----------------------------------------\n");
|
|
|
|
/* Update the current phase with new state id and sequence. */
|
|
current_phase.state_id = next_id;
|
|
current_phase.seq = BS_ON_ENTRY;
|
|
|
|
bs_sample_time(state);
|
|
|
|
state->complete = true;
|
|
}
|
|
}
|
|
|
|
static int boot_state_sched_callback(struct boot_state *state,
|
|
struct boot_state_callback *bscb,
|
|
boot_state_sequence_t seq)
|
|
{
|
|
if (state->complete) {
|
|
printk(BIOS_WARNING,
|
|
"Tried to schedule callback on completed state %s.\n",
|
|
state->name);
|
|
|
|
return -1;
|
|
}
|
|
|
|
bscb->next = state->phases[seq].callbacks;
|
|
state->phases[seq].callbacks = bscb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int boot_state_sched_on_entry(struct boot_state_callback *bscb,
|
|
boot_state_t state_id)
|
|
{
|
|
struct boot_state *state = &boot_states[state_id];
|
|
|
|
return boot_state_sched_callback(state, bscb, BS_ON_ENTRY);
|
|
}
|
|
|
|
int boot_state_sched_on_exit(struct boot_state_callback *bscb,
|
|
boot_state_t state_id)
|
|
{
|
|
struct boot_state *state = &boot_states[state_id];
|
|
|
|
return boot_state_sched_callback(state, bscb, BS_ON_EXIT);
|
|
}
|
|
|
|
static void boot_state_schedule_static_entries(void)
|
|
{
|
|
extern struct boot_state_init_entry *_bs_init_begin[];
|
|
struct boot_state_init_entry **slot;
|
|
|
|
for (slot = &_bs_init_begin[0]; *slot != NULL; slot++) {
|
|
struct boot_state_init_entry *cur = *slot;
|
|
|
|
if (cur->when == BS_ON_ENTRY)
|
|
boot_state_sched_on_entry(&cur->bscb, cur->state);
|
|
else
|
|
boot_state_sched_on_exit(&cur->bscb, cur->state);
|
|
}
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
/*
|
|
* We can generally jump between C and Ada code back and forth
|
|
* without trouble. But since we don't have an Ada main() we
|
|
* have to do some Ada package initializations that GNAT would
|
|
* do there. This has to be done before calling any Ada code.
|
|
*
|
|
* The package initializations should not have any dependen-
|
|
* cies on C code. So we can call them here early, and don't
|
|
* have to worry at which point we can start to use Ada.
|
|
*/
|
|
ramstage_adainit();
|
|
|
|
/* TODO: Understand why this is here and move to arch/platform code. */
|
|
/* For MMIO UART this needs to be called before any other printk. */
|
|
if (ENV_X86)
|
|
init_timer();
|
|
|
|
/* console_init() MUST PRECEDE ALL printk()! Additionally, ensure
|
|
* it is the very first thing done in ramstage.*/
|
|
console_init();
|
|
post_code(POSTCODE_CONSOLE_READY);
|
|
|
|
exception_init();
|
|
|
|
/*
|
|
* CBMEM needs to be recovered because timestamps, ACPI, etc rely on
|
|
* the cbmem infrastructure being around. Explicitly recover it.
|
|
*/
|
|
cbmem_initialize();
|
|
|
|
timestamp_add_now(TS_RAMSTAGE_START);
|
|
post_code(POSTCODE_ENTRY_HARDWAREMAIN);
|
|
|
|
/* Handoff sleep type from romstage. */
|
|
acpi_is_wakeup_s3();
|
|
|
|
/* Schedule the static boot state entries. */
|
|
boot_state_schedule_static_entries();
|
|
|
|
bs_walk_state_machine();
|
|
|
|
die("Boot state machine failure.\n");
|
|
}
|
|
|
|
|
|
int boot_state_block(boot_state_t state, boot_state_sequence_t seq)
|
|
{
|
|
struct boot_phase *bp;
|
|
|
|
/* Blocking a previously ran state is not appropriate. */
|
|
if (current_phase.state_id > state ||
|
|
(current_phase.state_id == state && current_phase.seq > seq)) {
|
|
printk(BIOS_WARNING,
|
|
"BS: Completed state (%d, %d) block attempted.\n",
|
|
state, seq);
|
|
return -1;
|
|
}
|
|
|
|
bp = &boot_states[state].phases[seq];
|
|
bp->blockers++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int boot_state_unblock(boot_state_t state, boot_state_sequence_t seq)
|
|
{
|
|
struct boot_phase *bp;
|
|
|
|
/* Blocking a previously ran state is not appropriate. */
|
|
if (current_phase.state_id > state ||
|
|
(current_phase.state_id == state && current_phase.seq > seq)) {
|
|
printk(BIOS_WARNING,
|
|
"BS: Completed state (%d, %d) unblock attempted.\n",
|
|
state, seq);
|
|
return -1;
|
|
}
|
|
|
|
bp = &boot_states[state].phases[seq];
|
|
|
|
if (bp->blockers == 0) {
|
|
printk(BIOS_WARNING,
|
|
"BS: Unblock attempted on non-blocked state (%d, %d).\n",
|
|
state, seq);
|
|
return -1;
|
|
}
|
|
|
|
bp->blockers--;
|
|
|
|
return 0;
|
|
}
|