05f26fcb57
- Implementation of fallback/normal support for the amd solo board - Minor bugfix in romcc git-svn-id: svn://svn.coreboot.org/coreboot/trunk@867 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
16435 lines
405 KiB
C
16435 lines
405 KiB
C
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
|
|
#define DEBUG_ERROR_MESSAGES 0
|
|
#define DEBUG_COLOR_GRAPH 0
|
|
#define DEBUG_SCC 0
|
|
#define DEBUG_CONSISTENCY 1
|
|
|
|
#warning "FIXME boundary cases with small types in larger registers"
|
|
|
|
/* Control flow graph of a loop without goto.
|
|
*
|
|
* AAA
|
|
* +---/
|
|
* /
|
|
* / +--->CCC
|
|
* | | / \
|
|
* | | DDD EEE break;
|
|
* | | \ \
|
|
* | | FFF \
|
|
* \| / \ \
|
|
* |\ GGG HHH | continue;
|
|
* | \ \ | |
|
|
* | \ III | /
|
|
* | \ | / /
|
|
* | vvv /
|
|
* +----BBB /
|
|
* | /
|
|
* vv
|
|
* JJJ
|
|
*
|
|
*
|
|
* AAA
|
|
* +-----+ | +----+
|
|
* | \ | / |
|
|
* | BBB +-+ |
|
|
* | / \ / | |
|
|
* | CCC JJJ / /
|
|
* | / \ / /
|
|
* | DDD EEE / /
|
|
* | | +-/ /
|
|
* | FFF /
|
|
* | / \ /
|
|
* | GGG HHH /
|
|
* | | +-/
|
|
* | III
|
|
* +--+
|
|
*
|
|
*
|
|
* DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
|
|
* DFup(Z) = { Y <- DF(Z) | idom(Y) != X }
|
|
*
|
|
*
|
|
* [] == DFlocal(X) U DF(X)
|
|
* () == DFup(X)
|
|
*
|
|
* Dominator graph of the same nodes.
|
|
*
|
|
* AAA AAA: [ ] ()
|
|
* / \
|
|
* BBB JJJ BBB: [ JJJ ] ( JJJ ) JJJ: [ ] ()
|
|
* |
|
|
* CCC CCC: [ ] ( BBB, JJJ )
|
|
* / \
|
|
* DDD EEE DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
|
|
* |
|
|
* FFF FFF: [ ] ( BBB )
|
|
* / \
|
|
* GGG HHH GGG: [ ] ( BBB ) HHH: [ BBB ] ()
|
|
* |
|
|
* III III: [ BBB ] ()
|
|
*
|
|
*
|
|
* BBB and JJJ are definitely the dominance frontier.
|
|
* Where do I place phi functions and how do I make that decision.
|
|
*
|
|
*/
|
|
static void die(char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vfprintf(stderr, fmt, args);
|
|
va_end(args);
|
|
fflush(stdout);
|
|
fflush(stderr);
|
|
exit(1);
|
|
}
|
|
|
|
#define MALLOC_STRONG_DEBUG
|
|
static void *xmalloc(size_t size, const char *name)
|
|
{
|
|
void *buf;
|
|
buf = malloc(size);
|
|
if (!buf) {
|
|
die("Cannot malloc %ld bytes to hold %s: %s\n",
|
|
size + 0UL, name, strerror(errno));
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
static void *xcmalloc(size_t size, const char *name)
|
|
{
|
|
void *buf;
|
|
buf = xmalloc(size, name);
|
|
memset(buf, 0, size);
|
|
return buf;
|
|
}
|
|
|
|
static void xfree(const void *ptr)
|
|
{
|
|
free((void *)ptr);
|
|
}
|
|
|
|
static char *xstrdup(const char *str)
|
|
{
|
|
char *new;
|
|
int len;
|
|
len = strlen(str);
|
|
new = xmalloc(len + 1, "xstrdup string");
|
|
memcpy(new, str, len);
|
|
new[len] = '\0';
|
|
return new;
|
|
}
|
|
|
|
static void xchdir(const char *path)
|
|
{
|
|
if (chdir(path) != 0) {
|
|
die("chdir to %s failed: %s\n",
|
|
path, strerror(errno));
|
|
}
|
|
}
|
|
|
|
static int exists(const char *dirname, const char *filename)
|
|
{
|
|
int does_exist = 1;
|
|
xchdir(dirname);
|
|
if (access(filename, O_RDONLY) < 0) {
|
|
if ((errno != EACCES) && (errno != EROFS)) {
|
|
does_exist = 0;
|
|
}
|
|
}
|
|
return does_exist;
|
|
}
|
|
|
|
|
|
static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
|
|
{
|
|
int fd;
|
|
char *buf;
|
|
off_t size, progress;
|
|
ssize_t result;
|
|
struct stat stats;
|
|
|
|
if (!filename) {
|
|
*r_size = 0;
|
|
return 0;
|
|
}
|
|
xchdir(dirname);
|
|
fd = open(filename, O_RDONLY);
|
|
if (fd < 0) {
|
|
die("Cannot open '%s' : %s\n",
|
|
filename, strerror(errno));
|
|
}
|
|
result = fstat(fd, &stats);
|
|
if (result < 0) {
|
|
die("Cannot stat: %s: %s\n",
|
|
filename, strerror(errno));
|
|
}
|
|
size = stats.st_size;
|
|
*r_size = size +1;
|
|
buf = xmalloc(size +2, filename);
|
|
buf[size] = '\n'; /* Make certain the file is newline terminated */
|
|
buf[size+1] = '\0'; /* Null terminate the file for good measure */
|
|
progress = 0;
|
|
while(progress < size) {
|
|
result = read(fd, buf + progress, size - progress);
|
|
if (result < 0) {
|
|
if ((errno == EINTR) || (errno == EAGAIN))
|
|
continue;
|
|
die("read on %s of %ld bytes failed: %s\n",
|
|
filename, (size - progress)+ 0UL, strerror(errno));
|
|
}
|
|
progress += result;
|
|
}
|
|
result = close(fd);
|
|
if (result < 0) {
|
|
die("Close of %s failed: %s\n",
|
|
filename, strerror(errno));
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/* Long on the destination platform */
|
|
typedef unsigned long ulong_t;
|
|
typedef long long_t;
|
|
|
|
struct file_state {
|
|
struct file_state *prev;
|
|
const char *basename;
|
|
char *dirname;
|
|
char *buf;
|
|
off_t size;
|
|
char *pos;
|
|
int line;
|
|
char *line_start;
|
|
};
|
|
struct hash_entry;
|
|
struct token {
|
|
int tok;
|
|
struct hash_entry *ident;
|
|
int str_len;
|
|
union {
|
|
ulong_t integer;
|
|
const char *str;
|
|
} val;
|
|
};
|
|
|
|
/* I have two classes of types:
|
|
* Operational types.
|
|
* Logical types. (The type the C standard says the operation is of)
|
|
*
|
|
* The operational types are:
|
|
* chars
|
|
* shorts
|
|
* ints
|
|
* longs
|
|
*
|
|
* floats
|
|
* doubles
|
|
* long doubles
|
|
*
|
|
* pointer
|
|
*/
|
|
|
|
|
|
/* Machine model.
|
|
* No memory is useable by the compiler.
|
|
* There is no floating point support.
|
|
* All operations take place in general purpose registers.
|
|
* There is one type of general purpose register.
|
|
* Unsigned longs are stored in that general purpose register.
|
|
*/
|
|
|
|
/* Operations on general purpose registers.
|
|
*/
|
|
|
|
#define OP_SMUL 0
|
|
#define OP_UMUL 1
|
|
#define OP_SDIV 2
|
|
#define OP_UDIV 3
|
|
#define OP_SMOD 4
|
|
#define OP_UMOD 5
|
|
#define OP_ADD 6
|
|
#define OP_SUB 7
|
|
#define OP_SL 8
|
|
#define OP_USR 9
|
|
#define OP_SSR 10
|
|
#define OP_AND 11
|
|
#define OP_XOR 12
|
|
#define OP_OR 13
|
|
#define OP_POS 14 /* Dummy positive operator don't use it */
|
|
#define OP_NEG 15
|
|
#define OP_INVERT 16
|
|
|
|
#define OP_EQ 20
|
|
#define OP_NOTEQ 21
|
|
#define OP_SLESS 22
|
|
#define OP_ULESS 23
|
|
#define OP_SMORE 24
|
|
#define OP_UMORE 25
|
|
#define OP_SLESSEQ 26
|
|
#define OP_ULESSEQ 27
|
|
#define OP_SMOREEQ 28
|
|
#define OP_UMOREEQ 29
|
|
|
|
#define OP_LFALSE 30 /* Test if the expression is logically false */
|
|
#define OP_LTRUE 31 /* Test if the expression is logcially true */
|
|
|
|
#define OP_LOAD 32
|
|
#define OP_STORE 33
|
|
|
|
#define OP_NOOP 34
|
|
|
|
#define OP_MIN_CONST 50
|
|
#define OP_MAX_CONST 59
|
|
#define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
|
|
#define OP_INTCONST 50
|
|
#define OP_BLOBCONST 51
|
|
/* For OP_BLOBCONST ->type holds the layout and size
|
|
* information. u.blob holds a pointer to the raw binary
|
|
* data for the constant initializer.
|
|
*/
|
|
#define OP_ADDRCONST 52
|
|
/* For OP_ADDRCONST ->type holds the type.
|
|
* MISC(0) holds the reference to the static variable.
|
|
* ->u.cval holds an offset from that value.
|
|
*/
|
|
|
|
#define OP_WRITE 60
|
|
/* OP_WRITE moves one pseudo register to another.
|
|
* LHS(0) holds the destination pseudo register, which must be an OP_DECL.
|
|
* RHS(0) holds the psuedo to move.
|
|
*/
|
|
|
|
#define OP_READ 61
|
|
/* OP_READ reads the value of a variable and makes
|
|
* it available for the pseudo operation.
|
|
* Useful for things like def-use chains.
|
|
* RHS(0) holds points to the triple to read from.
|
|
*/
|
|
#define OP_COPY 62
|
|
/* OP_COPY makes a copy of the psedo register or constant in RHS(0).
|
|
*/
|
|
#define OP_PIECE 63
|
|
/* OP_PIECE returns one piece of a instruction that returns a structure.
|
|
* MISC(0) is the instruction
|
|
* u.cval is the LHS piece of the instruction to return.
|
|
*/
|
|
#define OP_ASM 64
|
|
/* OP_ASM holds a sequence of assembly instructions, the result
|
|
* of a C asm directive.
|
|
* RHS(x) holds input value x to the assembly sequence.
|
|
* LHS(x) holds the output value x from the assembly sequence.
|
|
* u.blob holds the string of assembly instructions.
|
|
*/
|
|
|
|
#define OP_DEREF 65
|
|
/* OP_DEREF generates an lvalue from a pointer.
|
|
* RHS(0) holds the pointer value.
|
|
* OP_DEREF serves as a place holder to indicate all necessary
|
|
* checks have been done to indicate a value is an lvalue.
|
|
*/
|
|
#define OP_DOT 66
|
|
/* OP_DOT references a submember of a structure lvalue.
|
|
* RHS(0) holds the lvalue.
|
|
* ->u.field holds the name of the field we want.
|
|
*
|
|
* Not seen outside of expressions.
|
|
*/
|
|
#define OP_VAL 67
|
|
/* OP_VAL returns the value of a subexpression of the current expression.
|
|
* Useful for operators that have side effects.
|
|
* RHS(0) holds the expression.
|
|
* MISC(0) holds the subexpression of RHS(0) that is the
|
|
* value of the expression.
|
|
*
|
|
* Not seen outside of expressions.
|
|
*/
|
|
#define OP_LAND 68
|
|
/* OP_LAND performs a C logical and between RHS(0) and RHS(1).
|
|
* Not seen outside of expressions.
|
|
*/
|
|
#define OP_LOR 69
|
|
/* OP_LOR performs a C logical or between RHS(0) and RHS(1).
|
|
* Not seen outside of expressions.
|
|
*/
|
|
#define OP_COND 70
|
|
/* OP_CODE performas a C ? : operation.
|
|
* RHS(0) holds the test.
|
|
* RHS(1) holds the expression to evaluate if the test returns true.
|
|
* RHS(2) holds the expression to evaluate if the test returns false.
|
|
* Not seen outside of expressions.
|
|
*/
|
|
#define OP_COMMA 71
|
|
/* OP_COMMA performacs a C comma operation.
|
|
* That is RHS(0) is evaluated, then RHS(1)
|
|
* and the value of RHS(1) is returned.
|
|
* Not seen outside of expressions.
|
|
*/
|
|
|
|
#define OP_CALL 72
|
|
/* OP_CALL performs a procedure call.
|
|
* MISC(0) holds a pointer to the OP_LIST of a function
|
|
* RHS(x) holds argument x of a function
|
|
*
|
|
* Currently not seen outside of expressions.
|
|
*/
|
|
#define OP_VAL_VEC 74
|
|
/* OP_VAL_VEC is an array of triples that are either variable
|
|
* or values for a structure or an array.
|
|
* RHS(x) holds element x of the vector.
|
|
* triple->type->elements holds the size of the vector.
|
|
*/
|
|
|
|
/* statements */
|
|
#define OP_LIST 80
|
|
/* OP_LIST Holds a list of statements, and a result value.
|
|
* RHS(0) holds the list of statements.
|
|
* MISC(0) holds the value of the statements.
|
|
*/
|
|
|
|
#define OP_BRANCH 81 /* branch */
|
|
/* For branch instructions
|
|
* TARG(0) holds the branch target.
|
|
* RHS(0) if present holds the branch condition.
|
|
* ->next holds where to branch to if the branch is not taken.
|
|
* The branch target can only be a decl...
|
|
*/
|
|
|
|
#define OP_LABEL 83
|
|
/* OP_LABEL is a triple that establishes an target for branches.
|
|
* ->use is the list of all branches that use this label.
|
|
*/
|
|
|
|
#define OP_ADECL 84
|
|
/* OP_DECL is a triple that establishes an lvalue for assignments.
|
|
* ->use is a list of statements that use the variable.
|
|
*/
|
|
|
|
#define OP_SDECL 85
|
|
/* OP_SDECL is a triple that establishes a variable of static
|
|
* storage duration.
|
|
* ->use is a list of statements that use the variable.
|
|
* MISC(0) holds the initializer expression.
|
|
*/
|
|
|
|
|
|
#define OP_PHI 86
|
|
/* OP_PHI is a triple used in SSA form code.
|
|
* It is used when multiple code paths merge and a variable needs
|
|
* a single assignment from any of those code paths.
|
|
* The operation is a cross between OP_DECL and OP_WRITE, which
|
|
* is what OP_PHI is geneared from.
|
|
*
|
|
* RHS(x) points to the value from code path x
|
|
* The number of RHS entries is the number of control paths into the block
|
|
* in which OP_PHI resides. The elements of the array point to point
|
|
* to the variables OP_PHI is derived from.
|
|
*
|
|
* MISC(0) holds a pointer to the orginal OP_DECL node.
|
|
*/
|
|
|
|
/* Architecture specific instructions */
|
|
#define OP_CMP 100
|
|
#define OP_TEST 101
|
|
#define OP_SET_EQ 102
|
|
#define OP_SET_NOTEQ 103
|
|
#define OP_SET_SLESS 104
|
|
#define OP_SET_ULESS 105
|
|
#define OP_SET_SMORE 106
|
|
#define OP_SET_UMORE 107
|
|
#define OP_SET_SLESSEQ 108
|
|
#define OP_SET_ULESSEQ 109
|
|
#define OP_SET_SMOREEQ 110
|
|
#define OP_SET_UMOREEQ 111
|
|
|
|
#define OP_JMP 112
|
|
#define OP_JMP_EQ 113
|
|
#define OP_JMP_NOTEQ 114
|
|
#define OP_JMP_SLESS 115
|
|
#define OP_JMP_ULESS 116
|
|
#define OP_JMP_SMORE 117
|
|
#define OP_JMP_UMORE 118
|
|
#define OP_JMP_SLESSEQ 119
|
|
#define OP_JMP_ULESSEQ 120
|
|
#define OP_JMP_SMOREEQ 121
|
|
#define OP_JMP_UMOREEQ 122
|
|
|
|
/* Builtin operators that it is just simpler to use the compiler for */
|
|
#define OP_INB 130
|
|
#define OP_INW 131
|
|
#define OP_INL 132
|
|
#define OP_OUTB 133
|
|
#define OP_OUTW 134
|
|
#define OP_OUTL 135
|
|
#define OP_BSF 136
|
|
#define OP_BSR 137
|
|
#define OP_RDMSR 138
|
|
#define OP_WRMSR 139
|
|
#define OP_HLT 140
|
|
|
|
struct op_info {
|
|
const char *name;
|
|
unsigned flags;
|
|
#define PURE 1
|
|
#define IMPURE 2
|
|
#define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
|
|
#define DEF 4
|
|
#define BLOCK 8 /* Triple stores the current block */
|
|
unsigned char lhs, rhs, misc, targ;
|
|
};
|
|
|
|
#define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
|
|
.name = (NAME), \
|
|
.flags = (FLAGS), \
|
|
.lhs = (LHS), \
|
|
.rhs = (RHS), \
|
|
.misc = (MISC), \
|
|
.targ = (TARG), \
|
|
}
|
|
static const struct op_info table_ops[] = {
|
|
[OP_SMUL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smul"),
|
|
[OP_UMUL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umul"),
|
|
[OP_SDIV ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
|
|
[OP_UDIV ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "udiv"),
|
|
[OP_SMOD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smod"),
|
|
[OP_UMOD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umod"),
|
|
[OP_ADD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "add"),
|
|
[OP_SUB ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sub"),
|
|
[OP_SL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sl"),
|
|
[OP_USR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "usr"),
|
|
[OP_SSR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "ssr"),
|
|
[OP_AND ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "and"),
|
|
[OP_XOR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "xor"),
|
|
[OP_OR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "or"),
|
|
[OP_POS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "pos"),
|
|
[OP_NEG ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "neg"),
|
|
[OP_INVERT ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "invert"),
|
|
|
|
[OP_EQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "eq"),
|
|
[OP_NOTEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "noteq"),
|
|
[OP_SLESS ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sless"),
|
|
[OP_ULESS ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "uless"),
|
|
[OP_SMORE ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smore"),
|
|
[OP_UMORE ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umore"),
|
|
[OP_SLESSEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
|
|
[OP_ULESSEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
|
|
[OP_SMOREEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
|
|
[OP_UMOREEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
|
|
[OP_LFALSE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
|
|
[OP_LTRUE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
|
|
|
|
[OP_LOAD ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "load"),
|
|
[OP_STORE ] = OP( 1, 1, 0, 0, IMPURE | BLOCK , "store"),
|
|
|
|
[OP_NOOP ] = OP( 0, 0, 0, 0, PURE | BLOCK, "noop"),
|
|
|
|
[OP_INTCONST ] = OP( 0, 0, 0, 0, PURE | DEF, "intconst"),
|
|
[OP_BLOBCONST ] = OP( 0, 0, 0, 0, PURE, "blobconst"),
|
|
[OP_ADDRCONST ] = OP( 0, 0, 1, 0, PURE | DEF, "addrconst"),
|
|
|
|
[OP_WRITE ] = OP( 1, 1, 0, 0, PURE | BLOCK, "write"),
|
|
[OP_READ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "read"),
|
|
[OP_COPY ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "copy"),
|
|
[OP_PIECE ] = OP( 0, 0, 1, 0, PURE | DEF, "piece"),
|
|
[OP_ASM ] = OP(-1, -1, 0, 0, IMPURE, "asm"),
|
|
[OP_DEREF ] = OP( 0, 1, 0, 0, 0 | DEF | BLOCK, "deref"),
|
|
[OP_DOT ] = OP( 0, 1, 0, 0, 0 | DEF | BLOCK, "dot"),
|
|
|
|
[OP_VAL ] = OP( 0, 1, 1, 0, 0 | DEF | BLOCK, "val"),
|
|
[OP_LAND ] = OP( 0, 2, 0, 0, 0 | DEF | BLOCK, "land"),
|
|
[OP_LOR ] = OP( 0, 2, 0, 0, 0 | DEF | BLOCK, "lor"),
|
|
[OP_COND ] = OP( 0, 3, 0, 0, 0 | DEF | BLOCK, "cond"),
|
|
[OP_COMMA ] = OP( 0, 2, 0, 0, 0 | DEF | BLOCK, "comma"),
|
|
/* Call is special most it can stand in for anything so it depends on context */
|
|
[OP_CALL ] = OP(-1, -1, 1, 0, 0 | BLOCK, "call"),
|
|
/* The sizes of OP_CALL and OP_VAL_VEC depend upon context */
|
|
[OP_VAL_VEC ] = OP( 0, -1, 0, 0, 0 | BLOCK, "valvec"),
|
|
|
|
[OP_LIST ] = OP( 0, 1, 1, 0, 0 | DEF, "list"),
|
|
/* The number of targets for OP_BRANCH depends on context */
|
|
[OP_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK, "branch"),
|
|
[OP_LABEL ] = OP( 0, 0, 0, 0, PURE | BLOCK, "label"),
|
|
[OP_ADECL ] = OP( 0, 0, 0, 0, PURE | BLOCK, "adecl"),
|
|
[OP_SDECL ] = OP( 0, 0, 1, 0, PURE | BLOCK, "sdecl"),
|
|
/* The number of RHS elements of OP_PHI depend upon context */
|
|
[OP_PHI ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
|
|
|
|
[OP_CMP ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK, "cmp"),
|
|
[OP_TEST ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "test"),
|
|
[OP_SET_EQ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
|
|
[OP_SET_NOTEQ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
|
|
[OP_SET_SLESS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
|
|
[OP_SET_ULESS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
|
|
[OP_SET_SMORE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
|
|
[OP_SET_UMORE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
|
|
[OP_SET_SLESSEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
|
|
[OP_SET_ULESSEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
|
|
[OP_SET_SMOREEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
|
|
[OP_SET_UMOREEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
|
|
[OP_JMP ] = OP( 0, 0, 0, 1, PURE | BLOCK, "jmp"),
|
|
[OP_JMP_EQ ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_eq"),
|
|
[OP_JMP_NOTEQ ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_noteq"),
|
|
[OP_JMP_SLESS ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_sless"),
|
|
[OP_JMP_ULESS ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_uless"),
|
|
[OP_JMP_SMORE ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_smore"),
|
|
[OP_JMP_UMORE ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_umore"),
|
|
[OP_JMP_SLESSEQ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_slesseq"),
|
|
[OP_JMP_ULESSEQ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_ulesseq"),
|
|
[OP_JMP_SMOREEQ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_smoreq"),
|
|
[OP_JMP_UMOREEQ] = OP( 0, 1, 0, 1, PURE | BLOCK, "jmp_umoreq"),
|
|
|
|
[OP_INB ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
|
|
[OP_INW ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
|
|
[OP_INL ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
|
|
[OP_OUTB ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outb"),
|
|
[OP_OUTW ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outw"),
|
|
[OP_OUTL ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outl"),
|
|
[OP_BSF ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
|
|
[OP_BSR ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
|
|
[OP_RDMSR ] = OP( 2, 1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
|
|
[OP_WRMSR ] = OP( 0, 3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
|
|
[OP_HLT ] = OP( 0, 0, 0, 0, IMPURE | BLOCK, "__hlt"),
|
|
};
|
|
#undef OP
|
|
#define OP_MAX (sizeof(table_ops)/sizeof(table_ops[0]))
|
|
|
|
static const char *tops(int index)
|
|
{
|
|
static const char unknown[] = "unknown op";
|
|
if (index < 0) {
|
|
return unknown;
|
|
}
|
|
if (index > OP_MAX) {
|
|
return unknown;
|
|
}
|
|
return table_ops[index].name;
|
|
}
|
|
|
|
struct asm_info;
|
|
struct triple;
|
|
struct block;
|
|
struct triple_set {
|
|
struct triple_set *next;
|
|
struct triple *member;
|
|
};
|
|
|
|
#define MAX_LHS 15
|
|
#define MAX_RHS 15
|
|
#define MAX_MISC 15
|
|
#define MAX_TARG 15
|
|
|
|
struct triple {
|
|
struct triple *next, *prev;
|
|
struct triple_set *use;
|
|
struct type *type;
|
|
unsigned char op;
|
|
unsigned char template_id;
|
|
unsigned short sizes;
|
|
#define TRIPLE_LHS(SIZES) (((SIZES) >> 0) & 0x0f)
|
|
#define TRIPLE_RHS(SIZES) (((SIZES) >> 4) & 0x0f)
|
|
#define TRIPLE_MISC(SIZES) (((SIZES) >> 8) & 0x0f)
|
|
#define TRIPLE_TARG(SIZES) (((SIZES) >> 12) & 0x0f)
|
|
#define TRIPLE_SIZE(SIZES) \
|
|
((((SIZES) >> 0) & 0x0f) + \
|
|
(((SIZES) >> 4) & 0x0f) + \
|
|
(((SIZES) >> 8) & 0x0f) + \
|
|
(((SIZES) >> 12) & 0x0f))
|
|
#define TRIPLE_SIZES(LHS, RHS, MISC, TARG) \
|
|
((((LHS) & 0x0f) << 0) | \
|
|
(((RHS) & 0x0f) << 4) | \
|
|
(((MISC) & 0x0f) << 8) | \
|
|
(((TARG) & 0x0f) << 12))
|
|
#define TRIPLE_LHS_OFF(SIZES) (0)
|
|
#define TRIPLE_RHS_OFF(SIZES) (TRIPLE_LHS_OFF(SIZES) + TRIPLE_LHS(SIZES))
|
|
#define TRIPLE_MISC_OFF(SIZES) (TRIPLE_RHS_OFF(SIZES) + TRIPLE_RHS(SIZES))
|
|
#define TRIPLE_TARG_OFF(SIZES) (TRIPLE_MISC_OFF(SIZES) + TRIPLE_MISC(SIZES))
|
|
#define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF((PTR)->sizes) + (INDEX)])
|
|
#define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF((PTR)->sizes) + (INDEX)])
|
|
#define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF((PTR)->sizes) + (INDEX)])
|
|
#define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF((PTR)->sizes) + (INDEX)])
|
|
unsigned id; /* A scratch value and finally the register */
|
|
#define TRIPLE_FLAG_FLATTENED (1 << 31)
|
|
#define TRIPLE_FLAG_PRE_SPLIT (1 << 30)
|
|
#define TRIPLE_FLAG_POST_SPLIT (1 << 29)
|
|
const char *filename;
|
|
int line;
|
|
int col;
|
|
union {
|
|
ulong_t cval;
|
|
struct block *block;
|
|
void *blob;
|
|
struct hash_entry *field;
|
|
struct asm_info *ainfo;
|
|
} u;
|
|
struct triple *param[2];
|
|
};
|
|
|
|
struct reg_info {
|
|
unsigned reg;
|
|
unsigned regcm;
|
|
};
|
|
struct ins_template {
|
|
struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
|
|
};
|
|
|
|
struct asm_info {
|
|
struct ins_template tmpl;
|
|
char *str;
|
|
};
|
|
|
|
struct block_set {
|
|
struct block_set *next;
|
|
struct block *member;
|
|
};
|
|
struct block {
|
|
struct block *work_next;
|
|
struct block *left, *right;
|
|
struct triple *first, *last;
|
|
int users;
|
|
struct block_set *use;
|
|
struct block_set *idominates;
|
|
struct block_set *domfrontier;
|
|
struct block *idom;
|
|
struct block_set *ipdominates;
|
|
struct block_set *ipdomfrontier;
|
|
struct block *ipdom;
|
|
int vertex;
|
|
|
|
};
|
|
|
|
struct symbol {
|
|
struct symbol *next;
|
|
struct hash_entry *ident;
|
|
struct triple *def;
|
|
struct type *type;
|
|
int scope_depth;
|
|
};
|
|
|
|
struct macro {
|
|
struct hash_entry *ident;
|
|
char *buf;
|
|
int buf_len;
|
|
};
|
|
|
|
struct hash_entry {
|
|
struct hash_entry *next;
|
|
const char *name;
|
|
int name_len;
|
|
int tok;
|
|
struct macro *sym_define;
|
|
struct symbol *sym_label;
|
|
struct symbol *sym_struct;
|
|
struct symbol *sym_ident;
|
|
};
|
|
|
|
#define HASH_TABLE_SIZE 2048
|
|
|
|
struct compile_state {
|
|
const char *label_prefix;
|
|
const char *ofilename;
|
|
FILE *output;
|
|
struct triple *vars;
|
|
struct file_state *file;
|
|
struct token token[4];
|
|
struct hash_entry *hash_table[HASH_TABLE_SIZE];
|
|
struct hash_entry *i_continue;
|
|
struct hash_entry *i_break;
|
|
int scope_depth;
|
|
int if_depth, if_value;
|
|
int macro_line;
|
|
struct file_state *macro_file;
|
|
struct triple *main_function;
|
|
struct block *first_block, *last_block;
|
|
int last_vertex;
|
|
int cpu;
|
|
int debug;
|
|
int optimize;
|
|
};
|
|
|
|
/* visibility global/local */
|
|
/* static/auto duration */
|
|
/* typedef, register, inline */
|
|
#define STOR_SHIFT 0
|
|
#define STOR_MASK 0x000f
|
|
/* Visibility */
|
|
#define STOR_GLOBAL 0x0001
|
|
/* Duration */
|
|
#define STOR_PERM 0x0002
|
|
/* Storage specifiers */
|
|
#define STOR_AUTO 0x0000
|
|
#define STOR_STATIC 0x0002
|
|
#define STOR_EXTERN 0x0003
|
|
#define STOR_REGISTER 0x0004
|
|
#define STOR_TYPEDEF 0x0008
|
|
#define STOR_INLINE 0x000c
|
|
|
|
#define QUAL_SHIFT 4
|
|
#define QUAL_MASK 0x0070
|
|
#define QUAL_NONE 0x0000
|
|
#define QUAL_CONST 0x0010
|
|
#define QUAL_VOLATILE 0x0020
|
|
#define QUAL_RESTRICT 0x0040
|
|
|
|
#define TYPE_SHIFT 8
|
|
#define TYPE_MASK 0x1f00
|
|
#define TYPE_INTEGER(TYPE) (((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG))
|
|
#define TYPE_ARITHMETIC(TYPE) (((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE))
|
|
#define TYPE_UNSIGNED(TYPE) ((TYPE) & 0x0100)
|
|
#define TYPE_SIGNED(TYPE) (!TYPE_UNSIGNED(TYPE))
|
|
#define TYPE_MKUNSIGNED(TYPE) ((TYPE) | 0x0100)
|
|
#define TYPE_RANK(TYPE) ((TYPE) & ~0x0100)
|
|
#define TYPE_PTR(TYPE) (((TYPE) & TYPE_MASK) == TYPE_POINTER)
|
|
#define TYPE_DEFAULT 0x0000
|
|
#define TYPE_VOID 0x0100
|
|
#define TYPE_CHAR 0x0200
|
|
#define TYPE_UCHAR 0x0300
|
|
#define TYPE_SHORT 0x0400
|
|
#define TYPE_USHORT 0x0500
|
|
#define TYPE_INT 0x0600
|
|
#define TYPE_UINT 0x0700
|
|
#define TYPE_LONG 0x0800
|
|
#define TYPE_ULONG 0x0900
|
|
#define TYPE_LLONG 0x0a00 /* long long */
|
|
#define TYPE_ULLONG 0x0b00
|
|
#define TYPE_FLOAT 0x0c00
|
|
#define TYPE_DOUBLE 0x0d00
|
|
#define TYPE_LDOUBLE 0x0e00 /* long double */
|
|
#define TYPE_STRUCT 0x1000
|
|
#define TYPE_ENUM 0x1100
|
|
#define TYPE_POINTER 0x1200
|
|
/* For TYPE_POINTER:
|
|
* type->left holds the type pointed to.
|
|
*/
|
|
#define TYPE_FUNCTION 0x1300
|
|
/* For TYPE_FUNCTION:
|
|
* type->left holds the return type.
|
|
* type->right holds the...
|
|
*/
|
|
#define TYPE_PRODUCT 0x1400
|
|
/* TYPE_PRODUCT is a basic building block when defining structures
|
|
* type->left holds the type that appears first in memory.
|
|
* type->right holds the type that appears next in memory.
|
|
*/
|
|
#define TYPE_OVERLAP 0x1500
|
|
/* TYPE_OVERLAP is a basic building block when defining unions
|
|
* type->left and type->right holds to types that overlap
|
|
* each other in memory.
|
|
*/
|
|
#define TYPE_ARRAY 0x1600
|
|
/* TYPE_ARRAY is a basic building block when definitng arrays.
|
|
* type->left holds the type we are an array of.
|
|
* type-> holds the number of elements.
|
|
*/
|
|
|
|
#define ELEMENT_COUNT_UNSPECIFIED (~0UL)
|
|
|
|
struct type {
|
|
unsigned int type;
|
|
struct type *left, *right;
|
|
ulong_t elements;
|
|
struct hash_entry *field_ident;
|
|
struct hash_entry *type_ident;
|
|
};
|
|
|
|
#define MAX_REGISTERS 75
|
|
#define MAX_REG_EQUIVS 16
|
|
#define REGISTER_BITS 28
|
|
#define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
|
|
#define TEMPLATE_BITS 6
|
|
#define MAX_TEMPLATES (1<<TEMPLATE_BITS)
|
|
#define MAX_REGC 12
|
|
#define REG_UNSET 0
|
|
#define REG_UNNEEDED 1
|
|
#define REG_VIRT0 (MAX_REGISTERS + 0)
|
|
#define REG_VIRT1 (MAX_REGISTERS + 1)
|
|
#define REG_VIRT2 (MAX_REGISTERS + 2)
|
|
#define REG_VIRT3 (MAX_REGISTERS + 3)
|
|
#define REG_VIRT4 (MAX_REGISTERS + 4)
|
|
#define REG_VIRT5 (MAX_REGISTERS + 5)
|
|
|
|
/* Provision for 8 register classes */
|
|
#define REG_MASK (MAX_VIRT_REGISTERS -1)
|
|
#define ID_REG(ID) ((ID) & REG_MASK)
|
|
#define SET_REG(ID, REG) ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
|
|
|
|
static unsigned arch_reg_regcm(struct compile_state *state, int reg);
|
|
static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
|
|
static void arch_reg_equivs(
|
|
struct compile_state *state, unsigned *equiv, int reg);
|
|
static int arch_select_free_register(
|
|
struct compile_state *state, char *used, int classes);
|
|
static unsigned arch_regc_size(struct compile_state *state, int class);
|
|
static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
|
|
static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
|
|
static const char *arch_reg_str(int reg);
|
|
static struct reg_info arch_reg_constraint(
|
|
struct compile_state *state, struct type *type, const char *constraint);
|
|
static struct reg_info arch_reg_clobber(
|
|
struct compile_state *state, const char *clobber);
|
|
static struct reg_info arch_reg_lhs(struct compile_state *state,
|
|
struct triple *ins, int index);
|
|
static struct reg_info arch_reg_rhs(struct compile_state *state,
|
|
struct triple *ins, int index);
|
|
static struct triple *transform_to_arch_instruction(
|
|
struct compile_state *state, struct triple *ins);
|
|
|
|
|
|
|
|
#define DEBUG_ABORT_ON_ERROR 0x0001
|
|
#define DEBUG_INTERMEDIATE_CODE 0x0002
|
|
#define DEBUG_CONTROL_FLOW 0x0004
|
|
#define DEBUG_BASIC_BLOCKS 0x0008
|
|
#define DEBUG_FDOMINATORS 0x0010
|
|
#define DEBUG_RDOMINATORS 0x0020
|
|
#define DEBUG_TRIPLES 0x0040
|
|
#define DEBUG_INTERFERENCE 0x0080
|
|
#define DEBUG_ARCH_CODE 0x0100
|
|
#define DEBUG_CODE_ELIMINATION 0x0200
|
|
#define DEBUG_INSERTED_COPIES 0x0400
|
|
|
|
#define GLOBAL_SCOPE_DEPTH 1
|
|
|
|
static void compile_file(struct compile_state *old_state, const char *filename, int local);
|
|
|
|
static void do_cleanup(struct compile_state *state)
|
|
{
|
|
if (state->output) {
|
|
fclose(state->output);
|
|
unlink(state->ofilename);
|
|
}
|
|
}
|
|
|
|
static int get_col(struct file_state *file)
|
|
{
|
|
int col;
|
|
char *ptr, *end;
|
|
ptr = file->line_start;
|
|
end = file->pos;
|
|
for(col = 0; ptr < end; ptr++) {
|
|
if (*ptr != '\t') {
|
|
col++;
|
|
}
|
|
else {
|
|
col = (col & ~7) + 8;
|
|
}
|
|
}
|
|
return col;
|
|
}
|
|
|
|
static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
|
|
{
|
|
int col;
|
|
if (triple) {
|
|
fprintf(fp, "%s:%d.%d: ",
|
|
triple->filename, triple->line, triple->col);
|
|
return;
|
|
}
|
|
if (!state->file) {
|
|
return;
|
|
}
|
|
col = get_col(state->file);
|
|
fprintf(fp, "%s:%d.%d: ",
|
|
state->file->basename, state->file->line, col);
|
|
}
|
|
|
|
static void __internal_error(struct compile_state *state, struct triple *ptr,
|
|
char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
loc(stderr, state, ptr);
|
|
if (ptr) {
|
|
fprintf(stderr, "%p %s ", ptr, tops(ptr->op));
|
|
}
|
|
fprintf(stderr, "Internal compiler error: ");
|
|
vfprintf(stderr, fmt, args);
|
|
fprintf(stderr, "\n");
|
|
va_end(args);
|
|
do_cleanup(state);
|
|
abort();
|
|
}
|
|
|
|
|
|
static void __internal_warning(struct compile_state *state, struct triple *ptr,
|
|
char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
loc(stderr, state, ptr);
|
|
fprintf(stderr, "Internal compiler warning: ");
|
|
vfprintf(stderr, fmt, args);
|
|
fprintf(stderr, "\n");
|
|
va_end(args);
|
|
}
|
|
|
|
|
|
|
|
static void __error(struct compile_state *state, struct triple *ptr,
|
|
char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
loc(stderr, state, ptr);
|
|
vfprintf(stderr, fmt, args);
|
|
va_end(args);
|
|
fprintf(stderr, "\n");
|
|
do_cleanup(state);
|
|
if (state->debug & DEBUG_ABORT_ON_ERROR) {
|
|
abort();
|
|
}
|
|
exit(1);
|
|
}
|
|
|
|
static void __warning(struct compile_state *state, struct triple *ptr,
|
|
char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
loc(stderr, state, ptr);
|
|
fprintf(stderr, "warning: ");
|
|
vfprintf(stderr, fmt, args);
|
|
fprintf(stderr, "\n");
|
|
va_end(args);
|
|
}
|
|
|
|
#if DEBUG_ERROR_MESSAGES
|
|
# define internal_error fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__internal_error
|
|
# define internal_warning fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__internal_warning
|
|
# define error fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__error
|
|
# define warning fprintf(stderr, "@ %s.%s:%d \t", __FILE__, __func__, __LINE__),__warning
|
|
#else
|
|
# define internal_error __internal_error
|
|
# define internal_warning __internal_warning
|
|
# define error __error
|
|
# define warning __warning
|
|
#endif
|
|
#define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
|
|
|
|
static void valid_op(struct compile_state *state, int op)
|
|
{
|
|
char *fmt = "invalid op: %d";
|
|
if (op >= OP_MAX) {
|
|
internal_error(state, 0, fmt, op);
|
|
}
|
|
if (op < 0) {
|
|
internal_error(state, 0, fmt, op);
|
|
}
|
|
}
|
|
|
|
static void valid_ins(struct compile_state *state, struct triple *ptr)
|
|
{
|
|
valid_op(state, ptr->op);
|
|
}
|
|
|
|
static void process_trigraphs(struct compile_state *state)
|
|
{
|
|
char *src, *dest, *end;
|
|
struct file_state *file;
|
|
file = state->file;
|
|
src = dest = file->buf;
|
|
end = file->buf + file->size;
|
|
while((end - src) >= 3) {
|
|
if ((src[0] == '?') && (src[1] == '?')) {
|
|
int c = -1;
|
|
switch(src[2]) {
|
|
case '=': c = '#'; break;
|
|
case '/': c = '\\'; break;
|
|
case '\'': c = '^'; break;
|
|
case '(': c = '['; break;
|
|
case ')': c = ']'; break;
|
|
case '!': c = '!'; break;
|
|
case '<': c = '{'; break;
|
|
case '>': c = '}'; break;
|
|
case '-': c = '~'; break;
|
|
}
|
|
if (c != -1) {
|
|
*dest++ = c;
|
|
src += 3;
|
|
}
|
|
else {
|
|
*dest++ = *src++;
|
|
}
|
|
}
|
|
else {
|
|
*dest++ = *src++;
|
|
}
|
|
}
|
|
while(src != end) {
|
|
*dest++ = *src++;
|
|
}
|
|
file->size = dest - file->buf;
|
|
}
|
|
|
|
static void splice_lines(struct compile_state *state)
|
|
{
|
|
char *src, *dest, *end;
|
|
struct file_state *file;
|
|
file = state->file;
|
|
src = dest = file->buf;
|
|
end = file->buf + file->size;
|
|
while((end - src) >= 2) {
|
|
if ((src[0] == '\\') && (src[1] == '\n')) {
|
|
src += 2;
|
|
}
|
|
else {
|
|
*dest++ = *src++;
|
|
}
|
|
}
|
|
while(src != end) {
|
|
*dest++ = *src++;
|
|
}
|
|
file->size = dest - file->buf;
|
|
}
|
|
|
|
static struct type void_type;
|
|
static void use_triple(struct triple *used, struct triple *user)
|
|
{
|
|
struct triple_set **ptr, *new;
|
|
if (!used)
|
|
return;
|
|
if (!user)
|
|
return;
|
|
ptr = &used->use;
|
|
while(*ptr) {
|
|
if ((*ptr)->member == user) {
|
|
return;
|
|
}
|
|
ptr = &(*ptr)->next;
|
|
}
|
|
/* Append new to the head of the list,
|
|
* copy_func and rename_block_variables
|
|
* depends on this.
|
|
*/
|
|
new = xcmalloc(sizeof(*new), "triple_set");
|
|
new->member = user;
|
|
new->next = used->use;
|
|
used->use = new;
|
|
}
|
|
|
|
static void unuse_triple(struct triple *used, struct triple *unuser)
|
|
{
|
|
struct triple_set *use, **ptr;
|
|
if (!used) {
|
|
return;
|
|
}
|
|
ptr = &used->use;
|
|
while(*ptr) {
|
|
use = *ptr;
|
|
if (use->member == unuser) {
|
|
*ptr = use->next;
|
|
xfree(use);
|
|
}
|
|
else {
|
|
ptr = &use->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void push_triple(struct triple *used, struct triple *user)
|
|
{
|
|
struct triple_set *new;
|
|
if (!used)
|
|
return;
|
|
if (!user)
|
|
return;
|
|
/* Append new to the head of the list,
|
|
* it's the only sensible behavoir for a stack.
|
|
*/
|
|
new = xcmalloc(sizeof(*new), "triple_set");
|
|
new->member = user;
|
|
new->next = used->use;
|
|
used->use = new;
|
|
}
|
|
|
|
static void pop_triple(struct triple *used, struct triple *unuser)
|
|
{
|
|
struct triple_set *use, **ptr;
|
|
ptr = &used->use;
|
|
while(*ptr) {
|
|
use = *ptr;
|
|
if (use->member == unuser) {
|
|
*ptr = use->next;
|
|
xfree(use);
|
|
/* Only free one occurance from the stack */
|
|
return;
|
|
}
|
|
else {
|
|
ptr = &use->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* The zero triple is used as a place holder when we are removing pointers
|
|
* from a triple. Having allows certain sanity checks to pass even
|
|
* when the original triple that was pointed to is gone.
|
|
*/
|
|
static struct triple zero_triple = {
|
|
.next = &zero_triple,
|
|
.prev = &zero_triple,
|
|
.use = 0,
|
|
.op = OP_INTCONST,
|
|
.sizes = TRIPLE_SIZES(0, 0, 0, 0),
|
|
.id = -1, /* An invalid id */
|
|
.u = { .cval = 0, },
|
|
.filename = __FILE__,
|
|
.line = __LINE__,
|
|
.col = 0,
|
|
.param { [0] = 0, [1] = 0, },
|
|
};
|
|
|
|
|
|
static unsigned short triple_sizes(struct compile_state *state,
|
|
int op, struct type *type, int lhs_wanted, int rhs_wanted)
|
|
{
|
|
int lhs, rhs, misc, targ;
|
|
valid_op(state, op);
|
|
lhs = table_ops[op].lhs;
|
|
rhs = table_ops[op].rhs;
|
|
misc = table_ops[op].misc;
|
|
targ = table_ops[op].targ;
|
|
|
|
|
|
if (op == OP_CALL) {
|
|
struct type *param;
|
|
rhs = 0;
|
|
param = type->right;
|
|
while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
rhs++;
|
|
param = param->right;
|
|
}
|
|
if ((param->type & TYPE_MASK) != TYPE_VOID) {
|
|
rhs++;
|
|
}
|
|
lhs = 0;
|
|
if ((type->left->type & TYPE_MASK) == TYPE_STRUCT) {
|
|
lhs = type->left->elements;
|
|
}
|
|
}
|
|
else if (op == OP_VAL_VEC) {
|
|
rhs = type->elements;
|
|
}
|
|
else if ((op == OP_BRANCH) || (op == OP_PHI)) {
|
|
rhs = rhs_wanted;
|
|
}
|
|
else if (op == OP_ASM) {
|
|
rhs = rhs_wanted;
|
|
lhs = lhs_wanted;
|
|
}
|
|
if ((rhs < 0) || (rhs > MAX_RHS)) {
|
|
internal_error(state, 0, "bad rhs");
|
|
}
|
|
if ((lhs < 0) || (lhs > MAX_LHS)) {
|
|
internal_error(state, 0, "bad lhs");
|
|
}
|
|
if ((misc < 0) || (misc > MAX_MISC)) {
|
|
internal_error(state, 0, "bad misc");
|
|
}
|
|
if ((targ < 0) || (targ > MAX_TARG)) {
|
|
internal_error(state, 0, "bad targs");
|
|
}
|
|
return TRIPLE_SIZES(lhs, rhs, misc, targ);
|
|
}
|
|
|
|
static struct triple *alloc_triple(struct compile_state *state,
|
|
int op, struct type *type, int lhs, int rhs,
|
|
const char *filename, int line, int col)
|
|
{
|
|
size_t size, sizes, extra_count, min_count;
|
|
struct triple *ret;
|
|
sizes = triple_sizes(state, op, type, lhs, rhs);
|
|
|
|
min_count = sizeof(ret->param)/sizeof(ret->param[0]);
|
|
extra_count = TRIPLE_SIZE(sizes);
|
|
extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
|
|
|
|
size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
|
|
ret = xcmalloc(size, "tripple");
|
|
ret->op = op;
|
|
ret->sizes = sizes;
|
|
ret->type = type;
|
|
ret->next = ret;
|
|
ret->prev = ret;
|
|
ret->filename = filename;
|
|
ret->line = line;
|
|
ret->col = col;
|
|
return ret;
|
|
}
|
|
|
|
struct triple *dup_triple(struct compile_state *state, struct triple *src)
|
|
{
|
|
struct triple *dup;
|
|
int src_lhs, src_rhs, src_size;
|
|
src_lhs = TRIPLE_LHS(src->sizes);
|
|
src_rhs = TRIPLE_RHS(src->sizes);
|
|
src_size = TRIPLE_SIZE(src->sizes);
|
|
dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
|
|
src->filename, src->line, src->col);
|
|
memcpy(dup, src, sizeof(*src));
|
|
memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
|
|
return dup;
|
|
}
|
|
|
|
static struct triple *new_triple(struct compile_state *state,
|
|
int op, struct type *type, int lhs, int rhs)
|
|
{
|
|
struct triple *ret;
|
|
const char *filename;
|
|
int line, col;
|
|
filename = 0;
|
|
line = 0;
|
|
col = 0;
|
|
if (state->file) {
|
|
filename = state->file->basename;
|
|
line = state->file->line;
|
|
col = get_col(state->file);
|
|
}
|
|
ret = alloc_triple(state, op, type, lhs, rhs,
|
|
filename, line, col);
|
|
return ret;
|
|
}
|
|
|
|
static struct triple *build_triple(struct compile_state *state,
|
|
int op, struct type *type, struct triple *left, struct triple *right,
|
|
const char *filename, int line, int col)
|
|
{
|
|
struct triple *ret;
|
|
size_t count;
|
|
ret = alloc_triple(state, op, type, -1, -1, filename, line, col);
|
|
count = TRIPLE_SIZE(ret->sizes);
|
|
if (count > 0) {
|
|
ret->param[0] = left;
|
|
}
|
|
if (count > 1) {
|
|
ret->param[1] = right;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct triple *triple(struct compile_state *state,
|
|
int op, struct type *type, struct triple *left, struct triple *right)
|
|
{
|
|
struct triple *ret;
|
|
size_t count;
|
|
ret = new_triple(state, op, type, -1, -1);
|
|
count = TRIPLE_SIZE(ret->sizes);
|
|
if (count >= 1) {
|
|
ret->param[0] = left;
|
|
}
|
|
if (count >= 2) {
|
|
ret->param[1] = right;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct triple *branch(struct compile_state *state,
|
|
struct triple *targ, struct triple *test)
|
|
{
|
|
struct triple *ret;
|
|
ret = new_triple(state, OP_BRANCH, &void_type, -1, test?1:0);
|
|
if (test) {
|
|
RHS(ret, 0) = test;
|
|
}
|
|
TARG(ret, 0) = targ;
|
|
/* record the branch target was used */
|
|
if (!targ || (targ->op != OP_LABEL)) {
|
|
internal_error(state, 0, "branch not to label");
|
|
use_triple(targ, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void insert_triple(struct compile_state *state,
|
|
struct triple *first, struct triple *ptr)
|
|
{
|
|
if (ptr) {
|
|
if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
|
|
internal_error(state, ptr, "expression already used");
|
|
}
|
|
ptr->next = first;
|
|
ptr->prev = first->prev;
|
|
ptr->prev->next = ptr;
|
|
ptr->next->prev = ptr;
|
|
if ((ptr->prev->op == OP_BRANCH) &&
|
|
TRIPLE_RHS(ptr->prev->sizes)) {
|
|
unuse_triple(first, ptr->prev);
|
|
use_triple(ptr, ptr->prev);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int triple_stores_block(struct compile_state *state, struct triple *ins)
|
|
{
|
|
/* This function is used to determine if u.block
|
|
* is utilized to store the current block number.
|
|
*/
|
|
int stores_block;
|
|
valid_ins(state, ins);
|
|
stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
|
|
return stores_block;
|
|
}
|
|
|
|
static struct block *block_of_triple(struct compile_state *state,
|
|
struct triple *ins)
|
|
{
|
|
struct triple *first;
|
|
first = RHS(state->main_function, 0);
|
|
while(ins != first && !triple_stores_block(state, ins)) {
|
|
if (ins == ins->prev) {
|
|
internal_error(state, 0, "ins == ins->prev?");
|
|
}
|
|
ins = ins->prev;
|
|
}
|
|
if (!triple_stores_block(state, ins)) {
|
|
internal_error(state, ins, "Cannot find block");
|
|
}
|
|
return ins->u.block;
|
|
}
|
|
|
|
static struct triple *pre_triple(struct compile_state *state,
|
|
struct triple *base,
|
|
int op, struct type *type, struct triple *left, struct triple *right)
|
|
{
|
|
struct block *block;
|
|
struct triple *ret;
|
|
block = block_of_triple(state, base);
|
|
ret = build_triple(state, op, type, left, right,
|
|
base->filename, base->line, base->col);
|
|
if (triple_stores_block(state, ret)) {
|
|
ret->u.block = block;
|
|
}
|
|
insert_triple(state, base, ret);
|
|
if (block->first == base) {
|
|
block->first = ret;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct triple *post_triple(struct compile_state *state,
|
|
struct triple *base,
|
|
int op, struct type *type, struct triple *left, struct triple *right)
|
|
{
|
|
struct block *block;
|
|
struct triple *ret;
|
|
block = block_of_triple(state, base);
|
|
ret = build_triple(state, op, type, left, right,
|
|
base->filename, base->line, base->col);
|
|
if (triple_stores_block(state, ret)) {
|
|
ret->u.block = block;
|
|
}
|
|
insert_triple(state, base->next, ret);
|
|
if (block->last == base) {
|
|
block->last = ret;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct triple *label(struct compile_state *state)
|
|
{
|
|
/* Labels don't get a type */
|
|
struct triple *result;
|
|
result = triple(state, OP_LABEL, &void_type, 0, 0);
|
|
return result;
|
|
}
|
|
|
|
static void display_triple(FILE *fp, struct triple *ins)
|
|
{
|
|
if (ins->op == OP_INTCONST) {
|
|
fprintf(fp, "(%p) %3d %-2d %-10s <0x%08lx> @ %s:%d.%d\n",
|
|
ins, ID_REG(ins->id), ins->template_id, tops(ins->op),
|
|
ins->u.cval,
|
|
ins->filename, ins->line, ins->col);
|
|
}
|
|
else if (ins->op == OP_ADDRCONST) {
|
|
fprintf(fp, "(%p) %3d %-2d %-10s %-10p <0x%08lx> @ %s:%d.%d\n",
|
|
ins, ID_REG(ins->id), ins->template_id, tops(ins->op),
|
|
MISC(ins, 0), ins->u.cval,
|
|
ins->filename, ins->line, ins->col);
|
|
}
|
|
else {
|
|
int i, count;
|
|
fprintf(fp, "(%p) %3d %-2d %-10s",
|
|
ins, ID_REG(ins->id), ins->template_id, tops(ins->op));
|
|
count = TRIPLE_SIZE(ins->sizes);
|
|
for(i = 0; i < count; i++) {
|
|
fprintf(fp, " %-10p", ins->param[i]);
|
|
}
|
|
for(; i < 2; i++) {
|
|
printf(" ");
|
|
}
|
|
fprintf(fp, " @ %s:%d.%d\n",
|
|
ins->filename, ins->line, ins->col);
|
|
}
|
|
fflush(fp);
|
|
}
|
|
|
|
static int triple_is_pure(struct compile_state *state, struct triple *ins)
|
|
{
|
|
/* Does the triple have no side effects.
|
|
* I.e. Rexecuting the triple with the same arguments
|
|
* gives the same value.
|
|
*/
|
|
unsigned pure;
|
|
valid_ins(state, ins);
|
|
pure = PURE_BITS(table_ops[ins->op].flags);
|
|
if ((pure != PURE) && (pure != IMPURE)) {
|
|
internal_error(state, 0, "Purity of %s not known\n",
|
|
tops(ins->op));
|
|
}
|
|
return pure == PURE;
|
|
}
|
|
|
|
static int triple_is_branch(struct compile_state *state, struct triple *ins)
|
|
{
|
|
/* This function is used to determine which triples need
|
|
* a register.
|
|
*/
|
|
int is_branch;
|
|
valid_ins(state, ins);
|
|
is_branch = (table_ops[ins->op].targ != 0);
|
|
return is_branch;
|
|
}
|
|
|
|
static int triple_is_def(struct compile_state *state, struct triple *ins)
|
|
{
|
|
/* This function is used to determine which triples need
|
|
* a register.
|
|
*/
|
|
int is_def;
|
|
valid_ins(state, ins);
|
|
is_def = (table_ops[ins->op].flags & DEF) == DEF;
|
|
return is_def;
|
|
}
|
|
|
|
static struct triple **triple_iter(struct compile_state *state,
|
|
size_t count, struct triple **vector,
|
|
struct triple *ins, struct triple **last)
|
|
{
|
|
struct triple **ret;
|
|
ret = 0;
|
|
if (count) {
|
|
if (!last) {
|
|
ret = vector;
|
|
}
|
|
else if ((last >= vector) && (last < (vector + count - 1))) {
|
|
ret = last + 1;
|
|
}
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
static struct triple **triple_lhs(struct compile_state *state,
|
|
struct triple *ins, struct triple **last)
|
|
{
|
|
return triple_iter(state, TRIPLE_LHS(ins->sizes), &LHS(ins,0),
|
|
ins, last);
|
|
}
|
|
|
|
static struct triple **triple_rhs(struct compile_state *state,
|
|
struct triple *ins, struct triple **last)
|
|
{
|
|
return triple_iter(state, TRIPLE_RHS(ins->sizes), &RHS(ins,0),
|
|
ins, last);
|
|
}
|
|
|
|
static struct triple **triple_misc(struct compile_state *state,
|
|
struct triple *ins, struct triple **last)
|
|
{
|
|
return triple_iter(state, TRIPLE_MISC(ins->sizes), &MISC(ins,0),
|
|
ins, last);
|
|
}
|
|
|
|
static struct triple **triple_targ(struct compile_state *state,
|
|
struct triple *ins, struct triple **last)
|
|
{
|
|
size_t count;
|
|
struct triple **ret, **vector;
|
|
ret = 0;
|
|
count = TRIPLE_TARG(ins->sizes);
|
|
vector = &TARG(ins, 0);
|
|
if (count) {
|
|
if (!last) {
|
|
ret = vector;
|
|
}
|
|
else if ((last >= vector) && (last < (vector + count - 1))) {
|
|
ret = last + 1;
|
|
}
|
|
else if ((last == (vector + count - 1)) &&
|
|
TRIPLE_RHS(ins->sizes)) {
|
|
ret = &ins->next;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void verify_use(struct compile_state *state,
|
|
struct triple *user, struct triple *used)
|
|
{
|
|
int size, i;
|
|
size = TRIPLE_SIZE(user->sizes);
|
|
for(i = 0; i < size; i++) {
|
|
if (user->param[i] == used) {
|
|
break;
|
|
}
|
|
}
|
|
if (triple_is_branch(state, user)) {
|
|
if (user->next == used) {
|
|
i = -1;
|
|
}
|
|
}
|
|
if (i == size) {
|
|
internal_error(state, user, "%s(%p) does not use %s(%p)",
|
|
tops(user->op), user, tops(used->op), used);
|
|
}
|
|
}
|
|
|
|
static int find_rhs_use(struct compile_state *state,
|
|
struct triple *user, struct triple *used)
|
|
{
|
|
struct triple **param;
|
|
int size, i;
|
|
verify_use(state, user, used);
|
|
size = TRIPLE_RHS(user->sizes);
|
|
param = &RHS(user, 0);
|
|
for(i = 0; i < size; i++) {
|
|
if (param[i] == used) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void free_triple(struct compile_state *state, struct triple *ptr)
|
|
{
|
|
size_t size;
|
|
size = sizeof(*ptr) - sizeof(ptr->param) +
|
|
(sizeof(ptr->param[0])*TRIPLE_SIZE(ptr->sizes));
|
|
ptr->prev->next = ptr->next;
|
|
ptr->next->prev = ptr->prev;
|
|
if (ptr->use) {
|
|
internal_error(state, ptr, "ptr->use != 0");
|
|
}
|
|
memset(ptr, -1, size);
|
|
xfree(ptr);
|
|
}
|
|
|
|
static void release_triple(struct compile_state *state, struct triple *ptr)
|
|
{
|
|
struct triple_set *set, *next;
|
|
struct triple **expr;
|
|
/* Remove ptr from use chains where it is the user */
|
|
expr = triple_rhs(state, ptr, 0);
|
|
for(; expr; expr = triple_rhs(state, ptr, expr)) {
|
|
if (*expr) {
|
|
unuse_triple(*expr, ptr);
|
|
}
|
|
}
|
|
expr = triple_lhs(state, ptr, 0);
|
|
for(; expr; expr = triple_lhs(state, ptr, expr)) {
|
|
if (*expr) {
|
|
unuse_triple(*expr, ptr);
|
|
}
|
|
}
|
|
expr = triple_misc(state, ptr, 0);
|
|
for(; expr; expr = triple_misc(state, ptr, expr)) {
|
|
if (*expr) {
|
|
unuse_triple(*expr, ptr);
|
|
}
|
|
}
|
|
expr = triple_targ(state, ptr, 0);
|
|
for(; expr; expr = triple_targ(state, ptr, expr)) {
|
|
if (*expr) {
|
|
unuse_triple(*expr, ptr);
|
|
}
|
|
}
|
|
/* Reomve ptr from use chains where it is used */
|
|
for(set = ptr->use; set; set = next) {
|
|
next = set->next;
|
|
expr = triple_rhs(state, set->member, 0);
|
|
for(; expr; expr = triple_rhs(state, set->member, expr)) {
|
|
if (*expr == ptr) {
|
|
*expr = &zero_triple;
|
|
}
|
|
}
|
|
expr = triple_lhs(state, set->member, 0);
|
|
for(; expr; expr = triple_lhs(state, set->member, expr)) {
|
|
if (*expr == ptr) {
|
|
*expr = &zero_triple;
|
|
}
|
|
}
|
|
expr = triple_misc(state, set->member, 0);
|
|
for(; expr; expr = triple_misc(state, set->member, expr)) {
|
|
if (*expr == ptr) {
|
|
*expr = &zero_triple;
|
|
}
|
|
}
|
|
expr = triple_targ(state, set->member, 0);
|
|
for(; expr; expr = triple_targ(state, set->member, expr)) {
|
|
if (*expr == ptr) {
|
|
*expr = &zero_triple;
|
|
}
|
|
}
|
|
unuse_triple(ptr, set->member);
|
|
}
|
|
free_triple(state, ptr);
|
|
}
|
|
|
|
static void print_triple(struct compile_state *state, struct triple *ptr);
|
|
|
|
#define TOK_UNKNOWN 0
|
|
#define TOK_SPACE 1
|
|
#define TOK_SEMI 2
|
|
#define TOK_LBRACE 3
|
|
#define TOK_RBRACE 4
|
|
#define TOK_COMMA 5
|
|
#define TOK_EQ 6
|
|
#define TOK_COLON 7
|
|
#define TOK_LBRACKET 8
|
|
#define TOK_RBRACKET 9
|
|
#define TOK_LPAREN 10
|
|
#define TOK_RPAREN 11
|
|
#define TOK_STAR 12
|
|
#define TOK_DOTS 13
|
|
#define TOK_MORE 14
|
|
#define TOK_LESS 15
|
|
#define TOK_TIMESEQ 16
|
|
#define TOK_DIVEQ 17
|
|
#define TOK_MODEQ 18
|
|
#define TOK_PLUSEQ 19
|
|
#define TOK_MINUSEQ 20
|
|
#define TOK_SLEQ 21
|
|
#define TOK_SREQ 22
|
|
#define TOK_ANDEQ 23
|
|
#define TOK_XOREQ 24
|
|
#define TOK_OREQ 25
|
|
#define TOK_EQEQ 26
|
|
#define TOK_NOTEQ 27
|
|
#define TOK_QUEST 28
|
|
#define TOK_LOGOR 29
|
|
#define TOK_LOGAND 30
|
|
#define TOK_OR 31
|
|
#define TOK_AND 32
|
|
#define TOK_XOR 33
|
|
#define TOK_LESSEQ 34
|
|
#define TOK_MOREEQ 35
|
|
#define TOK_SL 36
|
|
#define TOK_SR 37
|
|
#define TOK_PLUS 38
|
|
#define TOK_MINUS 39
|
|
#define TOK_DIV 40
|
|
#define TOK_MOD 41
|
|
#define TOK_PLUSPLUS 42
|
|
#define TOK_MINUSMINUS 43
|
|
#define TOK_BANG 44
|
|
#define TOK_ARROW 45
|
|
#define TOK_DOT 46
|
|
#define TOK_TILDE 47
|
|
#define TOK_LIT_STRING 48
|
|
#define TOK_LIT_CHAR 49
|
|
#define TOK_LIT_INT 50
|
|
#define TOK_LIT_FLOAT 51
|
|
#define TOK_MACRO 52
|
|
#define TOK_CONCATENATE 53
|
|
|
|
#define TOK_IDENT 54
|
|
#define TOK_STRUCT_NAME 55
|
|
#define TOK_ENUM_CONST 56
|
|
#define TOK_TYPE_NAME 57
|
|
|
|
#define TOK_AUTO 58
|
|
#define TOK_BREAK 59
|
|
#define TOK_CASE 60
|
|
#define TOK_CHAR 61
|
|
#define TOK_CONST 62
|
|
#define TOK_CONTINUE 63
|
|
#define TOK_DEFAULT 64
|
|
#define TOK_DO 65
|
|
#define TOK_DOUBLE 66
|
|
#define TOK_ELSE 67
|
|
#define TOK_ENUM 68
|
|
#define TOK_EXTERN 69
|
|
#define TOK_FLOAT 70
|
|
#define TOK_FOR 71
|
|
#define TOK_GOTO 72
|
|
#define TOK_IF 73
|
|
#define TOK_INLINE 74
|
|
#define TOK_INT 75
|
|
#define TOK_LONG 76
|
|
#define TOK_REGISTER 77
|
|
#define TOK_RESTRICT 78
|
|
#define TOK_RETURN 79
|
|
#define TOK_SHORT 80
|
|
#define TOK_SIGNED 81
|
|
#define TOK_SIZEOF 82
|
|
#define TOK_STATIC 83
|
|
#define TOK_STRUCT 84
|
|
#define TOK_SWITCH 85
|
|
#define TOK_TYPEDEF 86
|
|
#define TOK_UNION 87
|
|
#define TOK_UNSIGNED 88
|
|
#define TOK_VOID 89
|
|
#define TOK_VOLATILE 90
|
|
#define TOK_WHILE 91
|
|
#define TOK_ASM 92
|
|
#define TOK_ATTRIBUTE 93
|
|
#define TOK_ALIGNOF 94
|
|
#define TOK_FIRST_KEYWORD TOK_AUTO
|
|
#define TOK_LAST_KEYWORD TOK_ALIGNOF
|
|
|
|
#define TOK_DEFINE 100
|
|
#define TOK_UNDEF 101
|
|
#define TOK_INCLUDE 102
|
|
#define TOK_LINE 103
|
|
#define TOK_ERROR 104
|
|
#define TOK_WARNING 105
|
|
#define TOK_PRAGMA 106
|
|
#define TOK_IFDEF 107
|
|
#define TOK_IFNDEF 108
|
|
#define TOK_ELIF 109
|
|
#define TOK_ENDIF 110
|
|
|
|
#define TOK_FIRST_MACRO TOK_DEFINE
|
|
#define TOK_LAST_MACRO TOK_ENDIF
|
|
|
|
#define TOK_EOF 111
|
|
|
|
static const char *tokens[] = {
|
|
[TOK_UNKNOWN ] = "unknown",
|
|
[TOK_SPACE ] = ":space:",
|
|
[TOK_SEMI ] = ";",
|
|
[TOK_LBRACE ] = "{",
|
|
[TOK_RBRACE ] = "}",
|
|
[TOK_COMMA ] = ",",
|
|
[TOK_EQ ] = "=",
|
|
[TOK_COLON ] = ":",
|
|
[TOK_LBRACKET ] = "[",
|
|
[TOK_RBRACKET ] = "]",
|
|
[TOK_LPAREN ] = "(",
|
|
[TOK_RPAREN ] = ")",
|
|
[TOK_STAR ] = "*",
|
|
[TOK_DOTS ] = "...",
|
|
[TOK_MORE ] = ">",
|
|
[TOK_LESS ] = "<",
|
|
[TOK_TIMESEQ ] = "*=",
|
|
[TOK_DIVEQ ] = "/=",
|
|
[TOK_MODEQ ] = "%=",
|
|
[TOK_PLUSEQ ] = "+=",
|
|
[TOK_MINUSEQ ] = "-=",
|
|
[TOK_SLEQ ] = "<<=",
|
|
[TOK_SREQ ] = ">>=",
|
|
[TOK_ANDEQ ] = "&=",
|
|
[TOK_XOREQ ] = "^=",
|
|
[TOK_OREQ ] = "|=",
|
|
[TOK_EQEQ ] = "==",
|
|
[TOK_NOTEQ ] = "!=",
|
|
[TOK_QUEST ] = "?",
|
|
[TOK_LOGOR ] = "||",
|
|
[TOK_LOGAND ] = "&&",
|
|
[TOK_OR ] = "|",
|
|
[TOK_AND ] = "&",
|
|
[TOK_XOR ] = "^",
|
|
[TOK_LESSEQ ] = "<=",
|
|
[TOK_MOREEQ ] = ">=",
|
|
[TOK_SL ] = "<<",
|
|
[TOK_SR ] = ">>",
|
|
[TOK_PLUS ] = "+",
|
|
[TOK_MINUS ] = "-",
|
|
[TOK_DIV ] = "/",
|
|
[TOK_MOD ] = "%",
|
|
[TOK_PLUSPLUS ] = "++",
|
|
[TOK_MINUSMINUS ] = "--",
|
|
[TOK_BANG ] = "!",
|
|
[TOK_ARROW ] = "->",
|
|
[TOK_DOT ] = ".",
|
|
[TOK_TILDE ] = "~",
|
|
[TOK_LIT_STRING ] = ":string:",
|
|
[TOK_IDENT ] = ":ident:",
|
|
[TOK_TYPE_NAME ] = ":typename:",
|
|
[TOK_LIT_CHAR ] = ":char:",
|
|
[TOK_LIT_INT ] = ":integer:",
|
|
[TOK_LIT_FLOAT ] = ":float:",
|
|
[TOK_MACRO ] = "#",
|
|
[TOK_CONCATENATE ] = "##",
|
|
|
|
[TOK_AUTO ] = "auto",
|
|
[TOK_BREAK ] = "break",
|
|
[TOK_CASE ] = "case",
|
|
[TOK_CHAR ] = "char",
|
|
[TOK_CONST ] = "const",
|
|
[TOK_CONTINUE ] = "continue",
|
|
[TOK_DEFAULT ] = "default",
|
|
[TOK_DO ] = "do",
|
|
[TOK_DOUBLE ] = "double",
|
|
[TOK_ELSE ] = "else",
|
|
[TOK_ENUM ] = "enum",
|
|
[TOK_EXTERN ] = "extern",
|
|
[TOK_FLOAT ] = "float",
|
|
[TOK_FOR ] = "for",
|
|
[TOK_GOTO ] = "goto",
|
|
[TOK_IF ] = "if",
|
|
[TOK_INLINE ] = "inline",
|
|
[TOK_INT ] = "int",
|
|
[TOK_LONG ] = "long",
|
|
[TOK_REGISTER ] = "register",
|
|
[TOK_RESTRICT ] = "restrict",
|
|
[TOK_RETURN ] = "return",
|
|
[TOK_SHORT ] = "short",
|
|
[TOK_SIGNED ] = "signed",
|
|
[TOK_SIZEOF ] = "sizeof",
|
|
[TOK_STATIC ] = "static",
|
|
[TOK_STRUCT ] = "struct",
|
|
[TOK_SWITCH ] = "switch",
|
|
[TOK_TYPEDEF ] = "typedef",
|
|
[TOK_UNION ] = "union",
|
|
[TOK_UNSIGNED ] = "unsigned",
|
|
[TOK_VOID ] = "void",
|
|
[TOK_VOLATILE ] = "volatile",
|
|
[TOK_WHILE ] = "while",
|
|
[TOK_ASM ] = "asm",
|
|
[TOK_ATTRIBUTE ] = "__attribute__",
|
|
[TOK_ALIGNOF ] = "__alignof__",
|
|
|
|
[TOK_DEFINE ] = "define",
|
|
[TOK_UNDEF ] = "undef",
|
|
[TOK_INCLUDE ] = "include",
|
|
[TOK_LINE ] = "line",
|
|
[TOK_ERROR ] = "error",
|
|
[TOK_WARNING ] = "warning",
|
|
[TOK_PRAGMA ] = "pragma",
|
|
[TOK_IFDEF ] = "ifdef",
|
|
[TOK_IFNDEF ] = "ifndef",
|
|
[TOK_ELIF ] = "elif",
|
|
[TOK_ENDIF ] = "endif",
|
|
|
|
[TOK_EOF ] = "EOF",
|
|
};
|
|
|
|
static unsigned int hash(const char *str, int str_len)
|
|
{
|
|
unsigned int hash;
|
|
const char *end;
|
|
end = str + str_len;
|
|
hash = 0;
|
|
for(; str < end; str++) {
|
|
hash = (hash *263) + *str;
|
|
}
|
|
hash = hash & (HASH_TABLE_SIZE -1);
|
|
return hash;
|
|
}
|
|
|
|
static struct hash_entry *lookup(
|
|
struct compile_state *state, const char *name, int name_len)
|
|
{
|
|
struct hash_entry *entry;
|
|
unsigned int index;
|
|
index = hash(name, name_len);
|
|
entry = state->hash_table[index];
|
|
while(entry &&
|
|
((entry->name_len != name_len) ||
|
|
(memcmp(entry->name, name, name_len) != 0))) {
|
|
entry = entry->next;
|
|
}
|
|
if (!entry) {
|
|
char *new_name;
|
|
/* Get a private copy of the name */
|
|
new_name = xmalloc(name_len + 1, "hash_name");
|
|
memcpy(new_name, name, name_len);
|
|
new_name[name_len] = '\0';
|
|
|
|
/* Create a new hash entry */
|
|
entry = xcmalloc(sizeof(*entry), "hash_entry");
|
|
entry->next = state->hash_table[index];
|
|
entry->name = new_name;
|
|
entry->name_len = name_len;
|
|
|
|
/* Place the new entry in the hash table */
|
|
state->hash_table[index] = entry;
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
static void ident_to_keyword(struct compile_state *state, struct token *tk)
|
|
{
|
|
struct hash_entry *entry;
|
|
entry = tk->ident;
|
|
if (entry && ((entry->tok == TOK_TYPE_NAME) ||
|
|
(entry->tok == TOK_ENUM_CONST) ||
|
|
((entry->tok >= TOK_FIRST_KEYWORD) &&
|
|
(entry->tok <= TOK_LAST_KEYWORD)))) {
|
|
tk->tok = entry->tok;
|
|
}
|
|
}
|
|
|
|
static void ident_to_macro(struct compile_state *state, struct token *tk)
|
|
{
|
|
struct hash_entry *entry;
|
|
entry = tk->ident;
|
|
if (entry &&
|
|
(entry->tok >= TOK_FIRST_MACRO) &&
|
|
(entry->tok <= TOK_LAST_MACRO)) {
|
|
tk->tok = entry->tok;
|
|
}
|
|
}
|
|
|
|
static void hash_keyword(
|
|
struct compile_state *state, const char *keyword, int tok)
|
|
{
|
|
struct hash_entry *entry;
|
|
entry = lookup(state, keyword, strlen(keyword));
|
|
if (entry && entry->tok != TOK_UNKNOWN) {
|
|
die("keyword %s already hashed", keyword);
|
|
}
|
|
entry->tok = tok;
|
|
}
|
|
|
|
static void symbol(
|
|
struct compile_state *state, struct hash_entry *ident,
|
|
struct symbol **chain, struct triple *def, struct type *type)
|
|
{
|
|
struct symbol *sym;
|
|
if (*chain && ((*chain)->scope_depth == state->scope_depth)) {
|
|
error(state, 0, "%s already defined", ident->name);
|
|
}
|
|
sym = xcmalloc(sizeof(*sym), "symbol");
|
|
sym->ident = ident;
|
|
sym->def = def;
|
|
sym->type = type;
|
|
sym->scope_depth = state->scope_depth;
|
|
sym->next = *chain;
|
|
*chain = sym;
|
|
}
|
|
|
|
static void start_scope(struct compile_state *state)
|
|
{
|
|
state->scope_depth++;
|
|
}
|
|
|
|
static void end_scope_syms(struct symbol **chain, int depth)
|
|
{
|
|
struct symbol *sym, *next;
|
|
sym = *chain;
|
|
while(sym && (sym->scope_depth == depth)) {
|
|
next = sym->next;
|
|
xfree(sym);
|
|
sym = next;
|
|
}
|
|
*chain = sym;
|
|
}
|
|
|
|
static void end_scope(struct compile_state *state)
|
|
{
|
|
int i;
|
|
int depth;
|
|
/* Walk through the hash table and remove all symbols
|
|
* in the current scope.
|
|
*/
|
|
depth = state->scope_depth;
|
|
for(i = 0; i < HASH_TABLE_SIZE; i++) {
|
|
struct hash_entry *entry;
|
|
entry = state->hash_table[i];
|
|
while(entry) {
|
|
end_scope_syms(&entry->sym_label, depth);
|
|
end_scope_syms(&entry->sym_struct, depth);
|
|
end_scope_syms(&entry->sym_ident, depth);
|
|
entry = entry->next;
|
|
}
|
|
}
|
|
state->scope_depth = depth - 1;
|
|
}
|
|
|
|
static void register_keywords(struct compile_state *state)
|
|
{
|
|
hash_keyword(state, "auto", TOK_AUTO);
|
|
hash_keyword(state, "break", TOK_BREAK);
|
|
hash_keyword(state, "case", TOK_CASE);
|
|
hash_keyword(state, "char", TOK_CHAR);
|
|
hash_keyword(state, "const", TOK_CONST);
|
|
hash_keyword(state, "continue", TOK_CONTINUE);
|
|
hash_keyword(state, "default", TOK_DEFAULT);
|
|
hash_keyword(state, "do", TOK_DO);
|
|
hash_keyword(state, "double", TOK_DOUBLE);
|
|
hash_keyword(state, "else", TOK_ELSE);
|
|
hash_keyword(state, "enum", TOK_ENUM);
|
|
hash_keyword(state, "extern", TOK_EXTERN);
|
|
hash_keyword(state, "float", TOK_FLOAT);
|
|
hash_keyword(state, "for", TOK_FOR);
|
|
hash_keyword(state, "goto", TOK_GOTO);
|
|
hash_keyword(state, "if", TOK_IF);
|
|
hash_keyword(state, "inline", TOK_INLINE);
|
|
hash_keyword(state, "int", TOK_INT);
|
|
hash_keyword(state, "long", TOK_LONG);
|
|
hash_keyword(state, "register", TOK_REGISTER);
|
|
hash_keyword(state, "restrict", TOK_RESTRICT);
|
|
hash_keyword(state, "return", TOK_RETURN);
|
|
hash_keyword(state, "short", TOK_SHORT);
|
|
hash_keyword(state, "signed", TOK_SIGNED);
|
|
hash_keyword(state, "sizeof", TOK_SIZEOF);
|
|
hash_keyword(state, "static", TOK_STATIC);
|
|
hash_keyword(state, "struct", TOK_STRUCT);
|
|
hash_keyword(state, "switch", TOK_SWITCH);
|
|
hash_keyword(state, "typedef", TOK_TYPEDEF);
|
|
hash_keyword(state, "union", TOK_UNION);
|
|
hash_keyword(state, "unsigned", TOK_UNSIGNED);
|
|
hash_keyword(state, "void", TOK_VOID);
|
|
hash_keyword(state, "volatile", TOK_VOLATILE);
|
|
hash_keyword(state, "__volatile__", TOK_VOLATILE);
|
|
hash_keyword(state, "while", TOK_WHILE);
|
|
hash_keyword(state, "asm", TOK_ASM);
|
|
hash_keyword(state, "__asm__", TOK_ASM);
|
|
hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
|
|
hash_keyword(state, "__alignof__", TOK_ALIGNOF);
|
|
}
|
|
|
|
static void register_macro_keywords(struct compile_state *state)
|
|
{
|
|
hash_keyword(state, "define", TOK_DEFINE);
|
|
hash_keyword(state, "undef", TOK_UNDEF);
|
|
hash_keyword(state, "include", TOK_INCLUDE);
|
|
hash_keyword(state, "line", TOK_LINE);
|
|
hash_keyword(state, "error", TOK_ERROR);
|
|
hash_keyword(state, "warning", TOK_WARNING);
|
|
hash_keyword(state, "pragma", TOK_PRAGMA);
|
|
hash_keyword(state, "ifdef", TOK_IFDEF);
|
|
hash_keyword(state, "ifndef", TOK_IFNDEF);
|
|
hash_keyword(state, "elif", TOK_ELIF);
|
|
hash_keyword(state, "endif", TOK_ENDIF);
|
|
}
|
|
|
|
static int spacep(int c)
|
|
{
|
|
int ret = 0;
|
|
switch(c) {
|
|
case ' ':
|
|
case '\t':
|
|
case '\f':
|
|
case '\v':
|
|
case '\r':
|
|
case '\n':
|
|
ret = 1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int digitp(int c)
|
|
{
|
|
int ret = 0;
|
|
switch(c) {
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
ret = 1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int hexdigitp(int c)
|
|
{
|
|
int ret = 0;
|
|
switch(c) {
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
|
ret = 1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
static int hexdigval(int c)
|
|
{
|
|
int val = -1;
|
|
if ((c >= '0') && (c <= '9')) {
|
|
val = c - '0';
|
|
}
|
|
else if ((c >= 'A') && (c <= 'F')) {
|
|
val = 10 + (c - 'A');
|
|
}
|
|
else if ((c >= 'a') && (c <= 'f')) {
|
|
val = 10 + (c - 'a');
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static int octdigitp(int c)
|
|
{
|
|
int ret = 0;
|
|
switch(c) {
|
|
case '0': case '1': case '2': case '3':
|
|
case '4': case '5': case '6': case '7':
|
|
ret = 1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
static int octdigval(int c)
|
|
{
|
|
int val = -1;
|
|
if ((c >= '0') && (c <= '7')) {
|
|
val = c - '0';
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static int letterp(int c)
|
|
{
|
|
int ret = 0;
|
|
switch(c) {
|
|
case 'a': case 'b': case 'c': case 'd': case 'e':
|
|
case 'f': case 'g': case 'h': case 'i': case 'j':
|
|
case 'k': case 'l': case 'm': case 'n': case 'o':
|
|
case 'p': case 'q': case 'r': case 's': case 't':
|
|
case 'u': case 'v': case 'w': case 'x': case 'y':
|
|
case 'z':
|
|
case 'A': case 'B': case 'C': case 'D': case 'E':
|
|
case 'F': case 'G': case 'H': case 'I': case 'J':
|
|
case 'K': case 'L': case 'M': case 'N': case 'O':
|
|
case 'P': case 'Q': case 'R': case 'S': case 'T':
|
|
case 'U': case 'V': case 'W': case 'X': case 'Y':
|
|
case 'Z':
|
|
case '_':
|
|
ret = 1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int char_value(struct compile_state *state,
|
|
const signed char **strp, const signed char *end)
|
|
{
|
|
const signed char *str;
|
|
int c;
|
|
str = *strp;
|
|
c = *str++;
|
|
if ((c == '\\') && (str < end)) {
|
|
switch(*str) {
|
|
case 'n': c = '\n'; str++; break;
|
|
case 't': c = '\t'; str++; break;
|
|
case 'v': c = '\v'; str++; break;
|
|
case 'b': c = '\b'; str++; break;
|
|
case 'r': c = '\r'; str++; break;
|
|
case 'f': c = '\f'; str++; break;
|
|
case 'a': c = '\a'; str++; break;
|
|
case '\\': c = '\\'; str++; break;
|
|
case '?': c = '?'; str++; break;
|
|
case '\'': c = '\''; str++; break;
|
|
case '"': c = '"'; break;
|
|
case 'x':
|
|
c = 0;
|
|
str++;
|
|
while((str < end) && hexdigitp(*str)) {
|
|
c <<= 4;
|
|
c += hexdigval(*str);
|
|
str++;
|
|
}
|
|
break;
|
|
case '0': case '1': case '2': case '3':
|
|
case '4': case '5': case '6': case '7':
|
|
c = 0;
|
|
while((str < end) && octdigitp(*str)) {
|
|
c <<= 3;
|
|
c += octdigval(*str);
|
|
str++;
|
|
}
|
|
break;
|
|
default:
|
|
error(state, 0, "Invalid character constant");
|
|
break;
|
|
}
|
|
}
|
|
*strp = str;
|
|
return c;
|
|
}
|
|
|
|
static char *after_digits(char *ptr, char *end)
|
|
{
|
|
while((ptr < end) && digitp(*ptr)) {
|
|
ptr++;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
static char *after_octdigits(char *ptr, char *end)
|
|
{
|
|
while((ptr < end) && octdigitp(*ptr)) {
|
|
ptr++;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
static char *after_hexdigits(char *ptr, char *end)
|
|
{
|
|
while((ptr < end) && hexdigitp(*ptr)) {
|
|
ptr++;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
static void save_string(struct compile_state *state,
|
|
struct token *tk, char *start, char *end, const char *id)
|
|
{
|
|
char *str;
|
|
int str_len;
|
|
/* Create a private copy of the string */
|
|
str_len = end - start + 1;
|
|
str = xmalloc(str_len + 1, id);
|
|
memcpy(str, start, str_len);
|
|
str[str_len] = '\0';
|
|
|
|
/* Store the copy in the token */
|
|
tk->val.str = str;
|
|
tk->str_len = str_len;
|
|
}
|
|
static void next_token(struct compile_state *state, int index)
|
|
{
|
|
struct file_state *file;
|
|
struct token *tk;
|
|
char *token;
|
|
int c, c1, c2, c3;
|
|
char *tokp, *end;
|
|
int tok;
|
|
next_token:
|
|
file = state->file;
|
|
tk = &state->token[index];
|
|
tk->str_len = 0;
|
|
tk->ident = 0;
|
|
token = tokp = file->pos;
|
|
end = file->buf + file->size;
|
|
tok = TOK_UNKNOWN;
|
|
c = -1;
|
|
if (tokp < end) {
|
|
c = *tokp;
|
|
}
|
|
c1 = -1;
|
|
if ((tokp + 1) < end) {
|
|
c1 = tokp[1];
|
|
}
|
|
c2 = -1;
|
|
if ((tokp + 2) < end) {
|
|
c2 = tokp[2];
|
|
}
|
|
c3 = -1;
|
|
if ((tokp + 3) < end) {
|
|
c3 = tokp[3];
|
|
}
|
|
if (tokp >= end) {
|
|
tok = TOK_EOF;
|
|
tokp = end;
|
|
}
|
|
/* Whitespace */
|
|
else if (spacep(c)) {
|
|
tok = TOK_SPACE;
|
|
while ((tokp < end) && spacep(c)) {
|
|
if (c == '\n') {
|
|
file->line++;
|
|
file->line_start = tokp + 1;
|
|
}
|
|
c = *(++tokp);
|
|
}
|
|
if (!spacep(c)) {
|
|
tokp--;
|
|
}
|
|
}
|
|
/* EOL Comments */
|
|
else if ((c == '/') && (c1 == '/')) {
|
|
tok = TOK_SPACE;
|
|
for(tokp += 2; tokp < end; tokp++) {
|
|
c = *tokp;
|
|
if (c == '\n') {
|
|
file->line++;
|
|
file->line_start = tokp +1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Comments */
|
|
else if ((c == '/') && (c1 == '*')) {
|
|
int line;
|
|
char *line_start;
|
|
line = file->line;
|
|
line_start = file->line_start;
|
|
for(tokp += 2; (end - tokp) >= 2; tokp++) {
|
|
c = *tokp;
|
|
if (c == '\n') {
|
|
line++;
|
|
line_start = tokp +1;
|
|
}
|
|
else if ((c == '*') && (tokp[1] == '/')) {
|
|
tok = TOK_SPACE;
|
|
tokp += 1;
|
|
break;
|
|
}
|
|
}
|
|
if (tok == TOK_UNKNOWN) {
|
|
error(state, 0, "unterminated comment");
|
|
}
|
|
file->line = line;
|
|
file->line_start = line_start;
|
|
}
|
|
/* string constants */
|
|
else if ((c == '"') ||
|
|
((c == 'L') && (c1 == '"'))) {
|
|
int line;
|
|
char *line_start;
|
|
int wchar;
|
|
line = file->line;
|
|
line_start = file->line_start;
|
|
wchar = 0;
|
|
if (c == 'L') {
|
|
wchar = 1;
|
|
tokp++;
|
|
}
|
|
for(tokp += 1; tokp < end; tokp++) {
|
|
c = *tokp;
|
|
if (c == '\n') {
|
|
line++;
|
|
line_start = tokp + 1;
|
|
}
|
|
else if ((c == '\\') && (tokp +1 < end)) {
|
|
tokp++;
|
|
}
|
|
else if (c == '"') {
|
|
tok = TOK_LIT_STRING;
|
|
break;
|
|
}
|
|
}
|
|
if (tok == TOK_UNKNOWN) {
|
|
error(state, 0, "unterminated string constant");
|
|
}
|
|
if (line != file->line) {
|
|
warning(state, 0, "multiline string constant");
|
|
}
|
|
file->line = line;
|
|
file->line_start = line_start;
|
|
|
|
/* Save the string value */
|
|
save_string(state, tk, token, tokp, "literal string");
|
|
}
|
|
/* character constants */
|
|
else if ((c == '\'') ||
|
|
((c == 'L') && (c1 == '\''))) {
|
|
int line;
|
|
char *line_start;
|
|
int wchar;
|
|
line = file->line;
|
|
line_start = file->line_start;
|
|
wchar = 0;
|
|
if (c == 'L') {
|
|
wchar = 1;
|
|
tokp++;
|
|
}
|
|
for(tokp += 1; tokp < end; tokp++) {
|
|
c = *tokp;
|
|
if (c == '\n') {
|
|
line++;
|
|
line_start = tokp + 1;
|
|
}
|
|
else if ((c == '\\') && (tokp +1 < end)) {
|
|
tokp++;
|
|
}
|
|
else if (c == '\'') {
|
|
tok = TOK_LIT_CHAR;
|
|
break;
|
|
}
|
|
}
|
|
if (tok == TOK_UNKNOWN) {
|
|
error(state, 0, "unterminated character constant");
|
|
}
|
|
if (line != file->line) {
|
|
warning(state, 0, "multiline character constant");
|
|
}
|
|
file->line = line;
|
|
file->line_start = line_start;
|
|
|
|
/* Save the character value */
|
|
save_string(state, tk, token, tokp, "literal character");
|
|
}
|
|
/* integer and floating constants
|
|
* Integer Constants
|
|
* {digits}
|
|
* 0[Xx]{hexdigits}
|
|
* 0{octdigit}+
|
|
*
|
|
* Floating constants
|
|
* {digits}.{digits}[Ee][+-]?{digits}
|
|
* {digits}.{digits}
|
|
* {digits}[Ee][+-]?{digits}
|
|
* .{digits}[Ee][+-]?{digits}
|
|
* .{digits}
|
|
*/
|
|
|
|
else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
|
|
char *next, *new;
|
|
int is_float;
|
|
is_float = 0;
|
|
if (c != '.') {
|
|
next = after_digits(tokp, end);
|
|
}
|
|
else {
|
|
next = tokp;
|
|
}
|
|
if (next[0] == '.') {
|
|
new = after_digits(next, end);
|
|
is_float = (new != next);
|
|
next = new;
|
|
}
|
|
if ((next[0] == 'e') || (next[0] == 'E')) {
|
|
if (((next + 1) < end) &&
|
|
((next[1] == '+') || (next[1] == '-'))) {
|
|
next++;
|
|
}
|
|
new = after_digits(next, end);
|
|
is_float = (new != next);
|
|
next = new;
|
|
}
|
|
if (is_float) {
|
|
tok = TOK_LIT_FLOAT;
|
|
if ((next < end) && (
|
|
(next[0] == 'f') ||
|
|
(next[0] == 'F') ||
|
|
(next[0] == 'l') ||
|
|
(next[0] == 'L'))
|
|
) {
|
|
next++;
|
|
}
|
|
}
|
|
if (!is_float && digitp(c)) {
|
|
tok = TOK_LIT_INT;
|
|
if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
|
|
next = after_hexdigits(tokp + 2, end);
|
|
}
|
|
else if (c == '0') {
|
|
next = after_octdigits(tokp, end);
|
|
}
|
|
else {
|
|
next = after_digits(tokp, end);
|
|
}
|
|
/* crazy integer suffixes */
|
|
if ((next < end) &&
|
|
((next[0] == 'u') || (next[0] == 'U'))) {
|
|
next++;
|
|
if ((next < end) &&
|
|
((next[0] == 'l') || (next[0] == 'L'))) {
|
|
next++;
|
|
}
|
|
}
|
|
else if ((next < end) &&
|
|
((next[0] == 'l') || (next[0] == 'L'))) {
|
|
next++;
|
|
if ((next < end) &&
|
|
((next[0] == 'u') || (next[0] == 'U'))) {
|
|
next++;
|
|
}
|
|
}
|
|
}
|
|
tokp = next - 1;
|
|
|
|
/* Save the integer/floating point value */
|
|
save_string(state, tk, token, tokp, "literal number");
|
|
}
|
|
/* identifiers */
|
|
else if (letterp(c)) {
|
|
tok = TOK_IDENT;
|
|
for(tokp += 1; tokp < end; tokp++) {
|
|
c = *tokp;
|
|
if (!letterp(c) && !digitp(c)) {
|
|
break;
|
|
}
|
|
}
|
|
tokp -= 1;
|
|
tk->ident = lookup(state, token, tokp +1 - token);
|
|
}
|
|
/* C99 alternate macro characters */
|
|
else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) {
|
|
tokp += 3;
|
|
tok = TOK_CONCATENATE;
|
|
}
|
|
else if ((c == '.') && (c1 == '.') && (c2 == '.')) { tokp += 2; tok = TOK_DOTS; }
|
|
else if ((c == '<') && (c1 == '<') && (c2 == '=')) { tokp += 2; tok = TOK_SLEQ; }
|
|
else if ((c == '>') && (c1 == '>') && (c2 == '=')) { tokp += 2; tok = TOK_SREQ; }
|
|
else if ((c == '*') && (c1 == '=')) { tokp += 1; tok = TOK_TIMESEQ; }
|
|
else if ((c == '/') && (c1 == '=')) { tokp += 1; tok = TOK_DIVEQ; }
|
|
else if ((c == '%') && (c1 == '=')) { tokp += 1; tok = TOK_MODEQ; }
|
|
else if ((c == '+') && (c1 == '=')) { tokp += 1; tok = TOK_PLUSEQ; }
|
|
else if ((c == '-') && (c1 == '=')) { tokp += 1; tok = TOK_MINUSEQ; }
|
|
else if ((c == '&') && (c1 == '=')) { tokp += 1; tok = TOK_ANDEQ; }
|
|
else if ((c == '^') && (c1 == '=')) { tokp += 1; tok = TOK_XOREQ; }
|
|
else if ((c == '|') && (c1 == '=')) { tokp += 1; tok = TOK_OREQ; }
|
|
else if ((c == '=') && (c1 == '=')) { tokp += 1; tok = TOK_EQEQ; }
|
|
else if ((c == '!') && (c1 == '=')) { tokp += 1; tok = TOK_NOTEQ; }
|
|
else if ((c == '|') && (c1 == '|')) { tokp += 1; tok = TOK_LOGOR; }
|
|
else if ((c == '&') && (c1 == '&')) { tokp += 1; tok = TOK_LOGAND; }
|
|
else if ((c == '<') && (c1 == '=')) { tokp += 1; tok = TOK_LESSEQ; }
|
|
else if ((c == '>') && (c1 == '=')) { tokp += 1; tok = TOK_MOREEQ; }
|
|
else if ((c == '<') && (c1 == '<')) { tokp += 1; tok = TOK_SL; }
|
|
else if ((c == '>') && (c1 == '>')) { tokp += 1; tok = TOK_SR; }
|
|
else if ((c == '+') && (c1 == '+')) { tokp += 1; tok = TOK_PLUSPLUS; }
|
|
else if ((c == '-') && (c1 == '-')) { tokp += 1; tok = TOK_MINUSMINUS; }
|
|
else if ((c == '-') && (c1 == '>')) { tokp += 1; tok = TOK_ARROW; }
|
|
else if ((c == '<') && (c1 == ':')) { tokp += 1; tok = TOK_LBRACKET; }
|
|
else if ((c == ':') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACKET; }
|
|
else if ((c == '<') && (c1 == '%')) { tokp += 1; tok = TOK_LBRACE; }
|
|
else if ((c == '%') && (c1 == '>')) { tokp += 1; tok = TOK_RBRACE; }
|
|
else if ((c == '%') && (c1 == ':')) { tokp += 1; tok = TOK_MACRO; }
|
|
else if ((c == '#') && (c1 == '#')) { tokp += 1; tok = TOK_CONCATENATE; }
|
|
else if (c == ';') { tok = TOK_SEMI; }
|
|
else if (c == '{') { tok = TOK_LBRACE; }
|
|
else if (c == '}') { tok = TOK_RBRACE; }
|
|
else if (c == ',') { tok = TOK_COMMA; }
|
|
else if (c == '=') { tok = TOK_EQ; }
|
|
else if (c == ':') { tok = TOK_COLON; }
|
|
else if (c == '[') { tok = TOK_LBRACKET; }
|
|
else if (c == ']') { tok = TOK_RBRACKET; }
|
|
else if (c == '(') { tok = TOK_LPAREN; }
|
|
else if (c == ')') { tok = TOK_RPAREN; }
|
|
else if (c == '*') { tok = TOK_STAR; }
|
|
else if (c == '>') { tok = TOK_MORE; }
|
|
else if (c == '<') { tok = TOK_LESS; }
|
|
else if (c == '?') { tok = TOK_QUEST; }
|
|
else if (c == '|') { tok = TOK_OR; }
|
|
else if (c == '&') { tok = TOK_AND; }
|
|
else if (c == '^') { tok = TOK_XOR; }
|
|
else if (c == '+') { tok = TOK_PLUS; }
|
|
else if (c == '-') { tok = TOK_MINUS; }
|
|
else if (c == '/') { tok = TOK_DIV; }
|
|
else if (c == '%') { tok = TOK_MOD; }
|
|
else if (c == '!') { tok = TOK_BANG; }
|
|
else if (c == '.') { tok = TOK_DOT; }
|
|
else if (c == '~') { tok = TOK_TILDE; }
|
|
else if (c == '#') { tok = TOK_MACRO; }
|
|
if (tok == TOK_MACRO) {
|
|
/* Only match preprocessor directives at the start of a line */
|
|
char *ptr;
|
|
for(ptr = file->line_start; spacep(*ptr); ptr++)
|
|
;
|
|
if (ptr != tokp) {
|
|
tok = TOK_UNKNOWN;
|
|
}
|
|
}
|
|
if (tok == TOK_UNKNOWN) {
|
|
error(state, 0, "unknown token");
|
|
}
|
|
|
|
file->pos = tokp + 1;
|
|
tk->tok = tok;
|
|
if (tok == TOK_IDENT) {
|
|
ident_to_keyword(state, tk);
|
|
}
|
|
/* Don't return space tokens. */
|
|
if (tok == TOK_SPACE) {
|
|
goto next_token;
|
|
}
|
|
}
|
|
|
|
static void compile_macro(struct compile_state *state, struct token *tk)
|
|
{
|
|
struct file_state *file;
|
|
struct hash_entry *ident;
|
|
ident = tk->ident;
|
|
file = xmalloc(sizeof(*file), "file_state");
|
|
file->basename = xstrdup(tk->ident->name);
|
|
file->dirname = xstrdup("");
|
|
file->size = ident->sym_define->buf_len;
|
|
file->buf = xmalloc(file->size +2, file->basename);
|
|
memcpy(file->buf, ident->sym_define->buf, file->size);
|
|
file->buf[file->size] = '\n';
|
|
file->buf[file->size + 1] = '\0';
|
|
file->pos = file->buf;
|
|
file->line_start = file->pos;
|
|
file->line = 1;
|
|
file->prev = state->file;
|
|
state->file = file;
|
|
}
|
|
|
|
|
|
static int mpeek(struct compile_state *state, int index)
|
|
{
|
|
struct token *tk;
|
|
int rescan;
|
|
tk = &state->token[index + 1];
|
|
if (tk->tok == -1) {
|
|
next_token(state, index + 1);
|
|
}
|
|
do {
|
|
rescan = 0;
|
|
if ((tk->tok == TOK_EOF) &&
|
|
(state->file != state->macro_file) &&
|
|
(state->file->prev)) {
|
|
struct file_state *file = state->file;
|
|
state->file = file->prev;
|
|
/* file->basename is used keep it */
|
|
xfree(file->dirname);
|
|
xfree(file->buf);
|
|
xfree(file);
|
|
next_token(state, index + 1);
|
|
rescan = 1;
|
|
}
|
|
else if (tk->ident && tk->ident->sym_define) {
|
|
compile_macro(state, tk);
|
|
next_token(state, index + 1);
|
|
rescan = 1;
|
|
}
|
|
} while(rescan);
|
|
/* Don't show the token on the next line */
|
|
if (state->macro_line < state->macro_file->line) {
|
|
return TOK_EOF;
|
|
}
|
|
return state->token[index +1].tok;
|
|
}
|
|
|
|
static void meat(struct compile_state *state, int index, int tok)
|
|
{
|
|
int next_tok;
|
|
int i;
|
|
next_tok = mpeek(state, index);
|
|
if (next_tok != tok) {
|
|
const char *name1, *name2;
|
|
name1 = tokens[next_tok];
|
|
name2 = "";
|
|
if (next_tok == TOK_IDENT) {
|
|
name2 = state->token[index + 1].ident->name;
|
|
}
|
|
error(state, 0, "found %s %s expected %s",
|
|
name1, name2, tokens[tok]);
|
|
}
|
|
/* Free the old token value */
|
|
if (state->token[index].str_len) {
|
|
memset((void *)(state->token[index].val.str), -1,
|
|
state->token[index].str_len);
|
|
xfree(state->token[index].val.str);
|
|
}
|
|
for(i = index; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
|
|
state->token[i] = state->token[i + 1];
|
|
}
|
|
memset(&state->token[i], 0, sizeof(state->token[i]));
|
|
state->token[i].tok = -1;
|
|
}
|
|
|
|
static long_t mcexpr(struct compile_state *state, int index);
|
|
|
|
static long_t mprimary_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
int tok;
|
|
tok = mpeek(state, index);
|
|
while(state->token[index + 1].ident &&
|
|
state->token[index + 1].ident->sym_define) {
|
|
meat(state, index, tok);
|
|
compile_macro(state, &state->token[index]);
|
|
tok = mpeek(state, index);
|
|
}
|
|
switch(tok) {
|
|
case TOK_LPAREN:
|
|
meat(state, index, TOK_LPAREN);
|
|
val = mcexpr(state, index);
|
|
meat(state, index, TOK_RPAREN);
|
|
break;
|
|
case TOK_LIT_INT:
|
|
{
|
|
char *end;
|
|
meat(state, index, TOK_LIT_INT);
|
|
errno = 0;
|
|
val = strtol(state->token[index].val.str, &end, 0);
|
|
if (((val == LONG_MIN) || (val == LONG_MAX)) &&
|
|
(errno == ERANGE)) {
|
|
error(state, 0, "Integer constant to large");
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
meat(state, index, TOK_LIT_INT);
|
|
val = 0;
|
|
}
|
|
return val;
|
|
}
|
|
static long_t munary_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
switch(mpeek(state, index)) {
|
|
case TOK_PLUS:
|
|
meat(state, index, TOK_PLUS);
|
|
val = munary_expr(state, index);
|
|
val = + val;
|
|
break;
|
|
case TOK_MINUS:
|
|
meat(state, index, TOK_MINUS);
|
|
val = munary_expr(state, index);
|
|
val = - val;
|
|
break;
|
|
case TOK_TILDE:
|
|
meat(state, index, TOK_BANG);
|
|
val = munary_expr(state, index);
|
|
val = ~ val;
|
|
break;
|
|
case TOK_BANG:
|
|
meat(state, index, TOK_BANG);
|
|
val = munary_expr(state, index);
|
|
val = ! val;
|
|
break;
|
|
default:
|
|
val = mprimary_expr(state, index);
|
|
break;
|
|
}
|
|
return val;
|
|
|
|
}
|
|
static long_t mmul_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
int done;
|
|
val = munary_expr(state, index);
|
|
do {
|
|
long_t right;
|
|
done = 0;
|
|
switch(mpeek(state, index)) {
|
|
case TOK_STAR:
|
|
meat(state, index, TOK_STAR);
|
|
right = munary_expr(state, index);
|
|
val = val * right;
|
|
break;
|
|
case TOK_DIV:
|
|
meat(state, index, TOK_DIV);
|
|
right = munary_expr(state, index);
|
|
val = val / right;
|
|
break;
|
|
case TOK_MOD:
|
|
meat(state, index, TOK_MOD);
|
|
right = munary_expr(state, index);
|
|
val = val % right;
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
|
|
return val;
|
|
}
|
|
|
|
static long_t madd_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
int done;
|
|
val = mmul_expr(state, index);
|
|
do {
|
|
long_t right;
|
|
done = 0;
|
|
switch(mpeek(state, index)) {
|
|
case TOK_PLUS:
|
|
meat(state, index, TOK_PLUS);
|
|
right = mmul_expr(state, index);
|
|
val = val + right;
|
|
break;
|
|
case TOK_MINUS:
|
|
meat(state, index, TOK_MINUS);
|
|
right = mmul_expr(state, index);
|
|
val = val - right;
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
|
|
return val;
|
|
}
|
|
|
|
static long_t mshift_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
int done;
|
|
val = madd_expr(state, index);
|
|
do {
|
|
long_t right;
|
|
done = 0;
|
|
switch(mpeek(state, index)) {
|
|
case TOK_SL:
|
|
meat(state, index, TOK_SL);
|
|
right = madd_expr(state, index);
|
|
val = val << right;
|
|
break;
|
|
case TOK_SR:
|
|
meat(state, index, TOK_SR);
|
|
right = madd_expr(state, index);
|
|
val = val >> right;
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
|
|
return val;
|
|
}
|
|
|
|
static long_t mrel_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
int done;
|
|
val = mshift_expr(state, index);
|
|
do {
|
|
long_t right;
|
|
done = 0;
|
|
switch(mpeek(state, index)) {
|
|
case TOK_LESS:
|
|
meat(state, index, TOK_LESS);
|
|
right = mshift_expr(state, index);
|
|
val = val < right;
|
|
break;
|
|
case TOK_MORE:
|
|
meat(state, index, TOK_MORE);
|
|
right = mshift_expr(state, index);
|
|
val = val > right;
|
|
break;
|
|
case TOK_LESSEQ:
|
|
meat(state, index, TOK_LESSEQ);
|
|
right = mshift_expr(state, index);
|
|
val = val <= right;
|
|
break;
|
|
case TOK_MOREEQ:
|
|
meat(state, index, TOK_MOREEQ);
|
|
right = mshift_expr(state, index);
|
|
val = val >= right;
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return val;
|
|
}
|
|
|
|
static long_t meq_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
int done;
|
|
val = mrel_expr(state, index);
|
|
do {
|
|
long_t right;
|
|
done = 0;
|
|
switch(mpeek(state, index)) {
|
|
case TOK_EQEQ:
|
|
meat(state, index, TOK_EQEQ);
|
|
right = mrel_expr(state, index);
|
|
val = val == right;
|
|
break;
|
|
case TOK_NOTEQ:
|
|
meat(state, index, TOK_NOTEQ);
|
|
right = mrel_expr(state, index);
|
|
val = val != right;
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return val;
|
|
}
|
|
|
|
static long_t mand_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
val = meq_expr(state, index);
|
|
if (mpeek(state, index) == TOK_AND) {
|
|
long_t right;
|
|
meat(state, index, TOK_AND);
|
|
right = meq_expr(state, index);
|
|
val = val & right;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static long_t mxor_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
val = mand_expr(state, index);
|
|
if (mpeek(state, index) == TOK_XOR) {
|
|
long_t right;
|
|
meat(state, index, TOK_XOR);
|
|
right = mand_expr(state, index);
|
|
val = val ^ right;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static long_t mor_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
val = mxor_expr(state, index);
|
|
if (mpeek(state, index) == TOK_OR) {
|
|
long_t right;
|
|
meat(state, index, TOK_OR);
|
|
right = mxor_expr(state, index);
|
|
val = val | right;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static long_t mland_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
val = mor_expr(state, index);
|
|
if (mpeek(state, index) == TOK_LOGAND) {
|
|
long_t right;
|
|
meat(state, index, TOK_LOGAND);
|
|
right = mor_expr(state, index);
|
|
val = val && right;
|
|
}
|
|
return val;
|
|
}
|
|
static long_t mlor_expr(struct compile_state *state, int index)
|
|
{
|
|
long_t val;
|
|
val = mland_expr(state, index);
|
|
if (mpeek(state, index) == TOK_LOGOR) {
|
|
long_t right;
|
|
meat(state, index, TOK_LOGOR);
|
|
right = mland_expr(state, index);
|
|
val = val || right;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static long_t mcexpr(struct compile_state *state, int index)
|
|
{
|
|
return mlor_expr(state, index);
|
|
}
|
|
static void preprocess(struct compile_state *state, int index)
|
|
{
|
|
/* Doing much more with the preprocessor would require
|
|
* a parser and a major restructuring.
|
|
* Postpone that for later.
|
|
*/
|
|
struct file_state *file;
|
|
struct token *tk;
|
|
int line;
|
|
int tok;
|
|
|
|
file = state->file;
|
|
tk = &state->token[index];
|
|
state->macro_line = line = file->line;
|
|
state->macro_file = file;
|
|
|
|
next_token(state, index);
|
|
ident_to_macro(state, tk);
|
|
if (tk->tok == TOK_IDENT) {
|
|
error(state, 0, "undefined preprocessing directive `%s'",
|
|
tk->ident->name);
|
|
}
|
|
switch(tk->tok) {
|
|
case TOK_UNDEF:
|
|
case TOK_LINE:
|
|
case TOK_PRAGMA:
|
|
if (state->if_value < 0) {
|
|
break;
|
|
}
|
|
warning(state, 0, "Ignoring preprocessor directive: %s",
|
|
tk->ident->name);
|
|
break;
|
|
case TOK_ELIF:
|
|
error(state, 0, "#elif not supported");
|
|
#warning "FIXME multiple #elif and #else in an #if do not work properly"
|
|
if (state->if_depth == 0) {
|
|
error(state, 0, "#elif without #if");
|
|
}
|
|
/* If the #if was taken the #elif just disables the following code */
|
|
if (state->if_value >= 0) {
|
|
state->if_value = - state->if_value;
|
|
}
|
|
/* If the previous #if was not taken see if the #elif enables the
|
|
* trailing code.
|
|
*/
|
|
else if ((state->if_value < 0) &&
|
|
(state->if_depth == - state->if_value))
|
|
{
|
|
if (mcexpr(state, index) != 0) {
|
|
state->if_value = state->if_depth;
|
|
}
|
|
else {
|
|
state->if_value = - state->if_depth;
|
|
}
|
|
}
|
|
break;
|
|
case TOK_IF:
|
|
state->if_depth++;
|
|
if (state->if_value < 0) {
|
|
break;
|
|
}
|
|
if (mcexpr(state, index) != 0) {
|
|
state->if_value = state->if_depth;
|
|
}
|
|
else {
|
|
state->if_value = - state->if_depth;
|
|
}
|
|
break;
|
|
case TOK_IFNDEF:
|
|
state->if_depth++;
|
|
if (state->if_value < 0) {
|
|
break;
|
|
}
|
|
next_token(state, index);
|
|
if ((line != file->line) || (tk->tok != TOK_IDENT)) {
|
|
error(state, 0, "Invalid macro name");
|
|
}
|
|
if (tk->ident->sym_define == 0) {
|
|
state->if_value = state->if_depth;
|
|
}
|
|
else {
|
|
state->if_value = - state->if_depth;
|
|
}
|
|
break;
|
|
case TOK_IFDEF:
|
|
state->if_depth++;
|
|
if (state->if_value < 0) {
|
|
break;
|
|
}
|
|
next_token(state, index);
|
|
if ((line != file->line) || (tk->tok != TOK_IDENT)) {
|
|
error(state, 0, "Invalid macro name");
|
|
}
|
|
if (tk->ident->sym_define != 0) {
|
|
state->if_value = state->if_depth;
|
|
}
|
|
else {
|
|
state->if_value = - state->if_depth;
|
|
}
|
|
break;
|
|
case TOK_ELSE:
|
|
if (state->if_depth == 0) {
|
|
error(state, 0, "#else without #if");
|
|
}
|
|
if ((state->if_value >= 0) ||
|
|
((state->if_value < 0) &&
|
|
(state->if_depth == -state->if_value)))
|
|
{
|
|
state->if_value = - state->if_value;
|
|
}
|
|
break;
|
|
case TOK_ENDIF:
|
|
if (state->if_depth == 0) {
|
|
error(state, 0, "#endif without #if");
|
|
}
|
|
if ((state->if_value >= 0) ||
|
|
((state->if_value < 0) &&
|
|
(state->if_depth == -state->if_value)))
|
|
{
|
|
state->if_value = state->if_depth - 1;
|
|
}
|
|
state->if_depth--;
|
|
break;
|
|
case TOK_DEFINE:
|
|
{
|
|
struct hash_entry *ident;
|
|
struct macro *macro;
|
|
char *ptr;
|
|
|
|
if (state->if_value < 0) /* quit early when #if'd out */
|
|
break;
|
|
|
|
meat(state, index, TOK_IDENT);
|
|
ident = tk->ident;
|
|
|
|
|
|
if (*file->pos == '(') {
|
|
#warning "FIXME macros with arguments not supported"
|
|
error(state, 0, "Macros with arguments not supported");
|
|
}
|
|
|
|
/* Find the end of the line to get an estimate of
|
|
* the macro's length.
|
|
*/
|
|
for(ptr = file->pos; *ptr != '\n'; ptr++)
|
|
;
|
|
|
|
if (ident->sym_define != 0) {
|
|
error(state, 0, "macro %s already defined\n", ident->name);
|
|
}
|
|
macro = xmalloc(sizeof(*macro), "macro");
|
|
macro->ident = ident;
|
|
macro->buf_len = ptr - file->pos +1;
|
|
macro->buf = xmalloc(macro->buf_len +2, "macro buf");
|
|
|
|
memcpy(macro->buf, file->pos, macro->buf_len);
|
|
macro->buf[macro->buf_len] = '\n';
|
|
macro->buf[macro->buf_len +1] = '\0';
|
|
|
|
ident->sym_define = macro;
|
|
break;
|
|
}
|
|
case TOK_ERROR:
|
|
{
|
|
char *end;
|
|
int len;
|
|
/* Find the end of the line */
|
|
for(end = file->pos; *end != '\n'; end++)
|
|
;
|
|
len = (end - file->pos);
|
|
if (state->if_value >= 0) {
|
|
error(state, 0, "%*.*s", len, len, file->pos);
|
|
}
|
|
file->pos = end;
|
|
break;
|
|
}
|
|
case TOK_WARNING:
|
|
{
|
|
char *end;
|
|
int len;
|
|
/* Find the end of the line */
|
|
for(end = file->pos; *end != '\n'; end++)
|
|
;
|
|
len = (end - file->pos);
|
|
if (state->if_value >= 0) {
|
|
warning(state, 0, "%*.*s", len, len, file->pos);
|
|
}
|
|
file->pos = end;
|
|
break;
|
|
}
|
|
case TOK_INCLUDE:
|
|
{
|
|
char *name;
|
|
char *ptr;
|
|
int local;
|
|
local = 0;
|
|
name = 0;
|
|
next_token(state, index);
|
|
if (tk->tok == TOK_LIT_STRING) {
|
|
const char *token;
|
|
int name_len;
|
|
name = xmalloc(tk->str_len, "include");
|
|
token = tk->val.str +1;
|
|
name_len = tk->str_len -2;
|
|
if (*token == '"') {
|
|
token++;
|
|
name_len--;
|
|
}
|
|
memcpy(name, token, name_len);
|
|
name[name_len] = '\0';
|
|
local = 1;
|
|
}
|
|
else if (tk->tok == TOK_LESS) {
|
|
char *start, *end;
|
|
start = file->pos;
|
|
for(end = start; *end != '\n'; end++) {
|
|
if (*end == '>') {
|
|
break;
|
|
}
|
|
}
|
|
if (*end == '\n') {
|
|
error(state, 0, "Unterminated included directive");
|
|
}
|
|
name = xmalloc(end - start + 1, "include");
|
|
memcpy(name, start, end - start);
|
|
name[end - start] = '\0';
|
|
file->pos = end +1;
|
|
local = 0;
|
|
}
|
|
else {
|
|
error(state, 0, "Invalid include directive");
|
|
}
|
|
/* Error if there are any characters after the include */
|
|
for(ptr = file->pos; *ptr != '\n'; ptr++) {
|
|
if (!isspace(*ptr)) {
|
|
error(state, 0, "garbage after include directive");
|
|
}
|
|
}
|
|
if (state->if_value >= 0) {
|
|
compile_file(state, name, local);
|
|
}
|
|
xfree(name);
|
|
next_token(state, index);
|
|
return;
|
|
}
|
|
default:
|
|
/* Ignore # without a following ident */
|
|
if (tk->tok == TOK_IDENT) {
|
|
error(state, 0, "Invalid preprocessor directive: %s",
|
|
tk->ident->name);
|
|
}
|
|
break;
|
|
}
|
|
/* Consume the rest of the macro line */
|
|
do {
|
|
tok = mpeek(state, index);
|
|
meat(state, index, tok);
|
|
} while(tok != TOK_EOF);
|
|
return;
|
|
}
|
|
|
|
static void token(struct compile_state *state, int index)
|
|
{
|
|
struct file_state *file;
|
|
struct token *tk;
|
|
int rescan;
|
|
|
|
tk = &state->token[index];
|
|
next_token(state, index);
|
|
do {
|
|
rescan = 0;
|
|
file = state->file;
|
|
if (tk->tok == TOK_EOF && file->prev) {
|
|
state->file = file->prev;
|
|
/* file->basename is used keep it */
|
|
xfree(file->dirname);
|
|
xfree(file->buf);
|
|
xfree(file);
|
|
next_token(state, index);
|
|
rescan = 1;
|
|
}
|
|
else if (tk->tok == TOK_MACRO) {
|
|
preprocess(state, index);
|
|
rescan = 1;
|
|
}
|
|
else if (tk->ident && tk->ident->sym_define) {
|
|
compile_macro(state, tk);
|
|
next_token(state, index);
|
|
rescan = 1;
|
|
}
|
|
else if (state->if_value < 0) {
|
|
next_token(state, index);
|
|
rescan = 1;
|
|
}
|
|
} while(rescan);
|
|
}
|
|
|
|
static int peek(struct compile_state *state)
|
|
{
|
|
if (state->token[1].tok == -1) {
|
|
token(state, 1);
|
|
}
|
|
return state->token[1].tok;
|
|
}
|
|
|
|
static int peek2(struct compile_state *state)
|
|
{
|
|
if (state->token[1].tok == -1) {
|
|
token(state, 1);
|
|
}
|
|
if (state->token[2].tok == -1) {
|
|
token(state, 2);
|
|
}
|
|
return state->token[2].tok;
|
|
}
|
|
|
|
static void eat(struct compile_state *state, int tok)
|
|
{
|
|
int next_tok;
|
|
int i;
|
|
next_tok = peek(state);
|
|
if (next_tok != tok) {
|
|
const char *name1, *name2;
|
|
name1 = tokens[next_tok];
|
|
name2 = "";
|
|
if (next_tok == TOK_IDENT) {
|
|
name2 = state->token[1].ident->name;
|
|
}
|
|
error(state, 0, "\tfound %s %s expected %s",
|
|
name1, name2 ,tokens[tok]);
|
|
}
|
|
/* Free the old token value */
|
|
if (state->token[0].str_len) {
|
|
xfree((void *)(state->token[0].val.str));
|
|
}
|
|
for(i = 0; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
|
|
state->token[i] = state->token[i + 1];
|
|
}
|
|
memset(&state->token[i], 0, sizeof(state->token[i]));
|
|
state->token[i].tok = -1;
|
|
}
|
|
|
|
#warning "FIXME do not hardcode the include paths"
|
|
static char *include_paths[] = {
|
|
"/home/eric/projects/linuxbios/checkin/solo/freebios2/src/include",
|
|
"/home/eric/projects/linuxbios/checkin/solo/freebios2/src/arch/i386/include",
|
|
"/home/eric/projects/linuxbios/checkin/solo/freebios2/src",
|
|
0
|
|
};
|
|
|
|
static void compile_file(struct compile_state *state, const char *filename, int local)
|
|
{
|
|
char cwd[4096];
|
|
const char *subdir, *base;
|
|
int subdir_len;
|
|
struct file_state *file;
|
|
char *basename;
|
|
file = xmalloc(sizeof(*file), "file_state");
|
|
|
|
base = strrchr(filename, '/');
|
|
subdir = filename;
|
|
if (base != 0) {
|
|
subdir_len = base - filename;
|
|
base++;
|
|
}
|
|
else {
|
|
base = filename;
|
|
subdir_len = 0;
|
|
}
|
|
basename = xmalloc(strlen(base) +1, "basename");
|
|
strcpy(basename, base);
|
|
file->basename = basename;
|
|
|
|
if (getcwd(cwd, sizeof(cwd)) == 0) {
|
|
die("cwd buffer to small");
|
|
}
|
|
|
|
if (subdir[0] == '/') {
|
|
file->dirname = xmalloc(subdir_len + 1, "dirname");
|
|
memcpy(file->dirname, subdir, subdir_len);
|
|
file->dirname[subdir_len] = '\0';
|
|
}
|
|
else {
|
|
char *dir;
|
|
int dirlen;
|
|
char **path;
|
|
/* Find the appropriate directory... */
|
|
dir = 0;
|
|
if (!state->file && exists(cwd, filename)) {
|
|
dir = cwd;
|
|
}
|
|
if (local && state->file && exists(state->file->dirname, filename)) {
|
|
dir = state->file->dirname;
|
|
}
|
|
for(path = include_paths; !dir && *path; path++) {
|
|
if (exists(*path, filename)) {
|
|
dir = *path;
|
|
}
|
|
}
|
|
if (!dir) {
|
|
error(state, 0, "Cannot find `%s'\n", filename);
|
|
}
|
|
dirlen = strlen(dir);
|
|
file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
|
|
memcpy(file->dirname, dir, dirlen);
|
|
file->dirname[dirlen] = '/';
|
|
memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
|
|
file->dirname[dirlen + 1 + subdir_len] = '\0';
|
|
}
|
|
file->buf = slurp_file(file->dirname, file->basename, &file->size);
|
|
xchdir(cwd);
|
|
|
|
file->pos = file->buf;
|
|
file->line_start = file->pos;
|
|
file->line = 1;
|
|
|
|
file->prev = state->file;
|
|
state->file = file;
|
|
|
|
process_trigraphs(state);
|
|
splice_lines(state);
|
|
}
|
|
|
|
/* Type helper functions */
|
|
|
|
static struct type *new_type(
|
|
unsigned int type, struct type *left, struct type *right)
|
|
{
|
|
struct type *result;
|
|
result = xmalloc(sizeof(*result), "type");
|
|
result->type = type;
|
|
result->left = left;
|
|
result->right = right;
|
|
result->field_ident = 0;
|
|
result->type_ident = 0;
|
|
return result;
|
|
}
|
|
|
|
static struct type *clone_type(unsigned int specifiers, struct type *old)
|
|
{
|
|
struct type *result;
|
|
result = xmalloc(sizeof(*result), "type");
|
|
memcpy(result, old, sizeof(*result));
|
|
result->type &= TYPE_MASK;
|
|
result->type |= specifiers;
|
|
return result;
|
|
}
|
|
|
|
#define SIZEOF_SHORT 2
|
|
#define SIZEOF_INT 4
|
|
#define SIZEOF_LONG (sizeof(long_t))
|
|
|
|
#define ALIGNOF_SHORT 2
|
|
#define ALIGNOF_INT 4
|
|
#define ALIGNOF_LONG (sizeof(long_t))
|
|
|
|
#define MASK_UCHAR(X) ((X) & ((ulong_t)0xff))
|
|
#define MASK_USHORT(X) ((X) & (((ulong_t)1 << (SIZEOF_SHORT*8)) - 1))
|
|
static inline ulong_t mask_uint(ulong_t x)
|
|
{
|
|
if (SIZEOF_INT < SIZEOF_LONG) {
|
|
ulong_t mask = (((ulong_t)1) << ((ulong_t)(SIZEOF_INT*8))) -1;
|
|
x &= mask;
|
|
}
|
|
return x;
|
|
}
|
|
#define MASK_UINT(X) (mask_uint(X))
|
|
#define MASK_ULONG(X) (X)
|
|
|
|
static struct type void_type = { .type = TYPE_VOID };
|
|
static struct type char_type = { .type = TYPE_CHAR };
|
|
static struct type uchar_type = { .type = TYPE_UCHAR };
|
|
static struct type short_type = { .type = TYPE_SHORT };
|
|
static struct type ushort_type = { .type = TYPE_USHORT };
|
|
static struct type int_type = { .type = TYPE_INT };
|
|
static struct type uint_type = { .type = TYPE_UINT };
|
|
static struct type long_type = { .type = TYPE_LONG };
|
|
static struct type ulong_type = { .type = TYPE_ULONG };
|
|
|
|
static struct triple *variable(struct compile_state *state, struct type *type)
|
|
{
|
|
struct triple *result;
|
|
if ((type->type & STOR_MASK) != STOR_PERM) {
|
|
if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
|
|
result = triple(state, OP_ADECL, type, 0, 0);
|
|
} else {
|
|
struct type *field;
|
|
struct triple **vector;
|
|
ulong_t index;
|
|
result = new_triple(state, OP_VAL_VEC, type, -1, -1);
|
|
vector = &result->param[0];
|
|
|
|
field = type->left;
|
|
index = 0;
|
|
while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
vector[index] = variable(state, field->left);
|
|
field = field->right;
|
|
index++;
|
|
}
|
|
vector[index] = variable(state, field);
|
|
}
|
|
}
|
|
else {
|
|
result = triple(state, OP_SDECL, type, 0, 0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void stor_of(FILE *fp, struct type *type)
|
|
{
|
|
switch(type->type & STOR_MASK) {
|
|
case STOR_AUTO:
|
|
fprintf(fp, "auto ");
|
|
break;
|
|
case STOR_STATIC:
|
|
fprintf(fp, "static ");
|
|
break;
|
|
case STOR_EXTERN:
|
|
fprintf(fp, "extern ");
|
|
break;
|
|
case STOR_REGISTER:
|
|
fprintf(fp, "register ");
|
|
break;
|
|
case STOR_TYPEDEF:
|
|
fprintf(fp, "typedef ");
|
|
break;
|
|
case STOR_INLINE:
|
|
fprintf(fp, "inline ");
|
|
break;
|
|
}
|
|
}
|
|
static void qual_of(FILE *fp, struct type *type)
|
|
{
|
|
if (type->type & QUAL_CONST) {
|
|
fprintf(fp, " const");
|
|
}
|
|
if (type->type & QUAL_VOLATILE) {
|
|
fprintf(fp, " volatile");
|
|
}
|
|
if (type->type & QUAL_RESTRICT) {
|
|
fprintf(fp, " restrict");
|
|
}
|
|
}
|
|
|
|
static void name_of(FILE *fp, struct type *type)
|
|
{
|
|
stor_of(fp, type);
|
|
switch(type->type & TYPE_MASK) {
|
|
case TYPE_VOID:
|
|
fprintf(fp, "void");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_CHAR:
|
|
fprintf(fp, "signed char");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_UCHAR:
|
|
fprintf(fp, "unsigned char");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_SHORT:
|
|
fprintf(fp, "signed short");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_USHORT:
|
|
fprintf(fp, "unsigned short");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_INT:
|
|
fprintf(fp, "signed int");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_UINT:
|
|
fprintf(fp, "unsigned int");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_LONG:
|
|
fprintf(fp, "signed long");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_ULONG:
|
|
fprintf(fp, "unsigned long");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_POINTER:
|
|
name_of(fp, type->left);
|
|
fprintf(fp, " * ");
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_PRODUCT:
|
|
case TYPE_OVERLAP:
|
|
name_of(fp, type->left);
|
|
fprintf(fp, ", ");
|
|
name_of(fp, type->right);
|
|
break;
|
|
case TYPE_ENUM:
|
|
fprintf(fp, "enum %s", type->type_ident->name);
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_STRUCT:
|
|
fprintf(fp, "struct %s", type->type_ident->name);
|
|
qual_of(fp, type);
|
|
break;
|
|
case TYPE_FUNCTION:
|
|
{
|
|
name_of(fp, type->left);
|
|
fprintf(fp, " (*)(");
|
|
name_of(fp, type->right);
|
|
fprintf(fp, ")");
|
|
break;
|
|
}
|
|
case TYPE_ARRAY:
|
|
name_of(fp, type->left);
|
|
fprintf(fp, " [%ld]", type->elements);
|
|
break;
|
|
default:
|
|
fprintf(fp, "????: %x", type->type & TYPE_MASK);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static size_t align_of(struct compile_state *state, struct type *type)
|
|
{
|
|
size_t align;
|
|
align = 0;
|
|
switch(type->type & TYPE_MASK) {
|
|
case TYPE_VOID:
|
|
align = 1;
|
|
break;
|
|
case TYPE_CHAR:
|
|
case TYPE_UCHAR:
|
|
align = 1;
|
|
break;
|
|
case TYPE_SHORT:
|
|
case TYPE_USHORT:
|
|
align = ALIGNOF_SHORT;
|
|
break;
|
|
case TYPE_INT:
|
|
case TYPE_UINT:
|
|
case TYPE_ENUM:
|
|
align = ALIGNOF_INT;
|
|
break;
|
|
case TYPE_LONG:
|
|
case TYPE_ULONG:
|
|
case TYPE_POINTER:
|
|
align = ALIGNOF_LONG;
|
|
break;
|
|
case TYPE_PRODUCT:
|
|
case TYPE_OVERLAP:
|
|
{
|
|
size_t left_align, right_align;
|
|
left_align = align_of(state, type->left);
|
|
right_align = align_of(state, type->right);
|
|
align = (left_align >= right_align) ? left_align : right_align;
|
|
break;
|
|
}
|
|
case TYPE_ARRAY:
|
|
align = align_of(state, type->left);
|
|
break;
|
|
case TYPE_STRUCT:
|
|
align = align_of(state, type->left);
|
|
break;
|
|
default:
|
|
error(state, 0, "alignof not yet defined for type\n");
|
|
break;
|
|
}
|
|
return align;
|
|
}
|
|
|
|
static size_t size_of(struct compile_state *state, struct type *type)
|
|
{
|
|
size_t size;
|
|
size = 0;
|
|
switch(type->type & TYPE_MASK) {
|
|
case TYPE_VOID:
|
|
size = 0;
|
|
break;
|
|
case TYPE_CHAR:
|
|
case TYPE_UCHAR:
|
|
size = 1;
|
|
break;
|
|
case TYPE_SHORT:
|
|
case TYPE_USHORT:
|
|
size = SIZEOF_SHORT;
|
|
break;
|
|
case TYPE_INT:
|
|
case TYPE_UINT:
|
|
case TYPE_ENUM:
|
|
size = SIZEOF_INT;
|
|
break;
|
|
case TYPE_LONG:
|
|
case TYPE_ULONG:
|
|
case TYPE_POINTER:
|
|
size = SIZEOF_LONG;
|
|
break;
|
|
case TYPE_PRODUCT:
|
|
{
|
|
size_t align, pad;
|
|
size = size_of(state, type->left);
|
|
while((type->right->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
type = type->right;
|
|
align = align_of(state, type->left);
|
|
pad = align - (size % align);
|
|
size = size + pad + size_of(state, type->left);
|
|
}
|
|
align = align_of(state, type->right);
|
|
pad = align - (size % align);
|
|
size = size + pad + sizeof(type->right);
|
|
break;
|
|
}
|
|
case TYPE_OVERLAP:
|
|
{
|
|
size_t size_left, size_right;
|
|
size_left = size_of(state, type->left);
|
|
size_right = size_of(state, type->right);
|
|
size = (size_left >= size_right)? size_left : size_right;
|
|
break;
|
|
}
|
|
case TYPE_ARRAY:
|
|
if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
|
|
internal_error(state, 0, "Invalid array type");
|
|
} else {
|
|
size = size_of(state, type->left) * type->elements;
|
|
}
|
|
break;
|
|
case TYPE_STRUCT:
|
|
size = size_of(state, type->left);
|
|
break;
|
|
default:
|
|
error(state, 0, "sizeof not yet defined for type\n");
|
|
break;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static size_t field_offset(struct compile_state *state,
|
|
struct type *type, struct hash_entry *field)
|
|
{
|
|
size_t size, align, pad;
|
|
if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
|
|
internal_error(state, 0, "field_offset only works on structures");
|
|
}
|
|
size = 0;
|
|
type = type->left;
|
|
while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
if (type->left->field_ident == field) {
|
|
type = type->left;
|
|
}
|
|
size += size_of(state, type->left);
|
|
type = type->right;
|
|
align = align_of(state, type->left);
|
|
pad = align - (size % align);
|
|
size += pad;
|
|
}
|
|
if (type->field_ident != field) {
|
|
internal_error(state, 0, "field_offset: member %s not present",
|
|
field->name);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static struct type *field_type(struct compile_state *state,
|
|
struct type *type, struct hash_entry *field)
|
|
{
|
|
if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
|
|
internal_error(state, 0, "field_type only works on structures");
|
|
}
|
|
type = type->left;
|
|
while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
if (type->left->field_ident == field) {
|
|
type = type->left;
|
|
break;
|
|
}
|
|
type = type->right;
|
|
}
|
|
if (type->field_ident != field) {
|
|
internal_error(state, 0, "field_type: member %s not present",
|
|
field->name);
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static struct triple *struct_field(struct compile_state *state,
|
|
struct triple *decl, struct hash_entry *field)
|
|
{
|
|
struct triple **vector;
|
|
struct type *type;
|
|
ulong_t index;
|
|
type = decl->type;
|
|
if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
|
|
return decl;
|
|
}
|
|
if (decl->op != OP_VAL_VEC) {
|
|
internal_error(state, 0, "Invalid struct variable");
|
|
}
|
|
if (!field) {
|
|
internal_error(state, 0, "Missing structure field");
|
|
}
|
|
type = type->left;
|
|
vector = &RHS(decl, 0);
|
|
index = 0;
|
|
while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
if (type->left->field_ident == field) {
|
|
type = type->left;
|
|
break;
|
|
}
|
|
index += 1;
|
|
type = type->right;
|
|
}
|
|
if (type->field_ident != field) {
|
|
internal_error(state, 0, "field %s not found?", field->name);
|
|
}
|
|
return vector[index];
|
|
}
|
|
|
|
static void arrays_complete(struct compile_state *state, struct type *type)
|
|
{
|
|
if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
|
|
if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
|
|
error(state, 0, "array size not specified");
|
|
}
|
|
arrays_complete(state, type->left);
|
|
}
|
|
}
|
|
|
|
static unsigned int do_integral_promotion(unsigned int type)
|
|
{
|
|
type &= TYPE_MASK;
|
|
if (TYPE_INTEGER(type) &&
|
|
TYPE_RANK(type) < TYPE_RANK(TYPE_INT)) {
|
|
type = TYPE_INT;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static unsigned int do_arithmetic_conversion(
|
|
unsigned int left, unsigned int right)
|
|
{
|
|
left &= TYPE_MASK;
|
|
right &= TYPE_MASK;
|
|
if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
|
|
return TYPE_LDOUBLE;
|
|
}
|
|
else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
|
|
return TYPE_DOUBLE;
|
|
}
|
|
else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
|
|
return TYPE_FLOAT;
|
|
}
|
|
left = do_integral_promotion(left);
|
|
right = do_integral_promotion(right);
|
|
/* If both operands have the same size done */
|
|
if (left == right) {
|
|
return left;
|
|
}
|
|
/* If both operands have the same signedness pick the larger */
|
|
else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
|
|
return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
|
|
}
|
|
/* If the signed type can hold everything use it */
|
|
else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
|
|
return left;
|
|
}
|
|
else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
|
|
return right;
|
|
}
|
|
/* Convert to the unsigned type with the same rank as the signed type */
|
|
else if (TYPE_SIGNED(left)) {
|
|
return TYPE_MKUNSIGNED(left);
|
|
}
|
|
else {
|
|
return TYPE_MKUNSIGNED(right);
|
|
}
|
|
}
|
|
|
|
/* see if two types are the same except for qualifiers */
|
|
static int equiv_types(struct type *left, struct type *right)
|
|
{
|
|
unsigned int type;
|
|
/* Error if the basic types do not match */
|
|
if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
|
|
return 0;
|
|
}
|
|
type = left->type & TYPE_MASK;
|
|
/* if the basic types match and it is an arithmetic type we are done */
|
|
if (TYPE_ARITHMETIC(type)) {
|
|
return 1;
|
|
}
|
|
/* If it is a pointer type recurse and keep testing */
|
|
if (type == TYPE_POINTER) {
|
|
return equiv_types(left->left, right->left);
|
|
}
|
|
else if (type == TYPE_ARRAY) {
|
|
return (left->elements == right->elements) &&
|
|
equiv_types(left->left, right->left);
|
|
}
|
|
/* test for struct/union equality */
|
|
else if (type == TYPE_STRUCT) {
|
|
return left->type_ident == right->type_ident;
|
|
}
|
|
/* Test for equivalent functions */
|
|
else if (type == TYPE_FUNCTION) {
|
|
return equiv_types(left->left, right->left) &&
|
|
equiv_types(left->right, right->right);
|
|
}
|
|
/* We only see TYPE_PRODUCT as part of function equivalence matching */
|
|
else if (type == TYPE_PRODUCT) {
|
|
return equiv_types(left->left, right->left) &&
|
|
equiv_types(left->right, right->right);
|
|
}
|
|
/* We should see TYPE_OVERLAP */
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int equiv_ptrs(struct type *left, struct type *right)
|
|
{
|
|
if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
|
|
((right->type & TYPE_MASK) != TYPE_POINTER)) {
|
|
return 0;
|
|
}
|
|
return equiv_types(left->left, right->left);
|
|
}
|
|
|
|
static struct type *compatible_types(struct type *left, struct type *right)
|
|
{
|
|
struct type *result;
|
|
unsigned int type, qual_type;
|
|
/* Error if the basic types do not match */
|
|
if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
|
|
return 0;
|
|
}
|
|
type = left->type & TYPE_MASK;
|
|
qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
|
|
result = 0;
|
|
/* if the basic types match and it is an arithmetic type we are done */
|
|
if (TYPE_ARITHMETIC(type)) {
|
|
result = new_type(qual_type, 0, 0);
|
|
}
|
|
/* If it is a pointer type recurse and keep testing */
|
|
else if (type == TYPE_POINTER) {
|
|
result = compatible_types(left->left, right->left);
|
|
if (result) {
|
|
result = new_type(qual_type, result, 0);
|
|
}
|
|
}
|
|
/* test for struct/union equality */
|
|
else if (type == TYPE_STRUCT) {
|
|
if (left->type_ident == right->type_ident) {
|
|
result = left;
|
|
}
|
|
}
|
|
/* Test for equivalent functions */
|
|
else if (type == TYPE_FUNCTION) {
|
|
struct type *lf, *rf;
|
|
lf = compatible_types(left->left, right->left);
|
|
rf = compatible_types(left->right, right->right);
|
|
if (lf && rf) {
|
|
result = new_type(qual_type, lf, rf);
|
|
}
|
|
}
|
|
/* We only see TYPE_PRODUCT as part of function equivalence matching */
|
|
else if (type == TYPE_PRODUCT) {
|
|
struct type *lf, *rf;
|
|
lf = compatible_types(left->left, right->left);
|
|
rf = compatible_types(left->right, right->right);
|
|
if (lf && rf) {
|
|
result = new_type(qual_type, lf, rf);
|
|
}
|
|
}
|
|
else {
|
|
/* Nothing else is compatible */
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static struct type *compatible_ptrs(struct type *left, struct type *right)
|
|
{
|
|
struct type *result;
|
|
if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
|
|
((right->type & TYPE_MASK) != TYPE_POINTER)) {
|
|
return 0;
|
|
}
|
|
result = compatible_types(left->left, right->left);
|
|
if (result) {
|
|
unsigned int qual_type;
|
|
qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
|
|
result = new_type(qual_type, result, 0);
|
|
}
|
|
return result;
|
|
|
|
}
|
|
static struct triple *integral_promotion(
|
|
struct compile_state *state, struct triple *def)
|
|
{
|
|
struct type *type;
|
|
type = def->type;
|
|
/* As all operations are carried out in registers
|
|
* the values are converted on load I just convert
|
|
* logical type of the operand.
|
|
*/
|
|
if (TYPE_INTEGER(type->type)) {
|
|
unsigned int int_type;
|
|
int_type = type->type & ~TYPE_MASK;
|
|
int_type |= do_integral_promotion(type->type);
|
|
if (int_type != type->type) {
|
|
def->type = new_type(int_type, 0, 0);
|
|
}
|
|
}
|
|
return def;
|
|
}
|
|
|
|
|
|
static void arithmetic(struct compile_state *state, struct triple *def)
|
|
{
|
|
if (!TYPE_ARITHMETIC(def->type->type)) {
|
|
error(state, 0, "arithmetic type expexted");
|
|
}
|
|
}
|
|
|
|
static void ptr_arithmetic(struct compile_state *state, struct triple *def)
|
|
{
|
|
if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
|
|
error(state, def, "pointer or arithmetic type expected");
|
|
}
|
|
}
|
|
|
|
static int is_integral(struct triple *ins)
|
|
{
|
|
return TYPE_INTEGER(ins->type->type);
|
|
}
|
|
|
|
static void integral(struct compile_state *state, struct triple *def)
|
|
{
|
|
if (!is_integral(def)) {
|
|
error(state, 0, "integral type expected");
|
|
}
|
|
}
|
|
|
|
|
|
static void bool(struct compile_state *state, struct triple *def)
|
|
{
|
|
if (!TYPE_ARITHMETIC(def->type->type) &&
|
|
((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
|
|
error(state, 0, "arithmetic or pointer type expected");
|
|
}
|
|
}
|
|
|
|
static int is_signed(struct type *type)
|
|
{
|
|
return !!TYPE_SIGNED(type->type);
|
|
}
|
|
|
|
/* Is this value located in a register otherwise it must be in memory */
|
|
static int is_in_reg(struct compile_state *state, struct triple *def)
|
|
{
|
|
int in_reg;
|
|
if (def->op == OP_ADECL) {
|
|
in_reg = 1;
|
|
}
|
|
else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
|
|
in_reg = 0;
|
|
}
|
|
else if (def->op == OP_VAL_VEC) {
|
|
in_reg = is_in_reg(state, RHS(def, 0));
|
|
}
|
|
else if (def->op == OP_DOT) {
|
|
in_reg = is_in_reg(state, RHS(def, 0));
|
|
}
|
|
else {
|
|
internal_error(state, 0, "unknown expr storage location");
|
|
in_reg = -1;
|
|
}
|
|
return in_reg;
|
|
}
|
|
|
|
/* Is this a stable variable location otherwise it must be a temporary */
|
|
static int is_stable(struct compile_state *state, struct triple *def)
|
|
{
|
|
int ret;
|
|
ret = 0;
|
|
if (!def) {
|
|
return 0;
|
|
}
|
|
if ((def->op == OP_ADECL) ||
|
|
(def->op == OP_SDECL) ||
|
|
(def->op == OP_DEREF) ||
|
|
(def->op == OP_BLOBCONST)) {
|
|
ret = 1;
|
|
}
|
|
else if (def->op == OP_DOT) {
|
|
ret = is_stable(state, RHS(def, 0));
|
|
}
|
|
else if (def->op == OP_VAL_VEC) {
|
|
struct triple **vector;
|
|
ulong_t i;
|
|
ret = 1;
|
|
vector = &RHS(def, 0);
|
|
for(i = 0; i < def->type->elements; i++) {
|
|
if (!is_stable(state, vector[i])) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int is_lvalue(struct compile_state *state, struct triple *def)
|
|
{
|
|
int ret;
|
|
ret = 1;
|
|
if (!def) {
|
|
return 0;
|
|
}
|
|
if (!is_stable(state, def)) {
|
|
return 0;
|
|
}
|
|
if (def->type->type & QUAL_CONST) {
|
|
ret = 0;
|
|
}
|
|
else if (def->op == OP_DOT) {
|
|
ret = is_lvalue(state, RHS(def, 0));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void lvalue(struct compile_state *state, struct triple *def)
|
|
{
|
|
if (!def) {
|
|
internal_error(state, def, "nothing where lvalue expected?");
|
|
}
|
|
if (!is_lvalue(state, def)) {
|
|
error(state, def, "lvalue expected");
|
|
}
|
|
}
|
|
|
|
static int is_pointer(struct triple *def)
|
|
{
|
|
return (def->type->type & TYPE_MASK) == TYPE_POINTER;
|
|
}
|
|
|
|
static void pointer(struct compile_state *state, struct triple *def)
|
|
{
|
|
if (!is_pointer(def)) {
|
|
error(state, def, "pointer expected");
|
|
}
|
|
}
|
|
|
|
static struct triple *int_const(
|
|
struct compile_state *state, struct type *type, ulong_t value)
|
|
{
|
|
struct triple *result;
|
|
switch(type->type & TYPE_MASK) {
|
|
case TYPE_CHAR:
|
|
case TYPE_INT: case TYPE_UINT:
|
|
case TYPE_LONG: case TYPE_ULONG:
|
|
break;
|
|
default:
|
|
internal_error(state, 0, "constant for unkown type");
|
|
}
|
|
result = triple(state, OP_INTCONST, type, 0, 0);
|
|
result->u.cval = value;
|
|
return result;
|
|
}
|
|
|
|
|
|
static struct triple *do_mk_addr_expr(struct compile_state *state,
|
|
struct triple *expr, struct type *type, ulong_t offset)
|
|
{
|
|
struct triple *result;
|
|
lvalue(state, expr);
|
|
|
|
result = 0;
|
|
if (expr->op == OP_ADECL) {
|
|
error(state, expr, "address of auto variables not supported");
|
|
}
|
|
else if (expr->op == OP_SDECL) {
|
|
result = triple(state, OP_ADDRCONST, type, 0, 0);
|
|
MISC(result, 0) = expr;
|
|
result->u.cval = offset;
|
|
}
|
|
else if (expr->op == OP_DEREF) {
|
|
result = triple(state, OP_ADD, type,
|
|
RHS(expr, 0),
|
|
int_const(state, &ulong_type, offset));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static struct triple *mk_addr_expr(
|
|
struct compile_state *state, struct triple *expr, ulong_t offset)
|
|
{
|
|
struct type *type;
|
|
|
|
type = new_type(
|
|
TYPE_POINTER | (expr->type->type & QUAL_MASK),
|
|
expr->type, 0);
|
|
|
|
return do_mk_addr_expr(state, expr, type, offset);
|
|
}
|
|
|
|
static struct triple *mk_deref_expr(
|
|
struct compile_state *state, struct triple *expr)
|
|
{
|
|
struct type *base_type;
|
|
pointer(state, expr);
|
|
base_type = expr->type->left;
|
|
if (!TYPE_PTR(base_type->type) && !TYPE_ARITHMETIC(base_type->type)) {
|
|
error(state, 0,
|
|
"Only pointer and arithmetic values can be dereferenced");
|
|
}
|
|
return triple(state, OP_DEREF, base_type, expr, 0);
|
|
}
|
|
|
|
static struct triple *deref_field(
|
|
struct compile_state *state, struct triple *expr, struct hash_entry *field)
|
|
{
|
|
struct triple *result;
|
|
struct type *type, *member;
|
|
if (!field) {
|
|
internal_error(state, 0, "No field passed to deref_field");
|
|
}
|
|
result = 0;
|
|
type = expr->type;
|
|
if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
|
|
error(state, 0, "request for member %s in something not a struct or union",
|
|
field->name);
|
|
}
|
|
member = type->left;
|
|
while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
if (member->left->field_ident == field) {
|
|
member = member->left;
|
|
break;
|
|
}
|
|
member = member->right;
|
|
}
|
|
if (member->field_ident != field) {
|
|
error(state, 0, "%s is not a member", field->name);
|
|
}
|
|
if ((type->type & STOR_MASK) == STOR_PERM) {
|
|
/* Do the pointer arithmetic to get a deref the field */
|
|
ulong_t offset;
|
|
offset = field_offset(state, type, field);
|
|
result = do_mk_addr_expr(state, expr, member, offset);
|
|
result = mk_deref_expr(state, result);
|
|
}
|
|
else {
|
|
/* Find the variable for the field I want. */
|
|
result = triple(state, OP_DOT,
|
|
field_type(state, type, field), expr, 0);
|
|
result->u.field = field;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static struct triple *read_expr(struct compile_state *state, struct triple *def)
|
|
{
|
|
int op;
|
|
if (!def) {
|
|
return 0;
|
|
}
|
|
if (!is_stable(state, def)) {
|
|
return def;
|
|
}
|
|
/* Tranform an array to a pointer to the first element */
|
|
#warning "CHECK_ME is this the right place to transform arrays to pointers?"
|
|
if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
|
|
struct type *type;
|
|
struct triple *result;
|
|
type = new_type(
|
|
TYPE_POINTER | (def->type->type & QUAL_MASK),
|
|
def->type->left, 0);
|
|
result = triple(state, OP_ADDRCONST, type, 0, 0);
|
|
MISC(result, 0) = def;
|
|
return result;
|
|
}
|
|
if (is_in_reg(state, def)) {
|
|
op = OP_READ;
|
|
} else {
|
|
op = OP_LOAD;
|
|
}
|
|
return triple(state, op, def->type, def, 0);
|
|
}
|
|
|
|
static void write_compatible(struct compile_state *state,
|
|
struct type *dest, struct type *rval)
|
|
{
|
|
int compatible = 0;
|
|
/* Both operands have arithmetic type */
|
|
if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
|
|
compatible = 1;
|
|
}
|
|
/* One operand is a pointer and the other is a pointer to void */
|
|
else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
|
|
((rval->type & TYPE_MASK) == TYPE_POINTER) &&
|
|
(((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
|
|
((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
|
|
compatible = 1;
|
|
}
|
|
/* If both types are the same without qualifiers we are good */
|
|
else if (equiv_ptrs(dest, rval)) {
|
|
compatible = 1;
|
|
}
|
|
/* test for struct/union equality */
|
|
else if (((dest->type & TYPE_MASK) == TYPE_STRUCT) &&
|
|
((rval->type & TYPE_MASK) == TYPE_STRUCT) &&
|
|
(dest->type_ident == rval->type_ident)) {
|
|
compatible = 1;
|
|
}
|
|
if (!compatible) {
|
|
error(state, 0, "Incompatible types in assignment");
|
|
}
|
|
}
|
|
|
|
static struct triple *write_expr(
|
|
struct compile_state *state, struct triple *dest, struct triple *rval)
|
|
{
|
|
struct triple *def;
|
|
int op;
|
|
|
|
def = 0;
|
|
if (!rval) {
|
|
internal_error(state, 0, "missing rval");
|
|
}
|
|
|
|
if (rval->op == OP_LIST) {
|
|
internal_error(state, 0, "expression of type OP_LIST?");
|
|
}
|
|
if (!is_lvalue(state, dest)) {
|
|
internal_error(state, 0, "writing to a non lvalue?");
|
|
}
|
|
|
|
write_compatible(state, dest->type, rval->type);
|
|
|
|
/* Now figure out which assignment operator to use */
|
|
op = -1;
|
|
if (is_in_reg(state, dest)) {
|
|
op = OP_WRITE;
|
|
} else {
|
|
op = OP_STORE;
|
|
}
|
|
def = triple(state, op, dest->type, dest, rval);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *init_expr(
|
|
struct compile_state *state, struct triple *dest, struct triple *rval)
|
|
{
|
|
struct triple *def;
|
|
|
|
def = 0;
|
|
if (!rval) {
|
|
internal_error(state, 0, "missing rval");
|
|
}
|
|
if ((dest->type->type & STOR_MASK) != STOR_PERM) {
|
|
rval = read_expr(state, rval);
|
|
def = write_expr(state, dest, rval);
|
|
}
|
|
else {
|
|
/* Fill in the array size if necessary */
|
|
if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
|
|
((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
|
|
if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
|
|
dest->type->elements = rval->type->elements;
|
|
}
|
|
}
|
|
if (!equiv_types(dest->type, rval->type)) {
|
|
error(state, 0, "Incompatible types in inializer");
|
|
}
|
|
MISC(dest, 0) = rval;
|
|
insert_triple(state, dest, rval);
|
|
rval->id |= TRIPLE_FLAG_FLATTENED;
|
|
use_triple(MISC(dest, 0), dest);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
struct type *arithmetic_result(
|
|
struct compile_state *state, struct triple *left, struct triple *right)
|
|
{
|
|
struct type *type;
|
|
/* Sanity checks to ensure I am working with arithmetic types */
|
|
arithmetic(state, left);
|
|
arithmetic(state, right);
|
|
type = new_type(
|
|
do_arithmetic_conversion(
|
|
left->type->type,
|
|
right->type->type), 0, 0);
|
|
return type;
|
|
}
|
|
|
|
struct type *ptr_arithmetic_result(
|
|
struct compile_state *state, struct triple *left, struct triple *right)
|
|
{
|
|
struct type *type;
|
|
/* Sanity checks to ensure I am working with the proper types */
|
|
ptr_arithmetic(state, left);
|
|
arithmetic(state, right);
|
|
if (TYPE_ARITHMETIC(left->type->type) &&
|
|
TYPE_ARITHMETIC(right->type->type)) {
|
|
type = arithmetic_result(state, left, right);
|
|
}
|
|
else if (TYPE_PTR(left->type->type)) {
|
|
type = left->type;
|
|
}
|
|
else {
|
|
internal_error(state, 0, "huh?");
|
|
type = 0;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
|
|
/* boolean helper function */
|
|
|
|
static struct triple *ltrue_expr(struct compile_state *state,
|
|
struct triple *expr)
|
|
{
|
|
switch(expr->op) {
|
|
case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
|
|
case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
|
|
case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
|
|
/* If the expression is already boolean do nothing */
|
|
break;
|
|
default:
|
|
expr = triple(state, OP_LTRUE, &int_type, expr, 0);
|
|
break;
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
static struct triple *lfalse_expr(struct compile_state *state,
|
|
struct triple *expr)
|
|
{
|
|
return triple(state, OP_LFALSE, &int_type, expr, 0);
|
|
}
|
|
|
|
static struct triple *cond_expr(
|
|
struct compile_state *state,
|
|
struct triple *test, struct triple *left, struct triple *right)
|
|
{
|
|
struct triple *def;
|
|
struct type *result_type;
|
|
unsigned int left_type, right_type;
|
|
bool(state, test);
|
|
left_type = left->type->type;
|
|
right_type = right->type->type;
|
|
result_type = 0;
|
|
/* Both operands have arithmetic type */
|
|
if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
|
|
result_type = arithmetic_result(state, left, right);
|
|
}
|
|
/* Both operands have void type */
|
|
else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
|
|
((right_type & TYPE_MASK) == TYPE_VOID)) {
|
|
result_type = &void_type;
|
|
}
|
|
/* pointers to the same type... */
|
|
else if ((result_type = compatible_ptrs(left->type, right->type))) {
|
|
;
|
|
}
|
|
/* Both operands are pointers and left is a pointer to void */
|
|
else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
|
|
((right_type & TYPE_MASK) == TYPE_POINTER) &&
|
|
((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
|
|
result_type = right->type;
|
|
}
|
|
/* Both operands are pointers and right is a pointer to void */
|
|
else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
|
|
((right_type & TYPE_MASK) == TYPE_POINTER) &&
|
|
((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
|
|
result_type = left->type;
|
|
}
|
|
if (!result_type) {
|
|
error(state, 0, "Incompatible types in conditional expression");
|
|
}
|
|
/* Cleanup and invert the test */
|
|
test = lfalse_expr(state, read_expr(state, test));
|
|
def = new_triple(state, OP_COND, result_type, 0, 3);
|
|
def->param[0] = test;
|
|
def->param[1] = left;
|
|
def->param[2] = right;
|
|
return def;
|
|
}
|
|
|
|
|
|
static int expr_depth(struct compile_state *state, struct triple *ins)
|
|
{
|
|
int count;
|
|
count = 0;
|
|
if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
|
|
count = 0;
|
|
}
|
|
else if (ins->op == OP_DEREF) {
|
|
count = expr_depth(state, RHS(ins, 0)) - 1;
|
|
}
|
|
else if (ins->op == OP_VAL) {
|
|
count = expr_depth(state, RHS(ins, 0)) - 1;
|
|
}
|
|
else if (ins->op == OP_COMMA) {
|
|
int ldepth, rdepth;
|
|
ldepth = expr_depth(state, RHS(ins, 0));
|
|
rdepth = expr_depth(state, RHS(ins, 1));
|
|
count = (ldepth >= rdepth)? ldepth : rdepth;
|
|
}
|
|
else if (ins->op == OP_CALL) {
|
|
/* Don't figure the depth of a call just guess it is huge */
|
|
count = 1000;
|
|
}
|
|
else {
|
|
struct triple **expr;
|
|
expr = triple_rhs(state, ins, 0);
|
|
for(;expr; expr = triple_rhs(state, ins, expr)) {
|
|
if (*expr) {
|
|
int depth;
|
|
depth = expr_depth(state, *expr);
|
|
if (depth > count) {
|
|
count = depth;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return count + 1;
|
|
}
|
|
|
|
static struct triple *flatten(
|
|
struct compile_state *state, struct triple *first, struct triple *ptr);
|
|
|
|
static struct triple *flatten_generic(
|
|
struct compile_state *state, struct triple *first, struct triple *ptr)
|
|
{
|
|
struct rhs_vector {
|
|
int depth;
|
|
struct triple **ins;
|
|
} vector[MAX_RHS];
|
|
int i, rhs, lhs;
|
|
/* Only operations with just a rhs should come here */
|
|
rhs = TRIPLE_RHS(ptr->sizes);
|
|
lhs = TRIPLE_LHS(ptr->sizes);
|
|
if (TRIPLE_SIZE(ptr->sizes) != lhs + rhs) {
|
|
internal_error(state, ptr, "unexpected args for: %d %s",
|
|
ptr->op, tops(ptr->op));
|
|
}
|
|
/* Find the depth of the rhs elements */
|
|
for(i = 0; i < rhs; i++) {
|
|
vector[i].ins = &RHS(ptr, i);
|
|
vector[i].depth = expr_depth(state, *vector[i].ins);
|
|
}
|
|
/* Selection sort the rhs */
|
|
for(i = 0; i < rhs; i++) {
|
|
int j, max = i;
|
|
for(j = i + 1; j < rhs; j++ ) {
|
|
if (vector[j].depth > vector[max].depth) {
|
|
max = j;
|
|
}
|
|
}
|
|
if (max != i) {
|
|
struct rhs_vector tmp;
|
|
tmp = vector[i];
|
|
vector[i] = vector[max];
|
|
vector[max] = tmp;
|
|
}
|
|
}
|
|
/* Now flatten the rhs elements */
|
|
for(i = 0; i < rhs; i++) {
|
|
*vector[i].ins = flatten(state, first, *vector[i].ins);
|
|
use_triple(*vector[i].ins, ptr);
|
|
}
|
|
|
|
/* Now flatten the lhs elements */
|
|
for(i = 0; i < lhs; i++) {
|
|
struct triple **ins = &LHS(ptr, i);
|
|
*ins = flatten(state, first, *ins);
|
|
use_triple(*ins, ptr);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
static struct triple *flatten_land(
|
|
struct compile_state *state, struct triple *first, struct triple *ptr)
|
|
{
|
|
struct triple *left, *right;
|
|
struct triple *val, *test, *jmp, *label1, *end;
|
|
|
|
/* Find the triples */
|
|
left = RHS(ptr, 0);
|
|
right = RHS(ptr, 1);
|
|
|
|
/* Generate the needed triples */
|
|
end = label(state);
|
|
|
|
/* Thread the triples together */
|
|
val = flatten(state, first, variable(state, ptr->type));
|
|
left = flatten(state, first, write_expr(state, val, left));
|
|
test = flatten(state, first,
|
|
lfalse_expr(state, read_expr(state, val)));
|
|
jmp = flatten(state, first, branch(state, end, test));
|
|
label1 = flatten(state, first, label(state));
|
|
right = flatten(state, first, write_expr(state, val, right));
|
|
TARG(jmp, 0) = flatten(state, first, end);
|
|
|
|
/* Now give the caller something to chew on */
|
|
return read_expr(state, val);
|
|
}
|
|
|
|
static struct triple *flatten_lor(
|
|
struct compile_state *state, struct triple *first, struct triple *ptr)
|
|
{
|
|
struct triple *left, *right;
|
|
struct triple *val, *jmp, *label1, *end;
|
|
|
|
/* Find the triples */
|
|
left = RHS(ptr, 0);
|
|
right = RHS(ptr, 1);
|
|
|
|
/* Generate the needed triples */
|
|
end = label(state);
|
|
|
|
/* Thread the triples together */
|
|
val = flatten(state, first, variable(state, ptr->type));
|
|
left = flatten(state, first, write_expr(state, val, left));
|
|
jmp = flatten(state, first, branch(state, end, left));
|
|
label1 = flatten(state, first, label(state));
|
|
right = flatten(state, first, write_expr(state, val, right));
|
|
TARG(jmp, 0) = flatten(state, first, end);
|
|
|
|
|
|
/* Now give the caller something to chew on */
|
|
return read_expr(state, val);
|
|
}
|
|
|
|
static struct triple *flatten_cond(
|
|
struct compile_state *state, struct triple *first, struct triple *ptr)
|
|
{
|
|
struct triple *test, *left, *right;
|
|
struct triple *val, *mv1, *jmp1, *label1, *mv2, *middle, *jmp2, *end;
|
|
|
|
/* Find the triples */
|
|
test = RHS(ptr, 0);
|
|
left = RHS(ptr, 1);
|
|
right = RHS(ptr, 2);
|
|
|
|
/* Generate the needed triples */
|
|
end = label(state);
|
|
middle = label(state);
|
|
|
|
/* Thread the triples together */
|
|
val = flatten(state, first, variable(state, ptr->type));
|
|
test = flatten(state, first, test);
|
|
jmp1 = flatten(state, first, branch(state, middle, test));
|
|
label1 = flatten(state, first, label(state));
|
|
left = flatten(state, first, left);
|
|
mv1 = flatten(state, first, write_expr(state, val, left));
|
|
jmp2 = flatten(state, first, branch(state, end, 0));
|
|
TARG(jmp1, 0) = flatten(state, first, middle);
|
|
right = flatten(state, first, right);
|
|
mv2 = flatten(state, first, write_expr(state, val, right));
|
|
TARG(jmp2, 0) = flatten(state, first, end);
|
|
|
|
/* Now give the caller something to chew on */
|
|
return read_expr(state, val);
|
|
}
|
|
|
|
struct triple *copy_func(struct compile_state *state, struct triple *ofunc)
|
|
{
|
|
struct triple *nfunc;
|
|
struct triple *nfirst, *ofirst;
|
|
struct triple *new, *old;
|
|
|
|
#if 0
|
|
fprintf(stdout, "\n");
|
|
loc(stdout, state, 0);
|
|
fprintf(stdout, "\n__________ copy_func _________\n");
|
|
print_triple(state, ofunc);
|
|
fprintf(stdout, "__________ copy_func _________ done\n\n");
|
|
#endif
|
|
|
|
/* Make a new copy of the old function */
|
|
nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
|
|
nfirst = 0;
|
|
ofirst = old = RHS(ofunc, 0);
|
|
do {
|
|
struct triple *new;
|
|
int old_lhs, old_rhs;
|
|
old_lhs = TRIPLE_LHS(old->sizes);
|
|
old_rhs = TRIPLE_RHS(old->sizes);
|
|
new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
|
|
old->filename, old->line, old->col);
|
|
if (!triple_stores_block(state, new)) {
|
|
memcpy(&new->u, &old->u, sizeof(new->u));
|
|
}
|
|
if (!nfirst) {
|
|
RHS(nfunc, 0) = nfirst = new;
|
|
}
|
|
else {
|
|
insert_triple(state, nfirst, new);
|
|
}
|
|
new->id |= TRIPLE_FLAG_FLATTENED;
|
|
|
|
/* During the copy remember new as user of old */
|
|
use_triple(old, new);
|
|
|
|
/* Populate the return type if present */
|
|
if (old == MISC(ofunc, 0)) {
|
|
MISC(nfunc, 0) = new;
|
|
}
|
|
old = old->next;
|
|
} while(old != ofirst);
|
|
|
|
/* Make a second pass to fix up any unresolved references */
|
|
old = ofirst;
|
|
new = nfirst;
|
|
do {
|
|
struct triple **oexpr, **nexpr;
|
|
int count, i;
|
|
/* Lookup where the copy is, to join pointers */
|
|
count = TRIPLE_SIZE(old->sizes);
|
|
for(i = 0; i < count; i++) {
|
|
oexpr = &old->param[i];
|
|
nexpr = &new->param[i];
|
|
if (!*nexpr && *oexpr && (*oexpr)->use) {
|
|
*nexpr = (*oexpr)->use->member;
|
|
if (*nexpr == old) {
|
|
internal_error(state, 0, "new == old?");
|
|
}
|
|
use_triple(*nexpr, new);
|
|
}
|
|
if (!*nexpr && *oexpr) {
|
|
internal_error(state, 0, "Could not copy %d\n", i);
|
|
}
|
|
}
|
|
old = old->next;
|
|
new = new->next;
|
|
} while((old != ofirst) && (new != nfirst));
|
|
|
|
/* Make a third pass to cleanup the extra useses */
|
|
old = ofirst;
|
|
new = nfirst;
|
|
do {
|
|
unuse_triple(old, new);
|
|
old = old->next;
|
|
new = new->next;
|
|
} while ((old != ofirst) && (new != nfirst));
|
|
return nfunc;
|
|
}
|
|
|
|
static struct triple *flatten_call(
|
|
struct compile_state *state, struct triple *first, struct triple *ptr)
|
|
{
|
|
/* Inline the function call */
|
|
struct type *ptype;
|
|
struct triple *ofunc, *nfunc, *nfirst, *param, *result;
|
|
struct triple *end, *nend;
|
|
int pvals, i;
|
|
|
|
/* Find the triples */
|
|
ofunc = MISC(ptr, 0);
|
|
if (ofunc->op != OP_LIST) {
|
|
internal_error(state, 0, "improper function");
|
|
}
|
|
nfunc = copy_func(state, ofunc);
|
|
nfirst = RHS(nfunc, 0)->next;
|
|
/* Prepend the parameter reading into the new function list */
|
|
ptype = nfunc->type->right;
|
|
param = RHS(nfunc, 0)->next;
|
|
pvals = TRIPLE_RHS(ptr->sizes);
|
|
for(i = 0; i < pvals; i++) {
|
|
struct type *atype;
|
|
struct triple *arg;
|
|
atype = ptype;
|
|
if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
atype = ptype->left;
|
|
}
|
|
while((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
|
|
param = param->next;
|
|
}
|
|
arg = RHS(ptr, i);
|
|
flatten(state, nfirst, write_expr(state, param, arg));
|
|
ptype = ptype->right;
|
|
param = param->next;
|
|
}
|
|
result = 0;
|
|
if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
|
|
result = read_expr(state, MISC(nfunc,0));
|
|
}
|
|
#if 0
|
|
fprintf(stdout, "\n");
|
|
loc(stdout, state, 0);
|
|
fprintf(stdout, "\n__________ flatten_call _________\n");
|
|
print_triple(state, nfunc);
|
|
fprintf(stdout, "__________ flatten_call _________ done\n\n");
|
|
#endif
|
|
|
|
/* Get rid of the extra triples */
|
|
nfirst = RHS(nfunc, 0)->next;
|
|
free_triple(state, RHS(nfunc, 0));
|
|
RHS(nfunc, 0) = 0;
|
|
free_triple(state, nfunc);
|
|
|
|
/* Append the new function list onto the return list */
|
|
end = first->prev;
|
|
nend = nfirst->prev;
|
|
end->next = nfirst;
|
|
nfirst->prev = end;
|
|
nend->next = first;
|
|
first->prev = nend;
|
|
|
|
return result;
|
|
}
|
|
|
|
static struct triple *flatten(
|
|
struct compile_state *state, struct triple *first, struct triple *ptr)
|
|
{
|
|
struct triple *orig_ptr;
|
|
if (!ptr)
|
|
return 0;
|
|
do {
|
|
orig_ptr = ptr;
|
|
/* Only flatten triples once */
|
|
if (ptr->id & TRIPLE_FLAG_FLATTENED) {
|
|
return ptr;
|
|
}
|
|
switch(ptr->op) {
|
|
case OP_WRITE:
|
|
case OP_STORE:
|
|
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
|
|
LHS(ptr, 0) = flatten(state, first, LHS(ptr, 0));
|
|
use_triple(LHS(ptr, 0), ptr);
|
|
use_triple(RHS(ptr, 0), ptr);
|
|
break;
|
|
case OP_COMMA:
|
|
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
|
|
ptr = RHS(ptr, 1);
|
|
break;
|
|
case OP_VAL:
|
|
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
|
|
return MISC(ptr, 0);
|
|
break;
|
|
case OP_LAND:
|
|
ptr = flatten_land(state, first, ptr);
|
|
break;
|
|
case OP_LOR:
|
|
ptr = flatten_lor(state, first, ptr);
|
|
break;
|
|
case OP_COND:
|
|
ptr = flatten_cond(state, first, ptr);
|
|
break;
|
|
case OP_CALL:
|
|
ptr = flatten_call(state, first, ptr);
|
|
break;
|
|
case OP_READ:
|
|
case OP_LOAD:
|
|
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
|
|
use_triple(RHS(ptr, 0), ptr);
|
|
break;
|
|
case OP_BRANCH:
|
|
use_triple(TARG(ptr, 0), ptr);
|
|
if (TRIPLE_RHS(ptr->sizes)) {
|
|
use_triple(RHS(ptr, 0), ptr);
|
|
if (ptr->next != ptr) {
|
|
use_triple(ptr->next, ptr);
|
|
}
|
|
}
|
|
break;
|
|
case OP_BLOBCONST:
|
|
insert_triple(state, first, ptr);
|
|
ptr->id |= TRIPLE_FLAG_FLATTENED;
|
|
ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
|
|
use_triple(MISC(ptr, 0), ptr);
|
|
break;
|
|
case OP_DEREF:
|
|
/* Since OP_DEREF is just a marker delete it when I flatten it */
|
|
ptr = RHS(ptr, 0);
|
|
RHS(orig_ptr, 0) = 0;
|
|
free_triple(state, orig_ptr);
|
|
break;
|
|
case OP_DOT:
|
|
{
|
|
struct triple *base;
|
|
base = RHS(ptr, 0);
|
|
base = flatten(state, first, base);
|
|
if (base->op == OP_VAL_VEC) {
|
|
ptr = struct_field(state, base, ptr->u.field);
|
|
}
|
|
break;
|
|
}
|
|
case OP_ADDRCONST:
|
|
case OP_SDECL:
|
|
case OP_PIECE:
|
|
MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
|
|
use_triple(MISC(ptr, 0), ptr);
|
|
break;
|
|
case OP_ADECL:
|
|
break;
|
|
default:
|
|
/* Flatten the easy cases we don't override */
|
|
ptr = flatten_generic(state, first, ptr);
|
|
break;
|
|
}
|
|
} while(ptr && (ptr != orig_ptr));
|
|
if (ptr) {
|
|
insert_triple(state, first, ptr);
|
|
ptr->id |= TRIPLE_FLAG_FLATTENED;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
static void release_expr(struct compile_state *state, struct triple *expr)
|
|
{
|
|
struct triple *head;
|
|
head = label(state);
|
|
flatten(state, head, expr);
|
|
while(head->next != head) {
|
|
release_triple(state, head->next);
|
|
}
|
|
free_triple(state, head);
|
|
}
|
|
|
|
static int replace_rhs_use(struct compile_state *state,
|
|
struct triple *orig, struct triple *new, struct triple *use)
|
|
{
|
|
struct triple **expr;
|
|
int found;
|
|
found = 0;
|
|
expr = triple_rhs(state, use, 0);
|
|
for(;expr; expr = triple_rhs(state, use, expr)) {
|
|
if (*expr == orig) {
|
|
*expr = new;
|
|
found = 1;
|
|
}
|
|
}
|
|
if (found) {
|
|
unuse_triple(orig, use);
|
|
use_triple(new, use);
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static int replace_lhs_use(struct compile_state *state,
|
|
struct triple *orig, struct triple *new, struct triple *use)
|
|
{
|
|
struct triple **expr;
|
|
int found;
|
|
found = 0;
|
|
expr = triple_lhs(state, use, 0);
|
|
for(;expr; expr = triple_lhs(state, use, expr)) {
|
|
if (*expr == orig) {
|
|
*expr = new;
|
|
found = 1;
|
|
}
|
|
}
|
|
if (found) {
|
|
unuse_triple(orig, use);
|
|
use_triple(new, use);
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static void propogate_use(struct compile_state *state,
|
|
struct triple *orig, struct triple *new)
|
|
{
|
|
struct triple_set *user, *next;
|
|
for(user = orig->use; user; user = next) {
|
|
struct triple *use;
|
|
int found;
|
|
next = user->next;
|
|
use = user->member;
|
|
found = 0;
|
|
found |= replace_rhs_use(state, orig, new, use);
|
|
found |= replace_lhs_use(state, orig, new, use);
|
|
if (!found) {
|
|
internal_error(state, use, "use without use");
|
|
}
|
|
}
|
|
if (orig->use) {
|
|
internal_error(state, orig, "used after propogate_use");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Code generators
|
|
* ===========================
|
|
*/
|
|
|
|
static struct triple *mk_add_expr(
|
|
struct compile_state *state, struct triple *left, struct triple *right)
|
|
{
|
|
struct type *result_type;
|
|
/* Put pointer operands on the left */
|
|
if (is_pointer(right)) {
|
|
struct triple *tmp;
|
|
tmp = left;
|
|
left = right;
|
|
right = tmp;
|
|
}
|
|
left = read_expr(state, left);
|
|
right = read_expr(state, right);
|
|
result_type = ptr_arithmetic_result(state, left, right);
|
|
if (is_pointer(left)) {
|
|
right = triple(state,
|
|
is_signed(right->type)? OP_SMUL : OP_UMUL,
|
|
&ulong_type,
|
|
right,
|
|
int_const(state, &ulong_type,
|
|
size_of(state, left->type->left)));
|
|
}
|
|
return triple(state, OP_ADD, result_type, left, right);
|
|
}
|
|
|
|
static struct triple *mk_sub_expr(
|
|
struct compile_state *state, struct triple *left, struct triple *right)
|
|
{
|
|
struct type *result_type;
|
|
result_type = ptr_arithmetic_result(state, left, right);
|
|
left = read_expr(state, left);
|
|
right = read_expr(state, right);
|
|
if (is_pointer(left)) {
|
|
right = triple(state,
|
|
is_signed(right->type)? OP_SMUL : OP_UMUL,
|
|
&ulong_type,
|
|
right,
|
|
int_const(state, &ulong_type,
|
|
size_of(state, left->type->left)));
|
|
}
|
|
return triple(state, OP_SUB, result_type, left, right);
|
|
}
|
|
|
|
static struct triple *mk_pre_inc_expr(
|
|
struct compile_state *state, struct triple *def)
|
|
{
|
|
struct triple *val;
|
|
lvalue(state, def);
|
|
val = mk_add_expr(state, def, int_const(state, &int_type, 1));
|
|
return triple(state, OP_VAL, def->type,
|
|
write_expr(state, def, val),
|
|
val);
|
|
}
|
|
|
|
static struct triple *mk_pre_dec_expr(
|
|
struct compile_state *state, struct triple *def)
|
|
{
|
|
struct triple *val;
|
|
lvalue(state, def);
|
|
val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
|
|
return triple(state, OP_VAL, def->type,
|
|
write_expr(state, def, val),
|
|
val);
|
|
}
|
|
|
|
static struct triple *mk_post_inc_expr(
|
|
struct compile_state *state, struct triple *def)
|
|
{
|
|
struct triple *val;
|
|
lvalue(state, def);
|
|
val = read_expr(state, def);
|
|
return triple(state, OP_VAL, def->type,
|
|
write_expr(state, def,
|
|
mk_add_expr(state, val, int_const(state, &int_type, 1)))
|
|
, val);
|
|
}
|
|
|
|
static struct triple *mk_post_dec_expr(
|
|
struct compile_state *state, struct triple *def)
|
|
{
|
|
struct triple *val;
|
|
lvalue(state, def);
|
|
val = read_expr(state, def);
|
|
return triple(state, OP_VAL, def->type,
|
|
write_expr(state, def,
|
|
mk_sub_expr(state, val, int_const(state, &int_type, 1)))
|
|
, val);
|
|
}
|
|
|
|
static struct triple *mk_subscript_expr(
|
|
struct compile_state *state, struct triple *left, struct triple *right)
|
|
{
|
|
left = read_expr(state, left);
|
|
right = read_expr(state, right);
|
|
if (!is_pointer(left) && !is_pointer(right)) {
|
|
error(state, left, "subscripted value is not a pointer");
|
|
}
|
|
return mk_deref_expr(state, mk_add_expr(state, left, right));
|
|
}
|
|
|
|
/*
|
|
* Compile time evaluation
|
|
* ===========================
|
|
*/
|
|
static int is_const(struct triple *ins)
|
|
{
|
|
return IS_CONST_OP(ins->op);
|
|
}
|
|
|
|
static int constants_equal(struct compile_state *state,
|
|
struct triple *left, struct triple *right)
|
|
{
|
|
int equal;
|
|
if (!is_const(left) || !is_const(right)) {
|
|
equal = 0;
|
|
}
|
|
else if (left->op != right->op) {
|
|
equal = 0;
|
|
}
|
|
else if (!equiv_types(left->type, right->type)) {
|
|
equal = 0;
|
|
}
|
|
else {
|
|
equal = 0;
|
|
switch(left->op) {
|
|
case OP_INTCONST:
|
|
if (left->u.cval == right->u.cval) {
|
|
equal = 1;
|
|
}
|
|
break;
|
|
case OP_BLOBCONST:
|
|
{
|
|
size_t lsize, rsize;
|
|
lsize = size_of(state, left->type);
|
|
rsize = size_of(state, right->type);
|
|
if (lsize != rsize) {
|
|
break;
|
|
}
|
|
if (memcmp(left->u.blob, right->u.blob, lsize) == 0) {
|
|
equal = 1;
|
|
}
|
|
break;
|
|
}
|
|
case OP_ADDRCONST:
|
|
if ((MISC(left, 0) == MISC(right, 0)) &&
|
|
(left->u.cval == right->u.cval)) {
|
|
equal = 1;
|
|
}
|
|
break;
|
|
default:
|
|
internal_error(state, left, "uknown constant type");
|
|
break;
|
|
}
|
|
}
|
|
return equal;
|
|
}
|
|
|
|
static int is_zero(struct triple *ins)
|
|
{
|
|
return is_const(ins) && (ins->u.cval == 0);
|
|
}
|
|
|
|
static int is_one(struct triple *ins)
|
|
{
|
|
return is_const(ins) && (ins->u.cval == 1);
|
|
}
|
|
|
|
static long_t bsr(ulong_t value)
|
|
{
|
|
int i;
|
|
for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
|
|
ulong_t mask;
|
|
mask = 1;
|
|
mask <<= i;
|
|
if (value & mask) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static long_t bsf(ulong_t value)
|
|
{
|
|
int i;
|
|
for(i = 0; i < (sizeof(ulong_t)*8); i++) {
|
|
ulong_t mask;
|
|
mask = 1;
|
|
mask <<= 1;
|
|
if (value & mask) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static long_t log2(ulong_t value)
|
|
{
|
|
return bsr(value);
|
|
}
|
|
|
|
static long_t tlog2(struct triple *ins)
|
|
{
|
|
return log2(ins->u.cval);
|
|
}
|
|
|
|
static int is_pow2(struct triple *ins)
|
|
{
|
|
ulong_t value, mask;
|
|
long_t log;
|
|
if (!is_const(ins)) {
|
|
return 0;
|
|
}
|
|
value = ins->u.cval;
|
|
log = log2(value);
|
|
if (log == -1) {
|
|
return 0;
|
|
}
|
|
mask = 1;
|
|
mask <<= log;
|
|
return ((value & mask) == value);
|
|
}
|
|
|
|
static ulong_t read_const(struct compile_state *state,
|
|
struct triple *ins, struct triple **expr)
|
|
{
|
|
struct triple *rhs;
|
|
rhs = *expr;
|
|
switch(rhs->type->type &TYPE_MASK) {
|
|
case TYPE_CHAR:
|
|
case TYPE_SHORT:
|
|
case TYPE_INT:
|
|
case TYPE_LONG:
|
|
case TYPE_UCHAR:
|
|
case TYPE_USHORT:
|
|
case TYPE_UINT:
|
|
case TYPE_ULONG:
|
|
case TYPE_POINTER:
|
|
break;
|
|
default:
|
|
internal_error(state, rhs, "bad type to read_const\n");
|
|
break;
|
|
}
|
|
return rhs->u.cval;
|
|
}
|
|
|
|
static long_t read_sconst(struct triple *ins, struct triple **expr)
|
|
{
|
|
struct triple *rhs;
|
|
rhs = *expr;
|
|
return (long_t)(rhs->u.cval);
|
|
}
|
|
|
|
static void unuse_rhs(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct triple **expr;
|
|
expr = triple_rhs(state, ins, 0);
|
|
for(;expr;expr = triple_rhs(state, ins, expr)) {
|
|
if (*expr) {
|
|
unuse_triple(*expr, ins);
|
|
*expr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void unuse_lhs(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct triple **expr;
|
|
expr = triple_lhs(state, ins, 0);
|
|
for(;expr;expr = triple_lhs(state, ins, expr)) {
|
|
unuse_triple(*expr, ins);
|
|
*expr = 0;
|
|
}
|
|
}
|
|
|
|
static void check_lhs(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct triple **expr;
|
|
expr = triple_lhs(state, ins, 0);
|
|
for(;expr;expr = triple_lhs(state, ins, expr)) {
|
|
internal_error(state, ins, "unexpected lhs");
|
|
}
|
|
|
|
}
|
|
static void check_targ(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct triple **expr;
|
|
expr = triple_targ(state, ins, 0);
|
|
for(;expr;expr = triple_targ(state, ins, expr)) {
|
|
internal_error(state, ins, "unexpected targ");
|
|
}
|
|
}
|
|
|
|
static void wipe_ins(struct compile_state *state, struct triple *ins)
|
|
{
|
|
/* Becareful which instructions you replace the wiped
|
|
* instruction with, as there are not enough slots
|
|
* in all instructions to hold all others.
|
|
*/
|
|
check_targ(state, ins);
|
|
unuse_rhs(state, ins);
|
|
unuse_lhs(state, ins);
|
|
}
|
|
|
|
static void mkcopy(struct compile_state *state,
|
|
struct triple *ins, struct triple *rhs)
|
|
{
|
|
wipe_ins(state, ins);
|
|
ins->op = OP_COPY;
|
|
ins->sizes = TRIPLE_SIZES(0, 1, 0, 0);
|
|
RHS(ins, 0) = rhs;
|
|
use_triple(RHS(ins, 0), ins);
|
|
}
|
|
|
|
static void mkconst(struct compile_state *state,
|
|
struct triple *ins, ulong_t value)
|
|
{
|
|
if (!is_integral(ins) && !is_pointer(ins)) {
|
|
internal_error(state, ins, "unknown type to make constant\n");
|
|
}
|
|
wipe_ins(state, ins);
|
|
ins->op = OP_INTCONST;
|
|
ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
|
|
ins->u.cval = value;
|
|
}
|
|
|
|
static void mkaddr_const(struct compile_state *state,
|
|
struct triple *ins, struct triple *sdecl, ulong_t value)
|
|
{
|
|
wipe_ins(state, ins);
|
|
ins->op = OP_ADDRCONST;
|
|
ins->sizes = TRIPLE_SIZES(0, 0, 1, 0);
|
|
MISC(ins, 0) = sdecl;
|
|
ins->u.cval = value;
|
|
use_triple(sdecl, ins);
|
|
}
|
|
|
|
/* Transform multicomponent variables into simple register variables */
|
|
static void flatten_structures(struct compile_state *state)
|
|
{
|
|
struct triple *ins, *first;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
/* Pass one expand structure values into valvecs.
|
|
*/
|
|
ins = first;
|
|
do {
|
|
struct triple *next;
|
|
next = ins->next;
|
|
if ((ins->type->type & TYPE_MASK) == TYPE_STRUCT) {
|
|
if (ins->op == OP_VAL_VEC) {
|
|
/* Do nothing */
|
|
}
|
|
else if ((ins->op == OP_LOAD) || (ins->op == OP_READ)) {
|
|
struct triple *def, **vector;
|
|
struct type *tptr;
|
|
int op;
|
|
ulong_t i;
|
|
|
|
op = ins->op;
|
|
def = RHS(ins, 0);
|
|
next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
|
|
ins->filename, ins->line, ins->col);
|
|
|
|
vector = &RHS(next, 0);
|
|
tptr = next->type->left;
|
|
for(i = 0; i < next->type->elements; i++) {
|
|
struct triple *sfield;
|
|
struct type *mtype;
|
|
mtype = tptr;
|
|
if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
mtype = mtype->left;
|
|
}
|
|
sfield = deref_field(state, def, mtype->field_ident);
|
|
|
|
vector[i] = triple(
|
|
state, op, mtype, sfield, 0);
|
|
vector[i]->filename = next->filename;
|
|
vector[i]->line = next->line;
|
|
vector[i]->col = next->col;
|
|
tptr = tptr->right;
|
|
}
|
|
propogate_use(state, ins, next);
|
|
flatten(state, ins, next);
|
|
free_triple(state, ins);
|
|
}
|
|
else if ((ins->op == OP_STORE) || (ins->op == OP_WRITE)) {
|
|
struct triple *src, *dst, **vector;
|
|
struct type *tptr;
|
|
int op;
|
|
ulong_t i;
|
|
|
|
op = ins->op;
|
|
src = RHS(ins, 0);
|
|
dst = LHS(ins, 0);
|
|
next = alloc_triple(state, OP_VAL_VEC, ins->type, -1, -1,
|
|
ins->filename, ins->line, ins->col);
|
|
|
|
vector = &RHS(next, 0);
|
|
tptr = next->type->left;
|
|
for(i = 0; i < ins->type->elements; i++) {
|
|
struct triple *dfield, *sfield;
|
|
struct type *mtype;
|
|
mtype = tptr;
|
|
if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
mtype = mtype->left;
|
|
}
|
|
sfield = deref_field(state, src, mtype->field_ident);
|
|
dfield = deref_field(state, dst, mtype->field_ident);
|
|
vector[i] = triple(
|
|
state, op, mtype, dfield, sfield);
|
|
vector[i]->filename = next->filename;
|
|
vector[i]->line = next->line;
|
|
vector[i]->col = next->col;
|
|
tptr = tptr->right;
|
|
}
|
|
propogate_use(state, ins, next);
|
|
flatten(state, ins, next);
|
|
free_triple(state, ins);
|
|
}
|
|
}
|
|
ins = next;
|
|
} while(ins != first);
|
|
/* Pass two flatten the valvecs.
|
|
*/
|
|
ins = first;
|
|
do {
|
|
struct triple *next;
|
|
next = ins->next;
|
|
if (ins->op == OP_VAL_VEC) {
|
|
release_triple(state, ins);
|
|
}
|
|
ins = next;
|
|
} while(ins != first);
|
|
/* Pass three verify the state and set ->id to 0.
|
|
*/
|
|
ins = first;
|
|
do {
|
|
ins->id &= ~TRIPLE_FLAG_FLATTENED;
|
|
if ((ins->type->type & TYPE_MASK) == TYPE_STRUCT) {
|
|
internal_error(state, 0, "STRUCT_TYPE remains?");
|
|
}
|
|
if (ins->op == OP_DOT) {
|
|
internal_error(state, 0, "OP_DOT remains?");
|
|
}
|
|
if (ins->op == OP_VAL_VEC) {
|
|
internal_error(state, 0, "OP_VAL_VEC remains?");
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
/* For those operations that cannot be simplified */
|
|
static void simplify_noop(struct compile_state *state, struct triple *ins)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void simplify_smul(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
|
|
struct triple *tmp;
|
|
tmp = RHS(ins, 0);
|
|
RHS(ins, 0) = RHS(ins, 1);
|
|
RHS(ins, 1) = tmp;
|
|
}
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
long_t left, right;
|
|
left = read_sconst(ins, &RHS(ins, 0));
|
|
right = read_sconst(ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left * right);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_one(RHS(ins, 1))) {
|
|
mkcopy(state, ins, RHS(ins, 0));
|
|
}
|
|
else if (is_pow2(RHS(ins, 1))) {
|
|
struct triple *val;
|
|
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
|
|
ins->op = OP_SL;
|
|
insert_triple(state, ins, val);
|
|
unuse_triple(RHS(ins, 1), ins);
|
|
use_triple(val, ins);
|
|
RHS(ins, 1) = val;
|
|
}
|
|
}
|
|
|
|
static void simplify_umul(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
|
|
struct triple *tmp;
|
|
tmp = RHS(ins, 0);
|
|
RHS(ins, 0) = RHS(ins, 1);
|
|
RHS(ins, 1) = tmp;
|
|
}
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left * right);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_one(RHS(ins, 1))) {
|
|
mkcopy(state, ins, RHS(ins, 0));
|
|
}
|
|
else if (is_pow2(RHS(ins, 1))) {
|
|
struct triple *val;
|
|
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
|
|
ins->op = OP_SL;
|
|
insert_triple(state, ins, val);
|
|
unuse_triple(RHS(ins, 1), ins);
|
|
use_triple(val, ins);
|
|
RHS(ins, 1) = val;
|
|
}
|
|
}
|
|
|
|
static void simplify_sdiv(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
long_t left, right;
|
|
left = read_sconst(ins, &RHS(ins, 0));
|
|
right = read_sconst(ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left / right);
|
|
}
|
|
else if (is_zero(RHS(ins, 0))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
error(state, ins, "division by zero");
|
|
}
|
|
else if (is_one(RHS(ins, 1))) {
|
|
mkcopy(state, ins, RHS(ins, 0));
|
|
}
|
|
else if (is_pow2(RHS(ins, 1))) {
|
|
struct triple *val;
|
|
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
|
|
ins->op = OP_SSR;
|
|
insert_triple(state, ins, val);
|
|
unuse_triple(RHS(ins, 1), ins);
|
|
use_triple(val, ins);
|
|
RHS(ins, 1) = val;
|
|
}
|
|
}
|
|
|
|
static void simplify_udiv(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left / right);
|
|
}
|
|
else if (is_zero(RHS(ins, 0))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
error(state, ins, "division by zero");
|
|
}
|
|
else if (is_one(RHS(ins, 1))) {
|
|
mkcopy(state, ins, RHS(ins, 0));
|
|
}
|
|
else if (is_pow2(RHS(ins, 1))) {
|
|
struct triple *val;
|
|
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
|
|
ins->op = OP_USR;
|
|
insert_triple(state, ins, val);
|
|
unuse_triple(RHS(ins, 1), ins);
|
|
use_triple(val, ins);
|
|
RHS(ins, 1) = val;
|
|
}
|
|
}
|
|
|
|
static void simplify_smod(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
long_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left % right);
|
|
}
|
|
else if (is_zero(RHS(ins, 0))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
error(state, ins, "division by zero");
|
|
}
|
|
else if (is_one(RHS(ins, 1))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_pow2(RHS(ins, 1))) {
|
|
struct triple *val;
|
|
val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
|
|
ins->op = OP_AND;
|
|
insert_triple(state, ins, val);
|
|
unuse_triple(RHS(ins, 1), ins);
|
|
use_triple(val, ins);
|
|
RHS(ins, 1) = val;
|
|
}
|
|
}
|
|
static void simplify_umod(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left % right);
|
|
}
|
|
else if (is_zero(RHS(ins, 0))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
error(state, ins, "division by zero");
|
|
}
|
|
else if (is_one(RHS(ins, 1))) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
else if (is_pow2(RHS(ins, 1))) {
|
|
struct triple *val;
|
|
val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
|
|
ins->op = OP_AND;
|
|
insert_triple(state, ins, val);
|
|
unuse_triple(RHS(ins, 1), ins);
|
|
use_triple(val, ins);
|
|
RHS(ins, 1) = val;
|
|
}
|
|
}
|
|
|
|
static void simplify_add(struct compile_state *state, struct triple *ins)
|
|
{
|
|
/* start with the pointer on the left */
|
|
if (is_pointer(RHS(ins, 1))) {
|
|
struct triple *tmp;
|
|
tmp = RHS(ins, 0);
|
|
RHS(ins, 0) = RHS(ins, 1);
|
|
RHS(ins, 1) = tmp;
|
|
}
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
if (!is_pointer(RHS(ins, 0))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left + right);
|
|
}
|
|
else /* op == OP_ADDRCONST */ {
|
|
struct triple *sdecl;
|
|
ulong_t left, right;
|
|
sdecl = MISC(RHS(ins, 0), 0);
|
|
left = RHS(ins, 0)->u.cval;
|
|
right = RHS(ins, 1)->u.cval;
|
|
mkaddr_const(state, ins, sdecl, left + right);
|
|
}
|
|
}
|
|
else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
|
|
struct triple *tmp;
|
|
tmp = RHS(ins, 1);
|
|
RHS(ins, 1) = RHS(ins, 0);
|
|
RHS(ins, 0) = tmp;
|
|
}
|
|
}
|
|
|
|
static void simplify_sub(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
if (!is_pointer(RHS(ins, 0))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left - right);
|
|
}
|
|
else /* op == OP_ADDRCONST */ {
|
|
struct triple *sdecl;
|
|
ulong_t left, right;
|
|
sdecl = MISC(RHS(ins, 0), 0);
|
|
left = RHS(ins, 0)->u.cval;
|
|
right = RHS(ins, 1)->u.cval;
|
|
mkaddr_const(state, ins, sdecl, left - right);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void simplify_sl(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 1))) {
|
|
ulong_t right;
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
if (right >= (size_of(state, ins->type)*8)) {
|
|
warning(state, ins, "left shift count >= width of type");
|
|
}
|
|
}
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left << right);
|
|
}
|
|
}
|
|
|
|
static void simplify_usr(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 1))) {
|
|
ulong_t right;
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
if (right >= (size_of(state, ins->type)*8)) {
|
|
warning(state, ins, "right shift count >= width of type");
|
|
}
|
|
}
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left >> right);
|
|
}
|
|
}
|
|
|
|
static void simplify_ssr(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 1))) {
|
|
ulong_t right;
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
if (right >= (size_of(state, ins->type)*8)) {
|
|
warning(state, ins, "right shift count >= width of type");
|
|
}
|
|
}
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
long_t left, right;
|
|
left = read_sconst(ins, &RHS(ins, 0));
|
|
right = read_sconst(ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left >> right);
|
|
}
|
|
}
|
|
|
|
static void simplify_and(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left & right);
|
|
}
|
|
}
|
|
|
|
static void simplify_or(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left | right);
|
|
}
|
|
}
|
|
|
|
static void simplify_xor(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left ^ right);
|
|
}
|
|
}
|
|
|
|
static void simplify_pos(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
mkconst(state, ins, RHS(ins, 0)->u.cval);
|
|
}
|
|
else {
|
|
mkcopy(state, ins, RHS(ins, 0));
|
|
}
|
|
}
|
|
|
|
static void simplify_neg(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
ulong_t left;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
mkconst(state, ins, -left);
|
|
}
|
|
else if (RHS(ins, 0)->op == OP_NEG) {
|
|
mkcopy(state, ins, RHS(RHS(ins, 0), 0));
|
|
}
|
|
}
|
|
|
|
static void simplify_invert(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
ulong_t left;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
mkconst(state, ins, ~left);
|
|
}
|
|
}
|
|
|
|
static void simplify_eq(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left == right);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
}
|
|
|
|
static void simplify_noteq(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left != right);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
}
|
|
|
|
static void simplify_sless(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
long_t left, right;
|
|
left = read_sconst(ins, &RHS(ins, 0));
|
|
right = read_sconst(ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left < right);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
}
|
|
|
|
static void simplify_uless(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left < right);
|
|
}
|
|
else if (is_zero(RHS(ins, 0))) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
}
|
|
|
|
static void simplify_smore(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
long_t left, right;
|
|
left = read_sconst(ins, &RHS(ins, 0));
|
|
right = read_sconst(ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left > right);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
}
|
|
|
|
static void simplify_umore(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left > right);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 0);
|
|
}
|
|
}
|
|
|
|
|
|
static void simplify_slesseq(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
long_t left, right;
|
|
left = read_sconst(ins, &RHS(ins, 0));
|
|
right = read_sconst(ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left <= right);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
}
|
|
|
|
static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left <= right);
|
|
}
|
|
else if (is_zero(RHS(ins, 0))) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
}
|
|
|
|
static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 0))) {
|
|
long_t left, right;
|
|
left = read_sconst(ins, &RHS(ins, 0));
|
|
right = read_sconst(ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left >= right);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
}
|
|
|
|
static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
|
|
ulong_t left, right;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
right = read_const(state, ins, &RHS(ins, 1));
|
|
mkconst(state, ins, left >= right);
|
|
}
|
|
else if (is_zero(RHS(ins, 1))) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
else if (RHS(ins, 0) == RHS(ins, 1)) {
|
|
mkconst(state, ins, 1);
|
|
}
|
|
}
|
|
|
|
static void simplify_lfalse(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
ulong_t left;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
mkconst(state, ins, left == 0);
|
|
}
|
|
/* Otherwise if I am the only user... */
|
|
else if ((RHS(ins, 0)->use->member == ins) && (RHS(ins, 0)->use->next == 0)) {
|
|
int need_copy = 1;
|
|
/* Invert a boolean operation */
|
|
switch(RHS(ins, 0)->op) {
|
|
case OP_LTRUE: RHS(ins, 0)->op = OP_LFALSE; break;
|
|
case OP_LFALSE: RHS(ins, 0)->op = OP_LTRUE; break;
|
|
case OP_EQ: RHS(ins, 0)->op = OP_NOTEQ; break;
|
|
case OP_NOTEQ: RHS(ins, 0)->op = OP_EQ; break;
|
|
case OP_SLESS: RHS(ins, 0)->op = OP_SMOREEQ; break;
|
|
case OP_ULESS: RHS(ins, 0)->op = OP_UMOREEQ; break;
|
|
case OP_SMORE: RHS(ins, 0)->op = OP_SLESSEQ; break;
|
|
case OP_UMORE: RHS(ins, 0)->op = OP_ULESSEQ; break;
|
|
case OP_SLESSEQ: RHS(ins, 0)->op = OP_SMORE; break;
|
|
case OP_ULESSEQ: RHS(ins, 0)->op = OP_UMORE; break;
|
|
case OP_SMOREEQ: RHS(ins, 0)->op = OP_SLESS; break;
|
|
case OP_UMOREEQ: RHS(ins, 0)->op = OP_ULESS; break;
|
|
default:
|
|
need_copy = 0;
|
|
break;
|
|
}
|
|
if (need_copy) {
|
|
mkcopy(state, ins, RHS(ins, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void simplify_ltrue (struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
ulong_t left;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
mkconst(state, ins, left != 0);
|
|
}
|
|
else switch(RHS(ins, 0)->op) {
|
|
case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
|
|
case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
|
|
case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
|
|
mkcopy(state, ins, RHS(ins, 0));
|
|
}
|
|
|
|
}
|
|
|
|
static void simplify_copy(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
switch(RHS(ins, 0)->op) {
|
|
case OP_INTCONST:
|
|
{
|
|
ulong_t left;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
mkconst(state, ins, left);
|
|
break;
|
|
}
|
|
case OP_ADDRCONST:
|
|
{
|
|
struct triple *sdecl;
|
|
ulong_t offset;
|
|
sdecl = MISC(RHS(ins, 0), 0);
|
|
offset = RHS(ins, 0)->u.cval;
|
|
mkaddr_const(state, ins, sdecl, offset);
|
|
break;
|
|
}
|
|
default:
|
|
internal_error(state, ins, "uknown constant");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void simplify_branch(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct block *block;
|
|
if (ins->op != OP_BRANCH) {
|
|
internal_error(state, ins, "not branch");
|
|
}
|
|
if (ins->use != 0) {
|
|
internal_error(state, ins, "branch use");
|
|
}
|
|
#warning "FIXME implement simplify branch."
|
|
/* The challenge here with simplify branch is that I need to
|
|
* make modifications to the control flow graph as well
|
|
* as to the branch instruction itself.
|
|
*/
|
|
block = ins->u.block;
|
|
|
|
if (TRIPLE_RHS(ins->sizes) && is_const(RHS(ins, 0))) {
|
|
struct triple *targ;
|
|
ulong_t value;
|
|
value = read_const(state, ins, &RHS(ins, 0));
|
|
unuse_triple(RHS(ins, 0), ins);
|
|
targ = TARG(ins, 0);
|
|
ins->sizes = TRIPLE_SIZES(0, 0, 0, 1);
|
|
if (value) {
|
|
unuse_triple(ins->next, ins);
|
|
TARG(ins, 0) = targ;
|
|
}
|
|
else {
|
|
unuse_triple(targ, ins);
|
|
TARG(ins, 0) = ins->next;
|
|
}
|
|
#warning "FIXME handle the case of making a branch unconditional"
|
|
}
|
|
if (TARG(ins, 0) == ins->next) {
|
|
unuse_triple(ins->next, ins);
|
|
if (TRIPLE_RHS(ins->sizes)) {
|
|
unuse_triple(RHS(ins, 0), ins);
|
|
unuse_triple(ins->next, ins);
|
|
}
|
|
ins->sizes = TRIPLE_SIZES(0, 0, 0, 0);
|
|
ins->op = OP_NOOP;
|
|
if (ins->use) {
|
|
internal_error(state, ins, "noop use != 0");
|
|
}
|
|
#warning "FIXME handle the case of killing a branch"
|
|
}
|
|
}
|
|
|
|
static void simplify_phi(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct triple **expr;
|
|
ulong_t value;
|
|
expr = triple_rhs(state, ins, 0);
|
|
if (!*expr || !is_const(*expr)) {
|
|
return;
|
|
}
|
|
value = read_const(state, ins, expr);
|
|
for(;expr;expr = triple_rhs(state, ins, expr)) {
|
|
if (!*expr || !is_const(*expr)) {
|
|
return;
|
|
}
|
|
if (value != read_const(state, ins, expr)) {
|
|
return;
|
|
}
|
|
}
|
|
mkconst(state, ins, value);
|
|
}
|
|
|
|
|
|
static void simplify_bsf(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
ulong_t left;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
mkconst(state, ins, bsf(left));
|
|
}
|
|
}
|
|
|
|
static void simplify_bsr(struct compile_state *state, struct triple *ins)
|
|
{
|
|
if (is_const(RHS(ins, 0))) {
|
|
ulong_t left;
|
|
left = read_const(state, ins, &RHS(ins, 0));
|
|
mkconst(state, ins, bsr(left));
|
|
}
|
|
}
|
|
|
|
|
|
typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
|
|
static const simplify_t table_simplify[] = {
|
|
#if 0
|
|
#define simplify_smul simplify_noop
|
|
#define simplify_umul simplify_noop
|
|
#define simplify_sdiv simplify_noop
|
|
#define simplify_udiv simplify_noop
|
|
#define simplify_smod simplify_noop
|
|
#define simplify_umod simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_add simplify_noop
|
|
#define simplify_sub simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_sl simplify_noop
|
|
#define simplify_usr simplify_noop
|
|
#define simplify_ssr simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_and simplify_noop
|
|
#define simplify_xor simplify_noop
|
|
#define simplify_or simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_pos simplify_noop
|
|
#define simplify_neg simplify_noop
|
|
#define simplify_invert simplify_noop
|
|
#endif
|
|
|
|
#if 0
|
|
#define simplify_eq simplify_noop
|
|
#define simplify_noteq simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_sless simplify_noop
|
|
#define simplify_uless simplify_noop
|
|
#define simplify_smore simplify_noop
|
|
#define simplify_umore simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_slesseq simplify_noop
|
|
#define simplify_ulesseq simplify_noop
|
|
#define simplify_smoreeq simplify_noop
|
|
#define simplify_umoreeq simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_lfalse simplify_noop
|
|
#endif
|
|
#if 0
|
|
#define simplify_ltrue simplify_noop
|
|
#endif
|
|
|
|
#if 0
|
|
#define simplify_copy simplify_noop
|
|
#endif
|
|
|
|
#if 0
|
|
#define simplify_branch simplify_noop
|
|
#endif
|
|
|
|
#if 0
|
|
#define simplify_phi simplify_noop
|
|
#endif
|
|
|
|
#if 0
|
|
#define simplify_bsf simplify_noop
|
|
#define simplify_bsr simplify_noop
|
|
#endif
|
|
|
|
[OP_SMUL ] = simplify_smul,
|
|
[OP_UMUL ] = simplify_umul,
|
|
[OP_SDIV ] = simplify_sdiv,
|
|
[OP_UDIV ] = simplify_udiv,
|
|
[OP_SMOD ] = simplify_smod,
|
|
[OP_UMOD ] = simplify_umod,
|
|
[OP_ADD ] = simplify_add,
|
|
[OP_SUB ] = simplify_sub,
|
|
[OP_SL ] = simplify_sl,
|
|
[OP_USR ] = simplify_usr,
|
|
[OP_SSR ] = simplify_ssr,
|
|
[OP_AND ] = simplify_and,
|
|
[OP_XOR ] = simplify_xor,
|
|
[OP_OR ] = simplify_or,
|
|
[OP_POS ] = simplify_pos,
|
|
[OP_NEG ] = simplify_neg,
|
|
[OP_INVERT ] = simplify_invert,
|
|
|
|
[OP_EQ ] = simplify_eq,
|
|
[OP_NOTEQ ] = simplify_noteq,
|
|
[OP_SLESS ] = simplify_sless,
|
|
[OP_ULESS ] = simplify_uless,
|
|
[OP_SMORE ] = simplify_smore,
|
|
[OP_UMORE ] = simplify_umore,
|
|
[OP_SLESSEQ ] = simplify_slesseq,
|
|
[OP_ULESSEQ ] = simplify_ulesseq,
|
|
[OP_SMOREEQ ] = simplify_smoreeq,
|
|
[OP_UMOREEQ ] = simplify_umoreeq,
|
|
[OP_LFALSE ] = simplify_lfalse,
|
|
[OP_LTRUE ] = simplify_ltrue,
|
|
|
|
[OP_LOAD ] = simplify_noop,
|
|
[OP_STORE ] = simplify_noop,
|
|
|
|
[OP_NOOP ] = simplify_noop,
|
|
|
|
[OP_INTCONST ] = simplify_noop,
|
|
[OP_BLOBCONST ] = simplify_noop,
|
|
[OP_ADDRCONST ] = simplify_noop,
|
|
|
|
[OP_WRITE ] = simplify_noop,
|
|
[OP_READ ] = simplify_noop,
|
|
[OP_COPY ] = simplify_copy,
|
|
[OP_PIECE ] = simplify_noop,
|
|
[OP_ASM ] = simplify_noop,
|
|
|
|
[OP_DOT ] = simplify_noop,
|
|
[OP_VAL_VEC ] = simplify_noop,
|
|
|
|
[OP_LIST ] = simplify_noop,
|
|
[OP_BRANCH ] = simplify_branch,
|
|
[OP_LABEL ] = simplify_noop,
|
|
[OP_ADECL ] = simplify_noop,
|
|
[OP_SDECL ] = simplify_noop,
|
|
[OP_PHI ] = simplify_phi,
|
|
|
|
[OP_INB ] = simplify_noop,
|
|
[OP_INW ] = simplify_noop,
|
|
[OP_INL ] = simplify_noop,
|
|
[OP_OUTB ] = simplify_noop,
|
|
[OP_OUTW ] = simplify_noop,
|
|
[OP_OUTL ] = simplify_noop,
|
|
[OP_BSF ] = simplify_bsf,
|
|
[OP_BSR ] = simplify_bsr,
|
|
[OP_RDMSR ] = simplify_noop,
|
|
[OP_WRMSR ] = simplify_noop,
|
|
[OP_HLT ] = simplify_noop,
|
|
};
|
|
|
|
static void simplify(struct compile_state *state, struct triple *ins)
|
|
{
|
|
int op;
|
|
simplify_t do_simplify;
|
|
do {
|
|
op = ins->op;
|
|
do_simplify = 0;
|
|
if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
|
|
do_simplify = 0;
|
|
}
|
|
else {
|
|
do_simplify = table_simplify[op];
|
|
}
|
|
if (!do_simplify) {
|
|
internal_error(state, ins, "cannot simplify op: %d %s\n",
|
|
op, tops(op));
|
|
return;
|
|
}
|
|
do_simplify(state, ins);
|
|
} while(ins->op != op);
|
|
}
|
|
|
|
static void simplify_all(struct compile_state *state)
|
|
{
|
|
struct triple *ins, *first;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
simplify(state, ins);
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
/*
|
|
* Builtins....
|
|
* ============================
|
|
*/
|
|
|
|
static void register_builtin_function(struct compile_state *state,
|
|
const char *name, int op, struct type *rtype, ...)
|
|
{
|
|
struct type *ftype, *atype, *param, **next;
|
|
struct triple *def, *arg, *result, *work, *last, *first;
|
|
struct hash_entry *ident;
|
|
struct file_state file;
|
|
int parameters;
|
|
int name_len;
|
|
va_list args;
|
|
int i;
|
|
|
|
/* Dummy file state to get debug handling right */
|
|
memset(&file, 0, sizeof(file));
|
|
file.basename = name;
|
|
file.line = 1;
|
|
file.prev = state->file;
|
|
state->file = &file;
|
|
|
|
/* Find the Parameter count */
|
|
valid_op(state, op);
|
|
parameters = table_ops[op].rhs;
|
|
if (parameters < 0 ) {
|
|
internal_error(state, 0, "Invalid builtin parameter count");
|
|
}
|
|
|
|
/* Find the function type */
|
|
ftype = new_type(TYPE_FUNCTION, rtype, 0);
|
|
next = &ftype->right;
|
|
va_start(args, rtype);
|
|
for(i = 0; i < parameters; i++) {
|
|
atype = va_arg(args, struct type *);
|
|
if (!*next) {
|
|
*next = atype;
|
|
} else {
|
|
*next = new_type(TYPE_PRODUCT, *next, atype);
|
|
next = &((*next)->right);
|
|
}
|
|
}
|
|
if (!*next) {
|
|
*next = &void_type;
|
|
}
|
|
va_end(args);
|
|
|
|
/* Generate the needed triples */
|
|
def = triple(state, OP_LIST, ftype, 0, 0);
|
|
first = label(state);
|
|
RHS(def, 0) = first;
|
|
|
|
/* Now string them together */
|
|
param = ftype->right;
|
|
for(i = 0; i < parameters; i++) {
|
|
if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
atype = param->left;
|
|
} else {
|
|
atype = param;
|
|
}
|
|
arg = flatten(state, first, variable(state, atype));
|
|
param = param->right;
|
|
}
|
|
result = 0;
|
|
if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
|
|
result = flatten(state, first, variable(state, rtype));
|
|
}
|
|
MISC(def, 0) = result;
|
|
work = new_triple(state, op, rtype, -1, parameters);
|
|
for(i = 0, arg = first->next; i < parameters; i++, arg = arg->next) {
|
|
RHS(work, i) = read_expr(state, arg);
|
|
}
|
|
if (result && ((rtype->type & TYPE_MASK) == TYPE_STRUCT)) {
|
|
struct triple *val;
|
|
/* Populate the LHS with the target registers */
|
|
work = flatten(state, first, work);
|
|
work->type = &void_type;
|
|
param = rtype->left;
|
|
if (rtype->elements != TRIPLE_LHS(work->sizes)) {
|
|
internal_error(state, 0, "Invalid result type");
|
|
}
|
|
val = new_triple(state, OP_VAL_VEC, rtype, -1, -1);
|
|
for(i = 0; i < rtype->elements; i++) {
|
|
struct triple *piece;
|
|
atype = param;
|
|
if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
atype = param->left;
|
|
}
|
|
if (!TYPE_ARITHMETIC(atype->type) &&
|
|
!TYPE_PTR(atype->type)) {
|
|
internal_error(state, 0, "Invalid lhs type");
|
|
}
|
|
piece = triple(state, OP_PIECE, atype, work, 0);
|
|
piece->u.cval = i;
|
|
LHS(work, i) = piece;
|
|
RHS(val, i) = piece;
|
|
}
|
|
work = val;
|
|
}
|
|
if (result) {
|
|
work = write_expr(state, result, work);
|
|
}
|
|
work = flatten(state, first, work);
|
|
last = flatten(state, first, label(state));
|
|
name_len = strlen(name);
|
|
ident = lookup(state, name, name_len);
|
|
symbol(state, ident, &ident->sym_ident, def, ftype);
|
|
|
|
state->file = file.prev;
|
|
#if 0
|
|
fprintf(stdout, "\n");
|
|
loc(stdout, state, 0);
|
|
fprintf(stdout, "\n__________ builtin_function _________\n");
|
|
print_triple(state, def);
|
|
fprintf(stdout, "__________ builtin_function _________ done\n\n");
|
|
#endif
|
|
}
|
|
|
|
static struct type *partial_struct(struct compile_state *state,
|
|
const char *field_name, struct type *type, struct type *rest)
|
|
{
|
|
struct hash_entry *field_ident;
|
|
struct type *result;
|
|
int field_name_len;
|
|
|
|
field_name_len = strlen(field_name);
|
|
field_ident = lookup(state, field_name, field_name_len);
|
|
|
|
result = clone_type(0, type);
|
|
result->field_ident = field_ident;
|
|
|
|
if (rest) {
|
|
result = new_type(TYPE_PRODUCT, result, rest);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static struct type *register_builtin_type(struct compile_state *state,
|
|
const char *name, struct type *type)
|
|
{
|
|
struct hash_entry *ident;
|
|
int name_len;
|
|
|
|
name_len = strlen(name);
|
|
ident = lookup(state, name, name_len);
|
|
|
|
if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
ulong_t elements = 0;
|
|
struct type *field;
|
|
type = new_type(TYPE_STRUCT, type, 0);
|
|
field = type->left;
|
|
while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
elements++;
|
|
field = field->right;
|
|
}
|
|
elements++;
|
|
symbol(state, ident, &ident->sym_struct, 0, type);
|
|
type->type_ident = ident;
|
|
type->elements = elements;
|
|
}
|
|
symbol(state, ident, &ident->sym_ident, 0, type);
|
|
ident->tok = TOK_TYPE_NAME;
|
|
return type;
|
|
}
|
|
|
|
|
|
static void register_builtins(struct compile_state *state)
|
|
{
|
|
struct type *msr_type;
|
|
|
|
register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type,
|
|
&ushort_type);
|
|
register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
|
|
&ushort_type);
|
|
register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,
|
|
&ushort_type);
|
|
|
|
register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type,
|
|
&uchar_type, &ushort_type);
|
|
register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type,
|
|
&ushort_type, &ushort_type);
|
|
register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type,
|
|
&uint_type, &ushort_type);
|
|
|
|
register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type,
|
|
&int_type);
|
|
register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type,
|
|
&int_type);
|
|
|
|
msr_type = register_builtin_type(state, "__builtin_msr_t",
|
|
partial_struct(state, "lo", &ulong_type,
|
|
partial_struct(state, "hi", &ulong_type, 0)));
|
|
|
|
register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
|
|
&ulong_type);
|
|
register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
|
|
&ulong_type, &ulong_type, &ulong_type);
|
|
|
|
register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type,
|
|
&void_type);
|
|
}
|
|
|
|
static struct type *declarator(
|
|
struct compile_state *state, struct type *type,
|
|
struct hash_entry **ident, int need_ident);
|
|
static void decl(struct compile_state *state, struct triple *first);
|
|
static struct type *specifier_qualifier_list(struct compile_state *state);
|
|
static int isdecl_specifier(int tok);
|
|
static struct type *decl_specifiers(struct compile_state *state);
|
|
static int istype(int tok);
|
|
static struct triple *expr(struct compile_state *state);
|
|
static struct triple *assignment_expr(struct compile_state *state);
|
|
static struct type *type_name(struct compile_state *state);
|
|
static void statement(struct compile_state *state, struct triple *fist);
|
|
|
|
static struct triple *call_expr(
|
|
struct compile_state *state, struct triple *func)
|
|
{
|
|
struct triple *def;
|
|
struct type *param, *type;
|
|
ulong_t pvals, index;
|
|
|
|
if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
|
|
error(state, 0, "Called object is not a function");
|
|
}
|
|
if (func->op != OP_LIST) {
|
|
internal_error(state, 0, "improper function");
|
|
}
|
|
eat(state, TOK_LPAREN);
|
|
/* Find the return type without any specifiers */
|
|
type = clone_type(0, func->type->left);
|
|
def = new_triple(state, OP_CALL, func->type, -1, -1);
|
|
def->type = type;
|
|
|
|
pvals = TRIPLE_RHS(def->sizes);
|
|
MISC(def, 0) = func;
|
|
|
|
param = func->type->right;
|
|
for(index = 0; index < pvals; index++) {
|
|
struct triple *val;
|
|
struct type *arg_type;
|
|
val = read_expr(state, assignment_expr(state));
|
|
arg_type = param;
|
|
if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
arg_type = param->left;
|
|
}
|
|
write_compatible(state, arg_type, val->type);
|
|
RHS(def, index) = val;
|
|
if (index != (pvals - 1)) {
|
|
eat(state, TOK_COMMA);
|
|
param = param->right;
|
|
}
|
|
}
|
|
eat(state, TOK_RPAREN);
|
|
return def;
|
|
}
|
|
|
|
|
|
static struct triple *character_constant(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
struct token *tk;
|
|
const signed char *str, *end;
|
|
int c;
|
|
int str_len;
|
|
eat(state, TOK_LIT_CHAR);
|
|
tk = &state->token[0];
|
|
str = tk->val.str + 1;
|
|
str_len = tk->str_len - 2;
|
|
if (str_len <= 0) {
|
|
error(state, 0, "empty character constant");
|
|
}
|
|
end = str + str_len;
|
|
c = char_value(state, &str, end);
|
|
if (str != end) {
|
|
error(state, 0, "multibyte character constant not supported");
|
|
}
|
|
def = int_const(state, &char_type, (ulong_t)((long_t)c));
|
|
return def;
|
|
}
|
|
|
|
static struct triple *string_constant(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
struct token *tk;
|
|
struct type *type;
|
|
const signed char *str, *end;
|
|
signed char *buf, *ptr;
|
|
int str_len;
|
|
|
|
buf = 0;
|
|
type = new_type(TYPE_ARRAY, &char_type, 0);
|
|
type->elements = 0;
|
|
/* The while loop handles string concatenation */
|
|
do {
|
|
eat(state, TOK_LIT_STRING);
|
|
tk = &state->token[0];
|
|
str = tk->val.str + 1;
|
|
str_len = tk->str_len - 2;
|
|
if (str_len < 0) {
|
|
error(state, 0, "negative string constant length");
|
|
}
|
|
end = str + str_len;
|
|
ptr = buf;
|
|
buf = xmalloc(type->elements + str_len + 1, "string_constant");
|
|
memcpy(buf, ptr, type->elements);
|
|
ptr = buf + type->elements;
|
|
do {
|
|
*ptr++ = char_value(state, &str, end);
|
|
} while(str < end);
|
|
type->elements = ptr - buf;
|
|
} while(peek(state) == TOK_LIT_STRING);
|
|
*ptr = '\0';
|
|
type->elements += 1;
|
|
def = triple(state, OP_BLOBCONST, type, 0, 0);
|
|
def->u.blob = buf;
|
|
return def;
|
|
}
|
|
|
|
|
|
static struct triple *integer_constant(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
unsigned long val;
|
|
struct token *tk;
|
|
char *end;
|
|
int u, l, decimal;
|
|
struct type *type;
|
|
|
|
eat(state, TOK_LIT_INT);
|
|
tk = &state->token[0];
|
|
errno = 0;
|
|
decimal = (tk->val.str[0] != '0');
|
|
val = strtoul(tk->val.str, &end, 0);
|
|
if ((val == ULONG_MAX) && (errno == ERANGE)) {
|
|
error(state, 0, "Integer constant to large");
|
|
}
|
|
u = l = 0;
|
|
if ((*end == 'u') || (*end == 'U')) {
|
|
u = 1;
|
|
end++;
|
|
}
|
|
if ((*end == 'l') || (*end == 'L')) {
|
|
l = 1;
|
|
end++;
|
|
}
|
|
if ((*end == 'u') || (*end == 'U')) {
|
|
u = 1;
|
|
end++;
|
|
}
|
|
if (*end) {
|
|
error(state, 0, "Junk at end of integer constant");
|
|
}
|
|
if (u && l) {
|
|
type = &ulong_type;
|
|
}
|
|
else if (l) {
|
|
type = &long_type;
|
|
if (!decimal && (val > LONG_MAX)) {
|
|
type = &ulong_type;
|
|
}
|
|
}
|
|
else if (u) {
|
|
type = &uint_type;
|
|
if (val > UINT_MAX) {
|
|
type = &ulong_type;
|
|
}
|
|
}
|
|
else {
|
|
type = &int_type;
|
|
if (!decimal && (val > INT_MAX) && (val <= UINT_MAX)) {
|
|
type = &uint_type;
|
|
}
|
|
else if (!decimal && (val > LONG_MAX)) {
|
|
type = &ulong_type;
|
|
}
|
|
else if (val > INT_MAX) {
|
|
type = &long_type;
|
|
}
|
|
}
|
|
def = int_const(state, type, val);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *primary_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
int tok;
|
|
tok = peek(state);
|
|
switch(tok) {
|
|
case TOK_IDENT:
|
|
{
|
|
struct hash_entry *ident;
|
|
/* Here ident is either:
|
|
* a varable name
|
|
* a function name
|
|
* an enumeration constant.
|
|
*/
|
|
eat(state, TOK_IDENT);
|
|
ident = state->token[0].ident;
|
|
if (!ident->sym_ident) {
|
|
error(state, 0, "%s undeclared", ident->name);
|
|
}
|
|
def = ident->sym_ident->def;
|
|
break;
|
|
}
|
|
case TOK_ENUM_CONST:
|
|
/* Here ident is an enumeration constant */
|
|
eat(state, TOK_ENUM_CONST);
|
|
def = 0;
|
|
FINISHME();
|
|
break;
|
|
case TOK_LPAREN:
|
|
eat(state, TOK_LPAREN);
|
|
def = expr(state);
|
|
eat(state, TOK_RPAREN);
|
|
break;
|
|
case TOK_LIT_INT:
|
|
def = integer_constant(state);
|
|
break;
|
|
case TOK_LIT_FLOAT:
|
|
eat(state, TOK_LIT_FLOAT);
|
|
error(state, 0, "Floating point constants not supported");
|
|
def = 0;
|
|
FINISHME();
|
|
break;
|
|
case TOK_LIT_CHAR:
|
|
def = character_constant(state);
|
|
break;
|
|
case TOK_LIT_STRING:
|
|
def = string_constant(state);
|
|
break;
|
|
default:
|
|
def = 0;
|
|
error(state, 0, "Unexpected token: %s\n", tokens[tok]);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *postfix_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
int postfix;
|
|
def = primary_expr(state);
|
|
do {
|
|
struct triple *left;
|
|
int tok;
|
|
postfix = 1;
|
|
left = def;
|
|
switch((tok = peek(state))) {
|
|
case TOK_LBRACKET:
|
|
eat(state, TOK_LBRACKET);
|
|
def = mk_subscript_expr(state, left, expr(state));
|
|
eat(state, TOK_RBRACKET);
|
|
break;
|
|
case TOK_LPAREN:
|
|
def = call_expr(state, def);
|
|
break;
|
|
case TOK_DOT:
|
|
{
|
|
struct hash_entry *field;
|
|
eat(state, TOK_DOT);
|
|
eat(state, TOK_IDENT);
|
|
field = state->token[0].ident;
|
|
def = deref_field(state, def, field);
|
|
break;
|
|
}
|
|
case TOK_ARROW:
|
|
{
|
|
struct hash_entry *field;
|
|
eat(state, TOK_ARROW);
|
|
eat(state, TOK_IDENT);
|
|
field = state->token[0].ident;
|
|
def = mk_deref_expr(state, read_expr(state, def));
|
|
def = deref_field(state, def, field);
|
|
break;
|
|
}
|
|
case TOK_PLUSPLUS:
|
|
eat(state, TOK_PLUSPLUS);
|
|
def = mk_post_inc_expr(state, left);
|
|
break;
|
|
case TOK_MINUSMINUS:
|
|
eat(state, TOK_MINUSMINUS);
|
|
def = mk_post_dec_expr(state, left);
|
|
break;
|
|
default:
|
|
postfix = 0;
|
|
break;
|
|
}
|
|
} while(postfix);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *cast_expr(struct compile_state *state);
|
|
|
|
static struct triple *unary_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def, *right;
|
|
int tok;
|
|
switch((tok = peek(state))) {
|
|
case TOK_PLUSPLUS:
|
|
eat(state, TOK_PLUSPLUS);
|
|
def = mk_pre_inc_expr(state, unary_expr(state));
|
|
break;
|
|
case TOK_MINUSMINUS:
|
|
eat(state, TOK_MINUSMINUS);
|
|
def = mk_pre_dec_expr(state, unary_expr(state));
|
|
break;
|
|
case TOK_AND:
|
|
eat(state, TOK_AND);
|
|
def = mk_addr_expr(state, cast_expr(state), 0);
|
|
break;
|
|
case TOK_STAR:
|
|
eat(state, TOK_STAR);
|
|
def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
|
|
break;
|
|
case TOK_PLUS:
|
|
eat(state, TOK_PLUS);
|
|
right = read_expr(state, cast_expr(state));
|
|
arithmetic(state, right);
|
|
def = integral_promotion(state, right);
|
|
break;
|
|
case TOK_MINUS:
|
|
eat(state, TOK_MINUS);
|
|
right = read_expr(state, cast_expr(state));
|
|
arithmetic(state, right);
|
|
def = integral_promotion(state, right);
|
|
def = triple(state, OP_NEG, def->type, def, 0);
|
|
break;
|
|
case TOK_TILDE:
|
|
eat(state, TOK_TILDE);
|
|
right = read_expr(state, cast_expr(state));
|
|
integral(state, right);
|
|
def = integral_promotion(state, right);
|
|
def = triple(state, OP_INVERT, def->type, def, 0);
|
|
break;
|
|
case TOK_BANG:
|
|
eat(state, TOK_BANG);
|
|
right = read_expr(state, cast_expr(state));
|
|
bool(state, right);
|
|
def = lfalse_expr(state, right);
|
|
break;
|
|
case TOK_SIZEOF:
|
|
{
|
|
struct type *type;
|
|
int tok1, tok2;
|
|
eat(state, TOK_SIZEOF);
|
|
tok1 = peek(state);
|
|
tok2 = peek2(state);
|
|
if ((tok1 == TOK_LPAREN) && istype(tok2)) {
|
|
eat(state, TOK_LPAREN);
|
|
type = type_name(state);
|
|
eat(state, TOK_RPAREN);
|
|
}
|
|
else {
|
|
struct triple *expr;
|
|
expr = unary_expr(state);
|
|
type = expr->type;
|
|
release_expr(state, expr);
|
|
}
|
|
def = int_const(state, &ulong_type, size_of(state, type));
|
|
break;
|
|
}
|
|
case TOK_ALIGNOF:
|
|
{
|
|
struct type *type;
|
|
int tok1, tok2;
|
|
eat(state, TOK_ALIGNOF);
|
|
tok1 = peek(state);
|
|
tok2 = peek2(state);
|
|
if ((tok1 == TOK_LPAREN) && istype(tok2)) {
|
|
eat(state, TOK_LPAREN);
|
|
type = type_name(state);
|
|
eat(state, TOK_RPAREN);
|
|
}
|
|
else {
|
|
struct triple *expr;
|
|
expr = unary_expr(state);
|
|
type = expr->type;
|
|
release_expr(state, expr);
|
|
}
|
|
def = int_const(state, &ulong_type, align_of(state, type));
|
|
break;
|
|
}
|
|
default:
|
|
def = postfix_expr(state);
|
|
break;
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *cast_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
int tok1, tok2;
|
|
tok1 = peek(state);
|
|
tok2 = peek2(state);
|
|
if ((tok1 == TOK_LPAREN) && istype(tok2)) {
|
|
struct type *type;
|
|
eat(state, TOK_LPAREN);
|
|
type = type_name(state);
|
|
eat(state, TOK_RPAREN);
|
|
def = read_expr(state, cast_expr(state));
|
|
def = triple(state, OP_COPY, type, def, 0);
|
|
}
|
|
else {
|
|
def = unary_expr(state);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *mult_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
int done;
|
|
def = cast_expr(state);
|
|
do {
|
|
struct triple *left, *right;
|
|
struct type *result_type;
|
|
int tok, op, sign;
|
|
done = 0;
|
|
switch(tok = (peek(state))) {
|
|
case TOK_STAR:
|
|
case TOK_DIV:
|
|
case TOK_MOD:
|
|
left = read_expr(state, def);
|
|
arithmetic(state, left);
|
|
|
|
eat(state, tok);
|
|
|
|
right = read_expr(state, cast_expr(state));
|
|
arithmetic(state, right);
|
|
|
|
result_type = arithmetic_result(state, left, right);
|
|
sign = is_signed(result_type);
|
|
op = -1;
|
|
switch(tok) {
|
|
case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
|
|
case TOK_DIV: op = sign? OP_SDIV : OP_UDIV; break;
|
|
case TOK_MOD: op = sign? OP_SMOD : OP_UMOD; break;
|
|
}
|
|
def = triple(state, op, result_type, left, right);
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *add_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
int done;
|
|
def = mult_expr(state);
|
|
do {
|
|
done = 0;
|
|
switch( peek(state)) {
|
|
case TOK_PLUS:
|
|
eat(state, TOK_PLUS);
|
|
def = mk_add_expr(state, def, mult_expr(state));
|
|
break;
|
|
case TOK_MINUS:
|
|
eat(state, TOK_MINUS);
|
|
def = mk_sub_expr(state, def, mult_expr(state));
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *shift_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
int done;
|
|
def = add_expr(state);
|
|
do {
|
|
struct triple *left, *right;
|
|
int tok, op;
|
|
done = 0;
|
|
switch((tok = peek(state))) {
|
|
case TOK_SL:
|
|
case TOK_SR:
|
|
left = read_expr(state, def);
|
|
integral(state, left);
|
|
left = integral_promotion(state, left);
|
|
|
|
eat(state, tok);
|
|
|
|
right = read_expr(state, add_expr(state));
|
|
integral(state, right);
|
|
right = integral_promotion(state, right);
|
|
|
|
op = (tok == TOK_SL)? OP_SL :
|
|
is_signed(left->type)? OP_SSR: OP_USR;
|
|
|
|
def = triple(state, op, left->type, left, right);
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *relational_expr(struct compile_state *state)
|
|
{
|
|
#warning "Extend relational exprs to work on more than arithmetic types"
|
|
struct triple *def;
|
|
int done;
|
|
def = shift_expr(state);
|
|
do {
|
|
struct triple *left, *right;
|
|
struct type *arg_type;
|
|
int tok, op, sign;
|
|
done = 0;
|
|
switch((tok = peek(state))) {
|
|
case TOK_LESS:
|
|
case TOK_MORE:
|
|
case TOK_LESSEQ:
|
|
case TOK_MOREEQ:
|
|
left = read_expr(state, def);
|
|
arithmetic(state, left);
|
|
|
|
eat(state, tok);
|
|
|
|
right = read_expr(state, shift_expr(state));
|
|
arithmetic(state, right);
|
|
|
|
arg_type = arithmetic_result(state, left, right);
|
|
sign = is_signed(arg_type);
|
|
op = -1;
|
|
switch(tok) {
|
|
case TOK_LESS: op = sign? OP_SLESS : OP_ULESS; break;
|
|
case TOK_MORE: op = sign? OP_SMORE : OP_UMORE; break;
|
|
case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
|
|
case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
|
|
}
|
|
def = triple(state, op, &int_type, left, right);
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *equality_expr(struct compile_state *state)
|
|
{
|
|
#warning "Extend equality exprs to work on more than arithmetic types"
|
|
struct triple *def;
|
|
int done;
|
|
def = relational_expr(state);
|
|
do {
|
|
struct triple *left, *right;
|
|
int tok, op;
|
|
done = 0;
|
|
switch((tok = peek(state))) {
|
|
case TOK_EQEQ:
|
|
case TOK_NOTEQ:
|
|
left = read_expr(state, def);
|
|
arithmetic(state, left);
|
|
eat(state, tok);
|
|
right = read_expr(state, relational_expr(state));
|
|
arithmetic(state, right);
|
|
op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
|
|
def = triple(state, op, &int_type, left, right);
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *and_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
def = equality_expr(state);
|
|
while(peek(state) == TOK_AND) {
|
|
struct triple *left, *right;
|
|
struct type *result_type;
|
|
left = read_expr(state, def);
|
|
integral(state, left);
|
|
eat(state, TOK_AND);
|
|
right = read_expr(state, equality_expr(state));
|
|
integral(state, right);
|
|
result_type = arithmetic_result(state, left, right);
|
|
def = triple(state, OP_AND, result_type, left, right);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *xor_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
def = and_expr(state);
|
|
while(peek(state) == TOK_XOR) {
|
|
struct triple *left, *right;
|
|
struct type *result_type;
|
|
left = read_expr(state, def);
|
|
integral(state, left);
|
|
eat(state, TOK_XOR);
|
|
right = read_expr(state, and_expr(state));
|
|
integral(state, right);
|
|
result_type = arithmetic_result(state, left, right);
|
|
def = triple(state, OP_XOR, result_type, left, right);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *or_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
def = xor_expr(state);
|
|
while(peek(state) == TOK_OR) {
|
|
struct triple *left, *right;
|
|
struct type *result_type;
|
|
left = read_expr(state, def);
|
|
integral(state, left);
|
|
eat(state, TOK_OR);
|
|
right = read_expr(state, xor_expr(state));
|
|
integral(state, right);
|
|
result_type = arithmetic_result(state, left, right);
|
|
def = triple(state, OP_OR, result_type, left, right);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *land_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
def = or_expr(state);
|
|
while(peek(state) == TOK_LOGAND) {
|
|
struct triple *left, *right;
|
|
left = read_expr(state, def);
|
|
bool(state, left);
|
|
eat(state, TOK_LOGAND);
|
|
right = read_expr(state, or_expr(state));
|
|
bool(state, right);
|
|
|
|
def = triple(state, OP_LAND, &int_type,
|
|
ltrue_expr(state, left),
|
|
ltrue_expr(state, right));
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *lor_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
def = land_expr(state);
|
|
while(peek(state) == TOK_LOGOR) {
|
|
struct triple *left, *right;
|
|
left = read_expr(state, def);
|
|
bool(state, left);
|
|
eat(state, TOK_LOGOR);
|
|
right = read_expr(state, land_expr(state));
|
|
bool(state, right);
|
|
|
|
def = triple(state, OP_LOR, &int_type,
|
|
ltrue_expr(state, left),
|
|
ltrue_expr(state, right));
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *conditional_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
def = lor_expr(state);
|
|
if (peek(state) == TOK_QUEST) {
|
|
struct triple *test, *left, *right;
|
|
bool(state, def);
|
|
test = ltrue_expr(state, read_expr(state, def));
|
|
eat(state, TOK_QUEST);
|
|
left = read_expr(state, expr(state));
|
|
eat(state, TOK_COLON);
|
|
right = read_expr(state, conditional_expr(state));
|
|
|
|
def = cond_expr(state, test, left, right);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *eval_const_expr(
|
|
struct compile_state *state, struct triple *expr)
|
|
{
|
|
struct triple *def;
|
|
struct triple *head, *ptr;
|
|
head = label(state); /* dummy initial triple */
|
|
flatten(state, head, expr);
|
|
for(ptr = head->next; ptr != head; ptr = ptr->next) {
|
|
simplify(state, ptr);
|
|
}
|
|
/* Remove the constant value the tail of the list */
|
|
def = head->prev;
|
|
def->prev->next = def->next;
|
|
def->next->prev = def->prev;
|
|
def->next = def->prev = def;
|
|
if (!is_const(def)) {
|
|
internal_error(state, 0, "Not a constant expression");
|
|
}
|
|
/* Free the intermediate expressions */
|
|
while(head->next != head) {
|
|
release_triple(state, head->next);
|
|
}
|
|
free_triple(state, head);
|
|
return def;
|
|
}
|
|
|
|
static struct triple *constant_expr(struct compile_state *state)
|
|
{
|
|
return eval_const_expr(state, conditional_expr(state));
|
|
}
|
|
|
|
static struct triple *assignment_expr(struct compile_state *state)
|
|
{
|
|
struct triple *def, *left, *right;
|
|
int tok, op, sign;
|
|
/* The C grammer in K&R shows assignment expressions
|
|
* only taking unary expressions as input on their
|
|
* left hand side. But specifies the precedence of
|
|
* assignemnt as the lowest operator except for comma.
|
|
*
|
|
* Allowing conditional expressions on the left hand side
|
|
* of an assignement results in a grammar that accepts
|
|
* a larger set of statements than standard C. As long
|
|
* as the subset of the grammar that is standard C behaves
|
|
* correctly this should cause no problems.
|
|
*
|
|
* For the extra token strings accepted by the grammar
|
|
* none of them should produce a valid lvalue, so they
|
|
* should not produce functioning programs.
|
|
*
|
|
* GCC has this bug as well, so surprises should be minimal.
|
|
*/
|
|
def = conditional_expr(state);
|
|
left = def;
|
|
switch((tok = peek(state))) {
|
|
case TOK_EQ:
|
|
lvalue(state, left);
|
|
eat(state, TOK_EQ);
|
|
def = write_expr(state, left,
|
|
read_expr(state, assignment_expr(state)));
|
|
break;
|
|
case TOK_TIMESEQ:
|
|
case TOK_DIVEQ:
|
|
case TOK_MODEQ:
|
|
lvalue(state, left);
|
|
arithmetic(state, left);
|
|
eat(state, tok);
|
|
right = read_expr(state, assignment_expr(state));
|
|
arithmetic(state, right);
|
|
|
|
sign = is_signed(left->type);
|
|
op = -1;
|
|
switch(tok) {
|
|
case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
|
|
case TOK_DIVEQ: op = sign? OP_SDIV : OP_UDIV; break;
|
|
case TOK_MODEQ: op = sign? OP_SMOD : OP_UMOD; break;
|
|
}
|
|
def = write_expr(state, left,
|
|
triple(state, op, left->type,
|
|
read_expr(state, left), right));
|
|
break;
|
|
case TOK_PLUSEQ:
|
|
lvalue(state, left);
|
|
eat(state, TOK_PLUSEQ);
|
|
def = write_expr(state, left,
|
|
mk_add_expr(state, left, assignment_expr(state)));
|
|
break;
|
|
case TOK_MINUSEQ:
|
|
lvalue(state, left);
|
|
eat(state, TOK_MINUSEQ);
|
|
def = write_expr(state, left,
|
|
mk_sub_expr(state, left, assignment_expr(state)));
|
|
break;
|
|
case TOK_SLEQ:
|
|
case TOK_SREQ:
|
|
case TOK_ANDEQ:
|
|
case TOK_XOREQ:
|
|
case TOK_OREQ:
|
|
lvalue(state, left);
|
|
integral(state, left);
|
|
eat(state, tok);
|
|
right = read_expr(state, assignment_expr(state));
|
|
integral(state, right);
|
|
right = integral_promotion(state, right);
|
|
sign = is_signed(left->type);
|
|
op = -1;
|
|
switch(tok) {
|
|
case TOK_SLEQ: op = OP_SL; break;
|
|
case TOK_SREQ: op = sign? OP_SSR: OP_USR; break;
|
|
case TOK_ANDEQ: op = OP_AND; break;
|
|
case TOK_XOREQ: op = OP_XOR; break;
|
|
case TOK_OREQ: op = OP_OR; break;
|
|
}
|
|
def = write_expr(state, left,
|
|
triple(state, op, left->type,
|
|
read_expr(state, left), right));
|
|
break;
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static struct triple *expr(struct compile_state *state)
|
|
{
|
|
struct triple *def;
|
|
def = assignment_expr(state);
|
|
while(peek(state) == TOK_COMMA) {
|
|
struct triple *left, *right;
|
|
left = def;
|
|
eat(state, TOK_COMMA);
|
|
right = assignment_expr(state);
|
|
def = triple(state, OP_COMMA, right->type, left, right);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static void expr_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
if (peek(state) != TOK_SEMI) {
|
|
flatten(state, first, expr(state));
|
|
}
|
|
eat(state, TOK_SEMI);
|
|
}
|
|
|
|
static void if_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct triple *test, *jmp1, *jmp2, *middle, *end;
|
|
|
|
jmp1 = jmp2 = middle = 0;
|
|
eat(state, TOK_IF);
|
|
eat(state, TOK_LPAREN);
|
|
test = expr(state);
|
|
bool(state, test);
|
|
/* Cleanup and invert the test */
|
|
test = lfalse_expr(state, read_expr(state, test));
|
|
eat(state, TOK_RPAREN);
|
|
/* Generate the needed pieces */
|
|
middle = label(state);
|
|
jmp1 = branch(state, middle, test);
|
|
/* Thread the pieces together */
|
|
flatten(state, first, test);
|
|
flatten(state, first, jmp1);
|
|
flatten(state, first, label(state));
|
|
statement(state, first);
|
|
if (peek(state) == TOK_ELSE) {
|
|
eat(state, TOK_ELSE);
|
|
/* Generate the rest of the pieces */
|
|
end = label(state);
|
|
jmp2 = branch(state, end, 0);
|
|
/* Thread them together */
|
|
flatten(state, first, jmp2);
|
|
flatten(state, first, middle);
|
|
statement(state, first);
|
|
flatten(state, first, end);
|
|
}
|
|
else {
|
|
flatten(state, first, middle);
|
|
}
|
|
}
|
|
|
|
static void for_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
|
|
struct triple *label1, *label2, *label3;
|
|
struct hash_entry *ident;
|
|
|
|
eat(state, TOK_FOR);
|
|
eat(state, TOK_LPAREN);
|
|
head = test = tail = jmp1 = jmp2 = 0;
|
|
if (peek(state) != TOK_SEMI) {
|
|
head = expr(state);
|
|
}
|
|
eat(state, TOK_SEMI);
|
|
if (peek(state) != TOK_SEMI) {
|
|
test = expr(state);
|
|
bool(state, test);
|
|
test = ltrue_expr(state, read_expr(state, test));
|
|
}
|
|
eat(state, TOK_SEMI);
|
|
if (peek(state) != TOK_RPAREN) {
|
|
tail = expr(state);
|
|
}
|
|
eat(state, TOK_RPAREN);
|
|
/* Generate the needed pieces */
|
|
label1 = label(state);
|
|
label2 = label(state);
|
|
label3 = label(state);
|
|
if (test) {
|
|
jmp1 = branch(state, label3, 0);
|
|
jmp2 = branch(state, label1, test);
|
|
}
|
|
else {
|
|
jmp2 = branch(state, label1, 0);
|
|
}
|
|
end = label(state);
|
|
/* Remember where break and continue go */
|
|
start_scope(state);
|
|
ident = state->i_break;
|
|
symbol(state, ident, &ident->sym_ident, end, end->type);
|
|
ident = state->i_continue;
|
|
symbol(state, ident, &ident->sym_ident, label2, label2->type);
|
|
/* Now include the body */
|
|
flatten(state, first, head);
|
|
flatten(state, first, jmp1);
|
|
flatten(state, first, label1);
|
|
statement(state, first);
|
|
flatten(state, first, label2);
|
|
flatten(state, first, tail);
|
|
flatten(state, first, label3);
|
|
flatten(state, first, test);
|
|
flatten(state, first, jmp2);
|
|
flatten(state, first, end);
|
|
/* Cleanup the break/continue scope */
|
|
end_scope(state);
|
|
}
|
|
|
|
static void while_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
|
|
struct hash_entry *ident;
|
|
eat(state, TOK_WHILE);
|
|
eat(state, TOK_LPAREN);
|
|
test = expr(state);
|
|
bool(state, test);
|
|
test = ltrue_expr(state, read_expr(state, test));
|
|
eat(state, TOK_RPAREN);
|
|
/* Generate the needed pieces */
|
|
label1 = label(state);
|
|
label2 = label(state);
|
|
jmp1 = branch(state, label2, 0);
|
|
jmp2 = branch(state, label1, test);
|
|
end = label(state);
|
|
/* Remember where break and continue go */
|
|
start_scope(state);
|
|
ident = state->i_break;
|
|
symbol(state, ident, &ident->sym_ident, end, end->type);
|
|
ident = state->i_continue;
|
|
symbol(state, ident, &ident->sym_ident, label2, label2->type);
|
|
/* Thread them together */
|
|
flatten(state, first, jmp1);
|
|
flatten(state, first, label1);
|
|
statement(state, first);
|
|
flatten(state, first, label2);
|
|
flatten(state, first, test);
|
|
flatten(state, first, jmp2);
|
|
flatten(state, first, end);
|
|
/* Cleanup the break/continue scope */
|
|
end_scope(state);
|
|
}
|
|
|
|
static void do_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct triple *label1, *label2, *test, *end;
|
|
struct hash_entry *ident;
|
|
eat(state, TOK_DO);
|
|
/* Generate the needed pieces */
|
|
label1 = label(state);
|
|
label2 = label(state);
|
|
end = label(state);
|
|
/* Remember where break and continue go */
|
|
start_scope(state);
|
|
ident = state->i_break;
|
|
symbol(state, ident, &ident->sym_ident, end, end->type);
|
|
ident = state->i_continue;
|
|
symbol(state, ident, &ident->sym_ident, label2, label2->type);
|
|
/* Now include the body */
|
|
flatten(state, first, label1);
|
|
statement(state, first);
|
|
/* Cleanup the break/continue scope */
|
|
end_scope(state);
|
|
/* Eat the rest of the loop */
|
|
eat(state, TOK_WHILE);
|
|
eat(state, TOK_LPAREN);
|
|
test = read_expr(state, expr(state));
|
|
bool(state, test);
|
|
eat(state, TOK_RPAREN);
|
|
eat(state, TOK_SEMI);
|
|
/* Thread the pieces together */
|
|
test = ltrue_expr(state, test);
|
|
flatten(state, first, label2);
|
|
flatten(state, first, test);
|
|
flatten(state, first, branch(state, label1, test));
|
|
flatten(state, first, end);
|
|
}
|
|
|
|
|
|
static void return_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct triple *jmp, *mv, *dest, *var, *val;
|
|
int last;
|
|
eat(state, TOK_RETURN);
|
|
|
|
#warning "FIXME implement a more general excess branch elimination"
|
|
val = 0;
|
|
/* If we have a return value do some more work */
|
|
if (peek(state) != TOK_SEMI) {
|
|
val = read_expr(state, expr(state));
|
|
}
|
|
eat(state, TOK_SEMI);
|
|
|
|
/* See if this last statement in a function */
|
|
last = ((peek(state) == TOK_RBRACE) &&
|
|
(state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
|
|
|
|
/* Find the return variable */
|
|
var = MISC(state->main_function, 0);
|
|
/* Find the return destination */
|
|
dest = RHS(state->main_function, 0)->prev;
|
|
mv = jmp = 0;
|
|
/* If needed generate a jump instruction */
|
|
if (!last) {
|
|
jmp = branch(state, dest, 0);
|
|
}
|
|
/* If needed generate an assignment instruction */
|
|
if (val) {
|
|
mv = write_expr(state, var, val);
|
|
}
|
|
/* Now put the code together */
|
|
if (mv) {
|
|
flatten(state, first, mv);
|
|
flatten(state, first, jmp);
|
|
}
|
|
else if (jmp) {
|
|
flatten(state, first, jmp);
|
|
}
|
|
}
|
|
|
|
static void break_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct triple *dest;
|
|
eat(state, TOK_BREAK);
|
|
eat(state, TOK_SEMI);
|
|
if (!state->i_break->sym_ident) {
|
|
error(state, 0, "break statement not within loop or switch");
|
|
}
|
|
dest = state->i_break->sym_ident->def;
|
|
flatten(state, first, branch(state, dest, 0));
|
|
}
|
|
|
|
static void continue_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct triple *dest;
|
|
eat(state, TOK_CONTINUE);
|
|
eat(state, TOK_SEMI);
|
|
if (!state->i_continue->sym_ident) {
|
|
error(state, 0, "continue statement outside of a loop");
|
|
}
|
|
dest = state->i_continue->sym_ident->def;
|
|
flatten(state, first, branch(state, dest, 0));
|
|
}
|
|
|
|
static void goto_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
FINISHME();
|
|
eat(state, TOK_GOTO);
|
|
eat(state, TOK_IDENT);
|
|
eat(state, TOK_SEMI);
|
|
error(state, 0, "goto is not implemeted");
|
|
FINISHME();
|
|
}
|
|
|
|
static void labeled_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
FINISHME();
|
|
eat(state, TOK_IDENT);
|
|
eat(state, TOK_COLON);
|
|
statement(state, first);
|
|
error(state, 0, "labeled statements are not implemented");
|
|
FINISHME();
|
|
}
|
|
|
|
static void switch_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
FINISHME();
|
|
eat(state, TOK_SWITCH);
|
|
eat(state, TOK_LPAREN);
|
|
expr(state);
|
|
eat(state, TOK_RPAREN);
|
|
statement(state, first);
|
|
error(state, 0, "switch statements are not implemented");
|
|
FINISHME();
|
|
}
|
|
|
|
static void case_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
FINISHME();
|
|
eat(state, TOK_CASE);
|
|
constant_expr(state);
|
|
eat(state, TOK_COLON);
|
|
statement(state, first);
|
|
error(state, 0, "case statements are not implemented");
|
|
FINISHME();
|
|
}
|
|
|
|
static void default_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
FINISHME();
|
|
eat(state, TOK_DEFAULT);
|
|
eat(state, TOK_COLON);
|
|
statement(state, first);
|
|
error(state, 0, "default statements are not implemented");
|
|
FINISHME();
|
|
}
|
|
|
|
static void asm_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct asm_info *info;
|
|
struct {
|
|
struct triple *constraint;
|
|
struct triple *expr;
|
|
} out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
|
|
struct triple *def, *asm_str;
|
|
int out, in, clobbers, more, colons, i;
|
|
|
|
eat(state, TOK_ASM);
|
|
/* For now ignore the qualifiers */
|
|
switch(peek(state)) {
|
|
case TOK_CONST:
|
|
eat(state, TOK_CONST);
|
|
break;
|
|
case TOK_VOLATILE:
|
|
eat(state, TOK_VOLATILE);
|
|
break;
|
|
}
|
|
eat(state, TOK_LPAREN);
|
|
asm_str = string_constant(state);
|
|
|
|
colons = 0;
|
|
out = in = clobbers = 0;
|
|
/* Outputs */
|
|
if ((colons == 0) && (peek(state) == TOK_COLON)) {
|
|
eat(state, TOK_COLON);
|
|
colons++;
|
|
more = (peek(state) == TOK_LIT_STRING);
|
|
while(more) {
|
|
struct triple *var;
|
|
struct triple *constraint;
|
|
more = 0;
|
|
if (out > MAX_LHS) {
|
|
error(state, 0, "Maximum output count exceeded.");
|
|
}
|
|
constraint = string_constant(state);
|
|
eat(state, TOK_LPAREN);
|
|
var = conditional_expr(state);
|
|
eat(state, TOK_RPAREN);
|
|
|
|
lvalue(state, var);
|
|
out_param[out].constraint = constraint;
|
|
out_param[out].expr = var;
|
|
if (peek(state) == TOK_COMMA) {
|
|
eat(state, TOK_COMMA);
|
|
more = 1;
|
|
}
|
|
out++;
|
|
}
|
|
}
|
|
/* Inputs */
|
|
if ((colons == 1) && (peek(state) == TOK_COLON)) {
|
|
eat(state, TOK_COLON);
|
|
colons++;
|
|
more = (peek(state) == TOK_LIT_STRING);
|
|
while(more) {
|
|
struct triple *val;
|
|
struct triple *constraint;
|
|
more = 0;
|
|
if (in > MAX_RHS) {
|
|
error(state, 0, "Maximum input count exceeded.");
|
|
}
|
|
constraint = string_constant(state);
|
|
eat(state, TOK_LPAREN);
|
|
val = conditional_expr(state);
|
|
eat(state, TOK_RPAREN);
|
|
|
|
in_param[in].constraint = constraint;
|
|
in_param[in].expr = val;
|
|
if (peek(state) == TOK_COMMA) {
|
|
eat(state, TOK_COMMA);
|
|
more = 1;
|
|
}
|
|
in++;
|
|
}
|
|
}
|
|
|
|
/* Clobber */
|
|
if ((colons == 2) && (peek(state) == TOK_COLON)) {
|
|
eat(state, TOK_COLON);
|
|
colons++;
|
|
more = (peek(state) == TOK_LIT_STRING);
|
|
while(more) {
|
|
struct triple *clobber;
|
|
more = 0;
|
|
if ((clobbers + out) > MAX_LHS) {
|
|
error(state, 0, "Maximum clobber limit exceeded.");
|
|
}
|
|
clobber = string_constant(state);
|
|
eat(state, TOK_RPAREN);
|
|
|
|
clob_param[clobbers].constraint = clobber;
|
|
if (peek(state) == TOK_COMMA) {
|
|
eat(state, TOK_COMMA);
|
|
more = 1;
|
|
}
|
|
clobbers++;
|
|
}
|
|
}
|
|
eat(state, TOK_RPAREN);
|
|
eat(state, TOK_SEMI);
|
|
|
|
|
|
info = xcmalloc(sizeof(*info), "asm_info");
|
|
info->str = asm_str->u.blob;
|
|
free_triple(state, asm_str);
|
|
|
|
def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
|
|
def->u.ainfo = info;
|
|
for(i = 0; i < in; i++) {
|
|
struct triple *constraint;
|
|
constraint = in_param[i].constraint;
|
|
info->tmpl.rhs[i] = arch_reg_constraint(state,
|
|
in_param[i].expr->type, constraint->u.blob);
|
|
|
|
RHS(def, i) = read_expr(state,in_param[i].expr);
|
|
free_triple(state, constraint);
|
|
}
|
|
flatten(state, first, def);
|
|
for(i = 0; i < out; i++) {
|
|
struct triple *piece;
|
|
struct triple *constraint;
|
|
constraint = out_param[i].constraint;
|
|
info->tmpl.lhs[i] = arch_reg_constraint(state,
|
|
out_param[i].expr->type, constraint->u.blob);
|
|
|
|
piece = triple(state, OP_PIECE, out_param[i].expr->type, def, 0);
|
|
piece->u.cval = i;
|
|
LHS(def, i) = piece;
|
|
flatten(state, first,
|
|
write_expr(state, out_param[i].expr, piece));
|
|
free_triple(state, constraint);
|
|
}
|
|
for(; i - out < clobbers; i++) {
|
|
struct triple *piece;
|
|
struct triple *constraint;
|
|
constraint = clob_param[i - out].constraint;
|
|
info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
|
|
|
|
piece = triple(state, OP_PIECE, &void_type, def, 0);
|
|
piece->u.cval = i;
|
|
LHS(def, i) = piece;
|
|
flatten(state, first, piece);
|
|
free_triple(state, constraint);
|
|
}
|
|
}
|
|
|
|
|
|
static int isdecl(int tok)
|
|
{
|
|
switch(tok) {
|
|
case TOK_AUTO:
|
|
case TOK_REGISTER:
|
|
case TOK_STATIC:
|
|
case TOK_EXTERN:
|
|
case TOK_TYPEDEF:
|
|
case TOK_CONST:
|
|
case TOK_RESTRICT:
|
|
case TOK_VOLATILE:
|
|
case TOK_VOID:
|
|
case TOK_CHAR:
|
|
case TOK_SHORT:
|
|
case TOK_INT:
|
|
case TOK_LONG:
|
|
case TOK_FLOAT:
|
|
case TOK_DOUBLE:
|
|
case TOK_SIGNED:
|
|
case TOK_UNSIGNED:
|
|
case TOK_STRUCT:
|
|
case TOK_UNION:
|
|
case TOK_ENUM:
|
|
case TOK_TYPE_NAME: /* typedef name */
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void compound_statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
eat(state, TOK_LBRACE);
|
|
start_scope(state);
|
|
|
|
/* statement-list opt */
|
|
while (peek(state) != TOK_RBRACE) {
|
|
statement(state, first);
|
|
}
|
|
end_scope(state);
|
|
eat(state, TOK_RBRACE);
|
|
}
|
|
|
|
static void statement(struct compile_state *state, struct triple *first)
|
|
{
|
|
int tok;
|
|
tok = peek(state);
|
|
if (tok == TOK_LBRACE) {
|
|
compound_statement(state, first);
|
|
}
|
|
else if (tok == TOK_IF) {
|
|
if_statement(state, first);
|
|
}
|
|
else if (tok == TOK_FOR) {
|
|
for_statement(state, first);
|
|
}
|
|
else if (tok == TOK_WHILE) {
|
|
while_statement(state, first);
|
|
}
|
|
else if (tok == TOK_DO) {
|
|
do_statement(state, first);
|
|
}
|
|
else if (tok == TOK_RETURN) {
|
|
return_statement(state, first);
|
|
}
|
|
else if (tok == TOK_BREAK) {
|
|
break_statement(state, first);
|
|
}
|
|
else if (tok == TOK_CONTINUE) {
|
|
continue_statement(state, first);
|
|
}
|
|
else if (tok == TOK_GOTO) {
|
|
goto_statement(state, first);
|
|
}
|
|
else if (tok == TOK_SWITCH) {
|
|
switch_statement(state, first);
|
|
}
|
|
else if (tok == TOK_ASM) {
|
|
asm_statement(state, first);
|
|
}
|
|
else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
|
|
labeled_statement(state, first);
|
|
}
|
|
else if (tok == TOK_CASE) {
|
|
case_statement(state, first);
|
|
}
|
|
else if (tok == TOK_DEFAULT) {
|
|
default_statement(state, first);
|
|
}
|
|
else if (isdecl(tok)) {
|
|
/* This handles C99 intermixing of statements and decls */
|
|
decl(state, first);
|
|
}
|
|
else {
|
|
expr_statement(state, first);
|
|
}
|
|
}
|
|
|
|
static struct type *param_decl(struct compile_state *state)
|
|
{
|
|
struct type *type;
|
|
struct hash_entry *ident;
|
|
/* Cheat so the declarator will know we are not global */
|
|
start_scope(state);
|
|
ident = 0;
|
|
type = decl_specifiers(state);
|
|
type = declarator(state, type, &ident, 0);
|
|
type->field_ident = ident;
|
|
end_scope(state);
|
|
return type;
|
|
}
|
|
|
|
static struct type *param_type_list(struct compile_state *state, struct type *type)
|
|
{
|
|
struct type *ftype, **next;
|
|
ftype = new_type(TYPE_FUNCTION, type, param_decl(state));
|
|
next = &ftype->right;
|
|
while(peek(state) == TOK_COMMA) {
|
|
eat(state, TOK_COMMA);
|
|
if (peek(state) == TOK_DOTS) {
|
|
eat(state, TOK_DOTS);
|
|
error(state, 0, "variadic functions not supported");
|
|
}
|
|
else {
|
|
*next = new_type(TYPE_PRODUCT, *next, param_decl(state));
|
|
next = &((*next)->right);
|
|
}
|
|
}
|
|
return ftype;
|
|
}
|
|
|
|
|
|
static struct type *type_name(struct compile_state *state)
|
|
{
|
|
struct type *type;
|
|
type = specifier_qualifier_list(state);
|
|
/* abstract-declarator (may consume no tokens) */
|
|
type = declarator(state, type, 0, 0);
|
|
return type;
|
|
}
|
|
|
|
static struct type *direct_declarator(
|
|
struct compile_state *state, struct type *type,
|
|
struct hash_entry **ident, int need_ident)
|
|
{
|
|
struct type *outer;
|
|
int op;
|
|
outer = 0;
|
|
arrays_complete(state, type);
|
|
switch(peek(state)) {
|
|
case TOK_IDENT:
|
|
eat(state, TOK_IDENT);
|
|
if (!ident) {
|
|
error(state, 0, "Unexpected identifier found");
|
|
}
|
|
/* The name of what we are declaring */
|
|
*ident = state->token[0].ident;
|
|
break;
|
|
case TOK_LPAREN:
|
|
eat(state, TOK_LPAREN);
|
|
outer = declarator(state, type, ident, need_ident);
|
|
eat(state, TOK_RPAREN);
|
|
break;
|
|
default:
|
|
if (need_ident) {
|
|
error(state, 0, "Identifier expected");
|
|
}
|
|
break;
|
|
}
|
|
do {
|
|
op = 1;
|
|
arrays_complete(state, type);
|
|
switch(peek(state)) {
|
|
case TOK_LPAREN:
|
|
eat(state, TOK_LPAREN);
|
|
type = param_type_list(state, type);
|
|
eat(state, TOK_RPAREN);
|
|
break;
|
|
case TOK_LBRACKET:
|
|
{
|
|
unsigned int qualifiers;
|
|
struct triple *value;
|
|
value = 0;
|
|
eat(state, TOK_LBRACKET);
|
|
if (peek(state) != TOK_RBRACKET) {
|
|
value = constant_expr(state);
|
|
integral(state, value);
|
|
}
|
|
eat(state, TOK_RBRACKET);
|
|
|
|
qualifiers = type->type & (QUAL_MASK | STOR_MASK);
|
|
type = new_type(TYPE_ARRAY | qualifiers, type, 0);
|
|
if (value) {
|
|
type->elements = value->u.cval;
|
|
free_triple(state, value);
|
|
} else {
|
|
type->elements = ELEMENT_COUNT_UNSPECIFIED;
|
|
op = 0;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
op = 0;
|
|
break;
|
|
}
|
|
} while(op);
|
|
if (outer) {
|
|
struct type *inner;
|
|
arrays_complete(state, type);
|
|
FINISHME();
|
|
for(inner = outer; inner->left; inner = inner->left)
|
|
;
|
|
inner->left = type;
|
|
type = outer;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static struct type *declarator(
|
|
struct compile_state *state, struct type *type,
|
|
struct hash_entry **ident, int need_ident)
|
|
{
|
|
while(peek(state) == TOK_STAR) {
|
|
eat(state, TOK_STAR);
|
|
type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
|
|
}
|
|
type = direct_declarator(state, type, ident, need_ident);
|
|
return type;
|
|
}
|
|
|
|
|
|
static struct type *typedef_name(
|
|
struct compile_state *state, unsigned int specifiers)
|
|
{
|
|
struct hash_entry *ident;
|
|
struct type *type;
|
|
eat(state, TOK_TYPE_NAME);
|
|
ident = state->token[0].ident;
|
|
type = ident->sym_ident->type;
|
|
specifiers |= type->type & QUAL_MASK;
|
|
if ((specifiers & (STOR_MASK | QUAL_MASK)) !=
|
|
(type->type & (STOR_MASK | QUAL_MASK))) {
|
|
type = clone_type(specifiers, type);
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static struct type *enum_specifier(
|
|
struct compile_state *state, unsigned int specifiers)
|
|
{
|
|
int tok;
|
|
struct type *type;
|
|
type = 0;
|
|
FINISHME();
|
|
eat(state, TOK_ENUM);
|
|
tok = peek(state);
|
|
if (tok == TOK_IDENT) {
|
|
eat(state, TOK_IDENT);
|
|
}
|
|
if ((tok != TOK_IDENT) || (peek(state) == TOK_LBRACE)) {
|
|
eat(state, TOK_LBRACE);
|
|
do {
|
|
eat(state, TOK_IDENT);
|
|
if (peek(state) == TOK_EQ) {
|
|
eat(state, TOK_EQ);
|
|
constant_expr(state);
|
|
}
|
|
if (peek(state) == TOK_COMMA) {
|
|
eat(state, TOK_COMMA);
|
|
}
|
|
} while(peek(state) != TOK_RBRACE);
|
|
eat(state, TOK_RBRACE);
|
|
}
|
|
FINISHME();
|
|
return type;
|
|
}
|
|
|
|
#if 0
|
|
static struct type *struct_declarator(
|
|
struct compile_state *state, struct type *type, struct hash_entry **ident)
|
|
{
|
|
int tok;
|
|
#warning "struct_declarator is complicated because of bitfields, kill them?"
|
|
tok = peek(state);
|
|
if (tok != TOK_COLON) {
|
|
type = declarator(state, type, ident, 1);
|
|
}
|
|
if ((tok == TOK_COLON) || (peek(state) == TOK_COLON)) {
|
|
eat(state, TOK_COLON);
|
|
constant_expr(state);
|
|
}
|
|
FINISHME();
|
|
return type;
|
|
}
|
|
#endif
|
|
|
|
static struct type *struct_or_union_specifier(
|
|
struct compile_state *state, unsigned int specifiers)
|
|
{
|
|
struct type *struct_type;
|
|
struct hash_entry *ident;
|
|
unsigned int type_join;
|
|
int tok;
|
|
struct_type = 0;
|
|
ident = 0;
|
|
switch(peek(state)) {
|
|
case TOK_STRUCT:
|
|
eat(state, TOK_STRUCT);
|
|
type_join = TYPE_PRODUCT;
|
|
break;
|
|
case TOK_UNION:
|
|
eat(state, TOK_UNION);
|
|
type_join = TYPE_OVERLAP;
|
|
error(state, 0, "unions not yet supported\n");
|
|
break;
|
|
default:
|
|
eat(state, TOK_STRUCT);
|
|
type_join = TYPE_PRODUCT;
|
|
break;
|
|
}
|
|
tok = peek(state);
|
|
if ((tok == TOK_IDENT) || (tok == TOK_TYPE_NAME)) {
|
|
eat(state, tok);
|
|
ident = state->token[0].ident;
|
|
}
|
|
if (!ident || (peek(state) == TOK_LBRACE)) {
|
|
ulong_t elements;
|
|
elements = 0;
|
|
eat(state, TOK_LBRACE);
|
|
do {
|
|
struct type *base_type;
|
|
struct type **next;
|
|
int done;
|
|
base_type = specifier_qualifier_list(state);
|
|
next = &struct_type;
|
|
do {
|
|
struct type *type;
|
|
struct hash_entry *fident;
|
|
done = 1;
|
|
type = declarator(state, base_type, &fident, 1);
|
|
elements++;
|
|
if (peek(state) == TOK_COMMA) {
|
|
done = 0;
|
|
eat(state, TOK_COMMA);
|
|
}
|
|
type = clone_type(0, type);
|
|
type->field_ident = fident;
|
|
if (*next) {
|
|
*next = new_type(type_join, *next, type);
|
|
next = &((*next)->right);
|
|
} else {
|
|
*next = type;
|
|
}
|
|
} while(!done);
|
|
eat(state, TOK_SEMI);
|
|
} while(peek(state) != TOK_RBRACE);
|
|
eat(state, TOK_RBRACE);
|
|
struct_type = new_type(TYPE_STRUCT, struct_type, 0);
|
|
struct_type->type_ident = ident;
|
|
struct_type->elements = elements;
|
|
symbol(state, ident, &ident->sym_struct, 0, struct_type);
|
|
}
|
|
if (ident && ident->sym_struct) {
|
|
struct_type = ident->sym_struct->type;
|
|
}
|
|
else if (ident && !ident->sym_struct) {
|
|
error(state, 0, "struct %s undeclared", ident->name);
|
|
}
|
|
return struct_type;
|
|
}
|
|
|
|
static unsigned int storage_class_specifier_opt(struct compile_state *state)
|
|
{
|
|
unsigned int specifiers;
|
|
switch(peek(state)) {
|
|
case TOK_AUTO:
|
|
eat(state, TOK_AUTO);
|
|
specifiers = STOR_AUTO;
|
|
break;
|
|
case TOK_REGISTER:
|
|
eat(state, TOK_REGISTER);
|
|
specifiers = STOR_REGISTER;
|
|
break;
|
|
case TOK_STATIC:
|
|
eat(state, TOK_STATIC);
|
|
specifiers = STOR_STATIC;
|
|
break;
|
|
case TOK_EXTERN:
|
|
eat(state, TOK_EXTERN);
|
|
specifiers = STOR_EXTERN;
|
|
break;
|
|
case TOK_TYPEDEF:
|
|
eat(state, TOK_TYPEDEF);
|
|
specifiers = STOR_TYPEDEF;
|
|
break;
|
|
default:
|
|
if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
|
|
specifiers = STOR_STATIC;
|
|
}
|
|
else {
|
|
specifiers = STOR_AUTO;
|
|
}
|
|
}
|
|
return specifiers;
|
|
}
|
|
|
|
static unsigned int function_specifier_opt(struct compile_state *state)
|
|
{
|
|
/* Ignore the inline keyword */
|
|
unsigned int specifiers;
|
|
specifiers = 0;
|
|
switch(peek(state)) {
|
|
case TOK_INLINE:
|
|
eat(state, TOK_INLINE);
|
|
specifiers = STOR_INLINE;
|
|
}
|
|
return specifiers;
|
|
}
|
|
|
|
static unsigned int type_qualifiers(struct compile_state *state)
|
|
{
|
|
unsigned int specifiers;
|
|
int done;
|
|
done = 0;
|
|
specifiers = QUAL_NONE;
|
|
do {
|
|
switch(peek(state)) {
|
|
case TOK_CONST:
|
|
eat(state, TOK_CONST);
|
|
specifiers = QUAL_CONST;
|
|
break;
|
|
case TOK_VOLATILE:
|
|
eat(state, TOK_VOLATILE);
|
|
specifiers = QUAL_VOLATILE;
|
|
break;
|
|
case TOK_RESTRICT:
|
|
eat(state, TOK_RESTRICT);
|
|
specifiers = QUAL_RESTRICT;
|
|
break;
|
|
default:
|
|
done = 1;
|
|
break;
|
|
}
|
|
} while(!done);
|
|
return specifiers;
|
|
}
|
|
|
|
static struct type *type_specifier(
|
|
struct compile_state *state, unsigned int spec)
|
|
{
|
|
struct type *type;
|
|
type = 0;
|
|
switch(peek(state)) {
|
|
case TOK_VOID:
|
|
eat(state, TOK_VOID);
|
|
type = new_type(TYPE_VOID | spec, 0, 0);
|
|
break;
|
|
case TOK_CHAR:
|
|
eat(state, TOK_CHAR);
|
|
type = new_type(TYPE_CHAR | spec, 0, 0);
|
|
break;
|
|
case TOK_SHORT:
|
|
eat(state, TOK_SHORT);
|
|
if (peek(state) == TOK_INT) {
|
|
eat(state, TOK_INT);
|
|
}
|
|
type = new_type(TYPE_SHORT | spec, 0, 0);
|
|
break;
|
|
case TOK_INT:
|
|
eat(state, TOK_INT);
|
|
type = new_type(TYPE_INT | spec, 0, 0);
|
|
break;
|
|
case TOK_LONG:
|
|
eat(state, TOK_LONG);
|
|
switch(peek(state)) {
|
|
case TOK_LONG:
|
|
eat(state, TOK_LONG);
|
|
error(state, 0, "long long not supported");
|
|
break;
|
|
case TOK_DOUBLE:
|
|
eat(state, TOK_DOUBLE);
|
|
error(state, 0, "long double not supported");
|
|
break;
|
|
case TOK_INT:
|
|
eat(state, TOK_INT);
|
|
type = new_type(TYPE_LONG | spec, 0, 0);
|
|
break;
|
|
default:
|
|
type = new_type(TYPE_LONG | spec, 0, 0);
|
|
break;
|
|
}
|
|
break;
|
|
case TOK_FLOAT:
|
|
eat(state, TOK_FLOAT);
|
|
error(state, 0, "type float not supported");
|
|
break;
|
|
case TOK_DOUBLE:
|
|
eat(state, TOK_DOUBLE);
|
|
error(state, 0, "type double not supported");
|
|
break;
|
|
case TOK_SIGNED:
|
|
eat(state, TOK_SIGNED);
|
|
switch(peek(state)) {
|
|
case TOK_LONG:
|
|
eat(state, TOK_LONG);
|
|
switch(peek(state)) {
|
|
case TOK_LONG:
|
|
eat(state, TOK_LONG);
|
|
error(state, 0, "type long long not supported");
|
|
break;
|
|
case TOK_INT:
|
|
eat(state, TOK_INT);
|
|
type = new_type(TYPE_LONG | spec, 0, 0);
|
|
break;
|
|
default:
|
|
type = new_type(TYPE_LONG | spec, 0, 0);
|
|
break;
|
|
}
|
|
break;
|
|
case TOK_INT:
|
|
eat(state, TOK_INT);
|
|
type = new_type(TYPE_INT | spec, 0, 0);
|
|
break;
|
|
case TOK_SHORT:
|
|
eat(state, TOK_SHORT);
|
|
type = new_type(TYPE_SHORT | spec, 0, 0);
|
|
break;
|
|
case TOK_CHAR:
|
|
eat(state, TOK_CHAR);
|
|
type = new_type(TYPE_CHAR | spec, 0, 0);
|
|
break;
|
|
default:
|
|
type = new_type(TYPE_INT | spec, 0, 0);
|
|
break;
|
|
}
|
|
break;
|
|
case TOK_UNSIGNED:
|
|
eat(state, TOK_UNSIGNED);
|
|
switch(peek(state)) {
|
|
case TOK_LONG:
|
|
eat(state, TOK_LONG);
|
|
switch(peek(state)) {
|
|
case TOK_LONG:
|
|
eat(state, TOK_LONG);
|
|
error(state, 0, "unsigned long long not supported");
|
|
break;
|
|
case TOK_INT:
|
|
eat(state, TOK_INT);
|
|
type = new_type(TYPE_ULONG | spec, 0, 0);
|
|
break;
|
|
default:
|
|
type = new_type(TYPE_ULONG | spec, 0, 0);
|
|
break;
|
|
}
|
|
break;
|
|
case TOK_INT:
|
|
eat(state, TOK_INT);
|
|
type = new_type(TYPE_UINT | spec, 0, 0);
|
|
break;
|
|
case TOK_SHORT:
|
|
eat(state, TOK_SHORT);
|
|
type = new_type(TYPE_USHORT | spec, 0, 0);
|
|
break;
|
|
case TOK_CHAR:
|
|
eat(state, TOK_CHAR);
|
|
type = new_type(TYPE_UCHAR | spec, 0, 0);
|
|
break;
|
|
default:
|
|
type = new_type(TYPE_UINT | spec, 0, 0);
|
|
break;
|
|
}
|
|
break;
|
|
/* struct or union specifier */
|
|
case TOK_STRUCT:
|
|
case TOK_UNION:
|
|
type = struct_or_union_specifier(state, spec);
|
|
break;
|
|
/* enum-spefifier */
|
|
case TOK_ENUM:
|
|
type = enum_specifier(state, spec);
|
|
break;
|
|
/* typedef name */
|
|
case TOK_TYPE_NAME:
|
|
type = typedef_name(state, spec);
|
|
break;
|
|
default:
|
|
error(state, 0, "bad type specifier %s",
|
|
tokens[peek(state)]);
|
|
break;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static int istype(int tok)
|
|
{
|
|
switch(tok) {
|
|
case TOK_CONST:
|
|
case TOK_RESTRICT:
|
|
case TOK_VOLATILE:
|
|
case TOK_VOID:
|
|
case TOK_CHAR:
|
|
case TOK_SHORT:
|
|
case TOK_INT:
|
|
case TOK_LONG:
|
|
case TOK_FLOAT:
|
|
case TOK_DOUBLE:
|
|
case TOK_SIGNED:
|
|
case TOK_UNSIGNED:
|
|
case TOK_STRUCT:
|
|
case TOK_UNION:
|
|
case TOK_ENUM:
|
|
case TOK_TYPE_NAME:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
static struct type *specifier_qualifier_list(struct compile_state *state)
|
|
{
|
|
struct type *type;
|
|
unsigned int specifiers = 0;
|
|
|
|
/* type qualifiers */
|
|
specifiers |= type_qualifiers(state);
|
|
|
|
/* type specifier */
|
|
type = type_specifier(state, specifiers);
|
|
|
|
return type;
|
|
}
|
|
|
|
static int isdecl_specifier(int tok)
|
|
{
|
|
switch(tok) {
|
|
/* storage class specifier */
|
|
case TOK_AUTO:
|
|
case TOK_REGISTER:
|
|
case TOK_STATIC:
|
|
case TOK_EXTERN:
|
|
case TOK_TYPEDEF:
|
|
/* type qualifier */
|
|
case TOK_CONST:
|
|
case TOK_RESTRICT:
|
|
case TOK_VOLATILE:
|
|
/* type specifiers */
|
|
case TOK_VOID:
|
|
case TOK_CHAR:
|
|
case TOK_SHORT:
|
|
case TOK_INT:
|
|
case TOK_LONG:
|
|
case TOK_FLOAT:
|
|
case TOK_DOUBLE:
|
|
case TOK_SIGNED:
|
|
case TOK_UNSIGNED:
|
|
/* struct or union specifier */
|
|
case TOK_STRUCT:
|
|
case TOK_UNION:
|
|
/* enum-spefifier */
|
|
case TOK_ENUM:
|
|
/* typedef name */
|
|
case TOK_TYPE_NAME:
|
|
/* function specifiers */
|
|
case TOK_INLINE:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static struct type *decl_specifiers(struct compile_state *state)
|
|
{
|
|
struct type *type;
|
|
unsigned int specifiers;
|
|
/* I am overly restrictive in the arragement of specifiers supported.
|
|
* C is overly flexible in this department it makes interpreting
|
|
* the parse tree difficult.
|
|
*/
|
|
specifiers = 0;
|
|
|
|
/* storage class specifier */
|
|
specifiers |= storage_class_specifier_opt(state);
|
|
|
|
/* function-specifier */
|
|
specifiers |= function_specifier_opt(state);
|
|
|
|
/* type qualifier */
|
|
specifiers |= type_qualifiers(state);
|
|
|
|
/* type specifier */
|
|
type = type_specifier(state, specifiers);
|
|
return type;
|
|
}
|
|
|
|
static unsigned designator(struct compile_state *state)
|
|
{
|
|
int tok;
|
|
unsigned index;
|
|
index = -1U;
|
|
do {
|
|
switch(peek(state)) {
|
|
case TOK_LBRACKET:
|
|
{
|
|
struct triple *value;
|
|
eat(state, TOK_LBRACKET);
|
|
value = constant_expr(state);
|
|
eat(state, TOK_RBRACKET);
|
|
index = value->u.cval;
|
|
break;
|
|
}
|
|
case TOK_DOT:
|
|
eat(state, TOK_DOT);
|
|
eat(state, TOK_IDENT);
|
|
error(state, 0, "Struct Designators not currently supported");
|
|
break;
|
|
default:
|
|
error(state, 0, "Invalid designator");
|
|
}
|
|
tok = peek(state);
|
|
} while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
|
|
eat(state, TOK_EQ);
|
|
return index;
|
|
}
|
|
|
|
static struct triple *initializer(
|
|
struct compile_state *state, struct type *type)
|
|
{
|
|
struct triple *result;
|
|
if (peek(state) != TOK_LBRACE) {
|
|
result = assignment_expr(state);
|
|
}
|
|
else {
|
|
int comma;
|
|
unsigned index, max_index;
|
|
void *buf;
|
|
max_index = index = 0;
|
|
if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
|
|
max_index = type->elements;
|
|
if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
|
|
type->elements = 0;
|
|
}
|
|
} else {
|
|
error(state, 0, "Struct initializers not currently supported");
|
|
}
|
|
buf = xcmalloc(size_of(state, type), "initializer");
|
|
eat(state, TOK_LBRACE);
|
|
do {
|
|
struct triple *value;
|
|
struct type *value_type;
|
|
size_t value_size;
|
|
int tok;
|
|
comma = 0;
|
|
tok = peek(state);
|
|
if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
|
|
index = designator(state);
|
|
}
|
|
if ((max_index != ELEMENT_COUNT_UNSPECIFIED) &&
|
|
(index > max_index)) {
|
|
error(state, 0, "element beyond bounds");
|
|
}
|
|
value_type = 0;
|
|
if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
|
|
value_type = type->left;
|
|
}
|
|
value = eval_const_expr(state, initializer(state, value_type));
|
|
value_size = size_of(state, value_type);
|
|
if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
|
|
(max_index == ELEMENT_COUNT_UNSPECIFIED) &&
|
|
(type->elements <= index)) {
|
|
void *old_buf;
|
|
size_t old_size;
|
|
old_buf = buf;
|
|
old_size = size_of(state, type);
|
|
type->elements = index + 1;
|
|
buf = xmalloc(size_of(state, type), "initializer");
|
|
memcpy(buf, old_buf, old_size);
|
|
xfree(old_buf);
|
|
}
|
|
if (value->op == OP_BLOBCONST) {
|
|
memcpy((char *)buf + index * value_size, value->u.blob, value_size);
|
|
}
|
|
else if ((value->op == OP_INTCONST) && (value_size == 1)) {
|
|
*(((uint8_t *)buf) + index) = value->u.cval & 0xff;
|
|
}
|
|
else if ((value->op == OP_INTCONST) && (value_size == 2)) {
|
|
*(((uint16_t *)buf) + index) = value->u.cval & 0xffff;
|
|
}
|
|
else if ((value->op == OP_INTCONST) && (value_size == 4)) {
|
|
*(((uint32_t *)buf) + index) = value->u.cval & 0xffffffff;
|
|
}
|
|
else {
|
|
fprintf(stderr, "%d %d\n",
|
|
value->op, value_size);
|
|
internal_error(state, 0, "unhandled constant initializer");
|
|
}
|
|
if (peek(state) == TOK_COMMA) {
|
|
eat(state, TOK_COMMA);
|
|
comma = 1;
|
|
}
|
|
index += 1;
|
|
} while(comma && (peek(state) != TOK_RBRACE));
|
|
eat(state, TOK_RBRACE);
|
|
result = triple(state, OP_BLOBCONST, type, 0, 0);
|
|
result->u.blob = buf;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static struct triple *function_definition(
|
|
struct compile_state *state, struct type *type)
|
|
{
|
|
struct triple *def, *tmp, *first, *end;
|
|
struct hash_entry *ident;
|
|
struct type *param;
|
|
int i;
|
|
if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
|
|
error(state, 0, "Invalid function header");
|
|
}
|
|
|
|
/* Verify the function type */
|
|
if (((type->right->type & TYPE_MASK) != TYPE_VOID) &&
|
|
((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
|
|
(type->right->field_ident == 0)) {
|
|
error(state, 0, "Invalid function parameters");
|
|
}
|
|
param = type->right;
|
|
i = 0;
|
|
while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
i++;
|
|
if (!param->left->field_ident) {
|
|
error(state, 0, "No identifier for parameter %d\n", i);
|
|
}
|
|
param = param->right;
|
|
}
|
|
i++;
|
|
if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
|
|
error(state, 0, "No identifier for paramter %d\n", i);
|
|
}
|
|
|
|
/* Get a list of statements for this function. */
|
|
def = triple(state, OP_LIST, type, 0, 0);
|
|
|
|
/* Start a new scope for the passed parameters */
|
|
start_scope(state);
|
|
|
|
/* Put a label at the very start of a function */
|
|
first = label(state);
|
|
RHS(def, 0) = first;
|
|
|
|
/* Put a label at the very end of a function */
|
|
end = label(state);
|
|
flatten(state, first, end);
|
|
|
|
/* Walk through the parameters and create symbol table entries
|
|
* for them.
|
|
*/
|
|
param = type->right;
|
|
while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
|
|
ident = param->left->field_ident;
|
|
tmp = variable(state, param->left);
|
|
symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
|
|
flatten(state, end, tmp);
|
|
param = param->right;
|
|
}
|
|
if ((param->type & TYPE_MASK) != TYPE_VOID) {
|
|
/* And don't forget the last parameter */
|
|
ident = param->field_ident;
|
|
tmp = variable(state, param);
|
|
symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
|
|
flatten(state, end, tmp);
|
|
}
|
|
/* Add a variable for the return value */
|
|
MISC(def, 0) = 0;
|
|
if ((type->left->type & TYPE_MASK) != TYPE_VOID) {
|
|
/* Remove all type qualifiers from the return type */
|
|
tmp = variable(state, clone_type(0, type->left));
|
|
flatten(state, end, tmp);
|
|
/* Remember where the return value is */
|
|
MISC(def, 0) = tmp;
|
|
}
|
|
|
|
/* Remember which function I am compiling.
|
|
* Also assume the last defined function is the main function.
|
|
*/
|
|
state->main_function = def;
|
|
|
|
/* Now get the actual function definition */
|
|
compound_statement(state, end);
|
|
|
|
/* Remove the parameter scope */
|
|
end_scope(state);
|
|
#if 0
|
|
fprintf(stdout, "\n");
|
|
loc(stdout, state, 0);
|
|
fprintf(stdout, "\n__________ function_definition _________\n");
|
|
print_triple(state, def);
|
|
fprintf(stdout, "__________ function_definition _________ done\n\n");
|
|
#endif
|
|
|
|
return def;
|
|
}
|
|
|
|
static struct triple *do_decl(struct compile_state *state,
|
|
struct type *type, struct hash_entry *ident)
|
|
{
|
|
struct triple *def;
|
|
def = 0;
|
|
/* Clean up the storage types used */
|
|
switch (type->type & STOR_MASK) {
|
|
case STOR_AUTO:
|
|
case STOR_STATIC:
|
|
/* These are the good types I am aiming for */
|
|
break;
|
|
case STOR_REGISTER:
|
|
type->type &= ~STOR_MASK;
|
|
type->type |= STOR_AUTO;
|
|
break;
|
|
case STOR_EXTERN:
|
|
type->type &= ~STOR_MASK;
|
|
type->type |= STOR_STATIC;
|
|
break;
|
|
case STOR_TYPEDEF:
|
|
if (!ident) {
|
|
error(state, 0, "typedef without name");
|
|
}
|
|
symbol(state, ident, &ident->sym_ident, 0, type);
|
|
ident->tok = TOK_TYPE_NAME;
|
|
return 0;
|
|
break;
|
|
default:
|
|
internal_error(state, 0, "Undefined storage class");
|
|
}
|
|
if (((type->type & STOR_MASK) == STOR_STATIC) &&
|
|
((type->type & QUAL_CONST) == 0)) {
|
|
error(state, 0, "non const static variables not supported");
|
|
}
|
|
if (ident) {
|
|
def = variable(state, type);
|
|
symbol(state, ident, &ident->sym_ident, def, type);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
static void decl(struct compile_state *state, struct triple *first)
|
|
{
|
|
struct type *base_type, *type;
|
|
struct hash_entry *ident;
|
|
struct triple *def;
|
|
int global;
|
|
global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
|
|
base_type = decl_specifiers(state);
|
|
ident = 0;
|
|
type = declarator(state, base_type, &ident, 0);
|
|
if (global && ident && (peek(state) == TOK_LBRACE)) {
|
|
/* function */
|
|
def = function_definition(state, type);
|
|
symbol(state, ident, &ident->sym_ident, def, type);
|
|
}
|
|
else {
|
|
int done;
|
|
flatten(state, first, do_decl(state, type, ident));
|
|
/* type or variable definition */
|
|
do {
|
|
done = 1;
|
|
if (peek(state) == TOK_EQ) {
|
|
if (!ident) {
|
|
error(state, 0, "cannot assign to a type");
|
|
}
|
|
eat(state, TOK_EQ);
|
|
flatten(state, first,
|
|
init_expr(state,
|
|
ident->sym_ident->def,
|
|
initializer(state, type)));
|
|
}
|
|
arrays_complete(state, type);
|
|
if (peek(state) == TOK_COMMA) {
|
|
eat(state, TOK_COMMA);
|
|
ident = 0;
|
|
type = declarator(state, base_type, &ident, 0);
|
|
flatten(state, first, do_decl(state, type, ident));
|
|
done = 0;
|
|
}
|
|
} while(!done);
|
|
eat(state, TOK_SEMI);
|
|
}
|
|
}
|
|
|
|
static void decls(struct compile_state *state)
|
|
{
|
|
struct triple *list;
|
|
int tok;
|
|
list = label(state);
|
|
while(1) {
|
|
tok = peek(state);
|
|
if (tok == TOK_EOF) {
|
|
return;
|
|
}
|
|
if (tok == TOK_SPACE) {
|
|
eat(state, TOK_SPACE);
|
|
}
|
|
decl(state, list);
|
|
if (list->next != list) {
|
|
error(state, 0, "global variables not supported");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Data structurs for optimation.
|
|
*/
|
|
|
|
static void do_use_block(
|
|
struct block *used, struct block_set **head, struct block *user,
|
|
int front)
|
|
{
|
|
struct block_set **ptr, *new;
|
|
if (!used)
|
|
return;
|
|
if (!user)
|
|
return;
|
|
ptr = head;
|
|
while(*ptr) {
|
|
if ((*ptr)->member == user) {
|
|
return;
|
|
}
|
|
ptr = &(*ptr)->next;
|
|
}
|
|
new = xcmalloc(sizeof(*new), "block_set");
|
|
new->member = user;
|
|
if (front) {
|
|
new->next = *head;
|
|
*head = new;
|
|
}
|
|
else {
|
|
new->next = 0;
|
|
*ptr = new;
|
|
}
|
|
}
|
|
static void do_unuse_block(
|
|
struct block *used, struct block_set **head, struct block *unuser)
|
|
{
|
|
struct block_set *use, **ptr;
|
|
ptr = head;
|
|
while(*ptr) {
|
|
use = *ptr;
|
|
if (use->member == unuser) {
|
|
*ptr = use->next;
|
|
memset(use, -1, sizeof(*use));
|
|
xfree(use);
|
|
}
|
|
else {
|
|
ptr = &use->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void use_block(struct block *used, struct block *user)
|
|
{
|
|
/* Append new to the head of the list, print_block
|
|
* depends on this.
|
|
*/
|
|
do_use_block(used, &used->use, user, 1);
|
|
used->users++;
|
|
}
|
|
static void unuse_block(struct block *used, struct block *unuser)
|
|
{
|
|
do_unuse_block(used, &used->use, unuser);
|
|
used->users--;
|
|
}
|
|
|
|
static void idom_block(struct block *idom, struct block *user)
|
|
{
|
|
do_use_block(idom, &idom->idominates, user, 0);
|
|
}
|
|
|
|
static void unidom_block(struct block *idom, struct block *unuser)
|
|
{
|
|
do_unuse_block(idom, &idom->idominates, unuser);
|
|
}
|
|
|
|
static void domf_block(struct block *block, struct block *domf)
|
|
{
|
|
do_use_block(block, &block->domfrontier, domf, 0);
|
|
}
|
|
|
|
static void undomf_block(struct block *block, struct block *undomf)
|
|
{
|
|
do_unuse_block(block, &block->domfrontier, undomf);
|
|
}
|
|
|
|
static void ipdom_block(struct block *ipdom, struct block *user)
|
|
{
|
|
do_use_block(ipdom, &ipdom->ipdominates, user, 0);
|
|
}
|
|
|
|
static void unipdom_block(struct block *ipdom, struct block *unuser)
|
|
{
|
|
do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
|
|
}
|
|
|
|
static void ipdomf_block(struct block *block, struct block *ipdomf)
|
|
{
|
|
do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
|
|
}
|
|
|
|
static void unipdomf_block(struct block *block, struct block *unipdomf)
|
|
{
|
|
do_unuse_block(block, &block->ipdomfrontier, unipdomf);
|
|
}
|
|
|
|
|
|
|
|
static int do_walk_triple(struct compile_state *state,
|
|
struct triple *ptr, int depth,
|
|
int (*cb)(struct compile_state *state, struct triple *ptr, int depth))
|
|
{
|
|
int result;
|
|
result = cb(state, ptr, depth);
|
|
if ((result == 0) && (ptr->op == OP_LIST)) {
|
|
struct triple *list;
|
|
list = ptr;
|
|
ptr = RHS(list, 0);
|
|
do {
|
|
result = do_walk_triple(state, ptr, depth + 1, cb);
|
|
if (ptr->next->prev != ptr) {
|
|
internal_error(state, ptr->next, "bad prev");
|
|
}
|
|
ptr = ptr->next;
|
|
|
|
} while((result == 0) && (ptr != RHS(list, 0)));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int walk_triple(
|
|
struct compile_state *state,
|
|
struct triple *ptr,
|
|
int (*cb)(struct compile_state *state, struct triple *ptr, int depth))
|
|
{
|
|
return do_walk_triple(state, ptr, 0, cb);
|
|
}
|
|
|
|
static void do_print_prefix(int depth)
|
|
{
|
|
int i;
|
|
for(i = 0; i < depth; i++) {
|
|
printf(" ");
|
|
}
|
|
}
|
|
|
|
#define PRINT_LIST 1
|
|
static int do_print_triple(struct compile_state *state, struct triple *ins, int depth)
|
|
{
|
|
int op;
|
|
op = ins->op;
|
|
if (op == OP_LIST) {
|
|
#if !PRINT_LIST
|
|
return 0;
|
|
#endif
|
|
}
|
|
if ((op == OP_LABEL) && (ins->use)) {
|
|
printf("\n%p:\n", ins);
|
|
}
|
|
do_print_prefix(depth);
|
|
display_triple(stdout, ins);
|
|
|
|
if ((ins->op == OP_BRANCH) && ins->use) {
|
|
internal_error(state, ins, "branch used?");
|
|
}
|
|
#if 0
|
|
{
|
|
struct triple_set *user;
|
|
for(user = ins->use; user; user = user->next) {
|
|
printf("use: %p\n", user->member);
|
|
}
|
|
}
|
|
#endif
|
|
if (triple_is_branch(state, ins)) {
|
|
printf("\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void print_triple(struct compile_state *state, struct triple *ins)
|
|
{
|
|
walk_triple(state, ins, do_print_triple);
|
|
}
|
|
|
|
static void print_triples(struct compile_state *state)
|
|
{
|
|
print_triple(state, state->main_function);
|
|
}
|
|
|
|
struct cf_block {
|
|
struct block *block;
|
|
};
|
|
static void find_cf_blocks(struct cf_block *cf, struct block *block)
|
|
{
|
|
if (!block || (cf[block->vertex].block == block)) {
|
|
return;
|
|
}
|
|
cf[block->vertex].block = block;
|
|
find_cf_blocks(cf, block->left);
|
|
find_cf_blocks(cf, block->right);
|
|
}
|
|
|
|
static void print_control_flow(struct compile_state *state)
|
|
{
|
|
struct cf_block *cf;
|
|
int i;
|
|
printf("\ncontrol flow\n");
|
|
cf = xcmalloc(sizeof(*cf) * (state->last_vertex + 1), "cf_block");
|
|
find_cf_blocks(cf, state->first_block);
|
|
|
|
for(i = 1; i <= state->last_vertex; i++) {
|
|
struct block *block;
|
|
block = cf[i].block;
|
|
if (!block)
|
|
continue;
|
|
printf("(%p) %d:", block, block->vertex);
|
|
if (block->left) {
|
|
printf(" %d", block->left->vertex);
|
|
}
|
|
if (block->right && (block->right != block->left)) {
|
|
printf(" %d", block->right->vertex);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
xfree(cf);
|
|
}
|
|
|
|
|
|
static struct block *basic_block(struct compile_state *state,
|
|
struct triple *first)
|
|
{
|
|
struct block *block;
|
|
struct triple *ptr;
|
|
int op;
|
|
if (first->op != OP_LABEL) {
|
|
internal_error(state, 0, "block does not start with a label");
|
|
}
|
|
/* See if this basic block has already been setup */
|
|
if (first->u.block != 0) {
|
|
return first->u.block;
|
|
}
|
|
/* Allocate another basic block structure */
|
|
state->last_vertex += 1;
|
|
block = xcmalloc(sizeof(*block), "block");
|
|
block->first = block->last = first;
|
|
block->vertex = state->last_vertex;
|
|
ptr = first;
|
|
do {
|
|
if ((ptr != first) && (ptr->op == OP_LABEL) && ptr->use) {
|
|
break;
|
|
}
|
|
block->last = ptr;
|
|
/* If ptr->u is not used remember where the baic block is */
|
|
if (triple_stores_block(state, ptr)) {
|
|
ptr->u.block = block;
|
|
}
|
|
if (ptr->op == OP_BRANCH) {
|
|
break;
|
|
}
|
|
ptr = ptr->next;
|
|
} while (ptr != RHS(state->main_function, 0));
|
|
if (ptr == RHS(state->main_function, 0))
|
|
return block;
|
|
op = ptr->op;
|
|
if (op == OP_LABEL) {
|
|
block->left = basic_block(state, ptr);
|
|
block->right = 0;
|
|
use_block(block->left, block);
|
|
}
|
|
else if (op == OP_BRANCH) {
|
|
block->left = 0;
|
|
/* Trace the branch target */
|
|
block->right = basic_block(state, TARG(ptr, 0));
|
|
use_block(block->right, block);
|
|
/* If there is a test trace the branch as well */
|
|
if (TRIPLE_RHS(ptr->sizes)) {
|
|
block->left = basic_block(state, ptr->next);
|
|
use_block(block->left, block);
|
|
}
|
|
}
|
|
else {
|
|
internal_error(state, 0, "Bad basic block split");
|
|
}
|
|
return block;
|
|
}
|
|
|
|
|
|
static void walk_blocks(struct compile_state *state,
|
|
void (*cb)(struct compile_state *state, struct block *block, void *arg),
|
|
void *arg)
|
|
{
|
|
struct triple *ptr, *first;
|
|
struct block *last_block;
|
|
last_block = 0;
|
|
first = RHS(state->main_function, 0);
|
|
ptr = first;
|
|
do {
|
|
struct block *block;
|
|
if (ptr->op == OP_LABEL) {
|
|
block = ptr->u.block;
|
|
if (block && (block != last_block)) {
|
|
cb(state, block, arg);
|
|
}
|
|
last_block = block;
|
|
}
|
|
ptr = ptr->next;
|
|
} while(ptr != first);
|
|
}
|
|
|
|
static void print_block(
|
|
struct compile_state *state, struct block *block, void *arg)
|
|
{
|
|
struct triple *ptr;
|
|
FILE *fp = arg;
|
|
|
|
fprintf(fp, "\nblock: %p (%d), %p<-%p %p<-%p\n",
|
|
block,
|
|
block->vertex,
|
|
block->left,
|
|
block->left && block->left->use?block->left->use->member : 0,
|
|
block->right,
|
|
block->right && block->right->use?block->right->use->member : 0);
|
|
if (block->first->op == OP_LABEL) {
|
|
fprintf(fp, "%p:\n", block->first);
|
|
}
|
|
for(ptr = block->first; ; ptr = ptr->next) {
|
|
struct triple_set *user;
|
|
int op = ptr->op;
|
|
|
|
if (triple_stores_block(state, ptr)) {
|
|
if (ptr->u.block != block) {
|
|
internal_error(state, ptr,
|
|
"Wrong block pointer: %p\n",
|
|
ptr->u.block);
|
|
}
|
|
}
|
|
if (op == OP_ADECL) {
|
|
for(user = ptr->use; user; user = user->next) {
|
|
if (!user->member->u.block) {
|
|
internal_error(state, user->member,
|
|
"Use %p not in a block?\n",
|
|
user->member);
|
|
}
|
|
}
|
|
}
|
|
display_triple(fp, ptr);
|
|
|
|
#if 0
|
|
for(user = ptr->use; user; user = user->next) {
|
|
fprintf(fp, "use: %p\n", user->member);
|
|
}
|
|
#endif
|
|
|
|
/* Sanity checks... */
|
|
valid_ins(state, ptr);
|
|
for(user = ptr->use; user; user = user->next) {
|
|
struct triple *use;
|
|
use = user->member;
|
|
valid_ins(state, use);
|
|
if (triple_stores_block(state, user->member) &&
|
|
!user->member->u.block) {
|
|
internal_error(state, user->member,
|
|
"Use %p not in a block?",
|
|
user->member);
|
|
}
|
|
}
|
|
|
|
if (ptr == block->last)
|
|
break;
|
|
}
|
|
fprintf(fp,"\n");
|
|
}
|
|
|
|
|
|
static void print_blocks(struct compile_state *state, FILE *fp)
|
|
{
|
|
fprintf(fp, "--------------- blocks ---------------\n");
|
|
walk_blocks(state, print_block, fp);
|
|
}
|
|
|
|
static void prune_nonblock_triples(struct compile_state *state)
|
|
{
|
|
struct block *block;
|
|
struct triple *first, *ins, *next;
|
|
/* Delete the triples not in a basic block */
|
|
first = RHS(state->main_function, 0);
|
|
block = 0;
|
|
ins = first;
|
|
do {
|
|
next = ins->next;
|
|
if (ins->op == OP_LABEL) {
|
|
block = ins->u.block;
|
|
}
|
|
if (!block) {
|
|
release_triple(state, ins);
|
|
}
|
|
ins = next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
static void setup_basic_blocks(struct compile_state *state)
|
|
{
|
|
if (!triple_stores_block(state, RHS(state->main_function, 0)) ||
|
|
!triple_stores_block(state, RHS(state->main_function,0)->prev)) {
|
|
internal_error(state, 0, "ins will not store block?");
|
|
}
|
|
/* Find the basic blocks */
|
|
state->last_vertex = 0;
|
|
state->first_block = basic_block(state, RHS(state->main_function,0));
|
|
/* Delete the triples not in a basic block */
|
|
prune_nonblock_triples(state);
|
|
/* Find the last basic block */
|
|
state->last_block = RHS(state->main_function, 0)->prev->u.block;
|
|
if (!state->last_block) {
|
|
internal_error(state, 0, "end not used?");
|
|
}
|
|
/* Insert an extra unused edge from start to the end
|
|
* This helps with reverse control flow calculations.
|
|
*/
|
|
use_block(state->first_block, state->last_block);
|
|
/* If we are debugging print what I have just done */
|
|
if (state->debug & DEBUG_BASIC_BLOCKS) {
|
|
print_blocks(state, stdout);
|
|
print_control_flow(state);
|
|
}
|
|
}
|
|
|
|
static void free_basic_block(struct compile_state *state, struct block *block)
|
|
{
|
|
struct block_set *entry, *next;
|
|
struct block *child;
|
|
if (!block) {
|
|
return;
|
|
}
|
|
if (block->vertex == -1) {
|
|
return;
|
|
}
|
|
block->vertex = -1;
|
|
if (block->left) {
|
|
unuse_block(block->left, block);
|
|
}
|
|
if (block->right) {
|
|
unuse_block(block->right, block);
|
|
}
|
|
if (block->idom) {
|
|
unidom_block(block->idom, block);
|
|
}
|
|
block->idom = 0;
|
|
if (block->ipdom) {
|
|
unipdom_block(block->ipdom, block);
|
|
}
|
|
block->ipdom = 0;
|
|
for(entry = block->use; entry; entry = next) {
|
|
next = entry->next;
|
|
child = entry->member;
|
|
unuse_block(block, child);
|
|
if (child->left == block) {
|
|
child->left = 0;
|
|
}
|
|
if (child->right == block) {
|
|
child->right = 0;
|
|
}
|
|
}
|
|
for(entry = block->idominates; entry; entry = next) {
|
|
next = entry->next;
|
|
child = entry->member;
|
|
unidom_block(block, child);
|
|
child->idom = 0;
|
|
}
|
|
for(entry = block->domfrontier; entry; entry = next) {
|
|
next = entry->next;
|
|
child = entry->member;
|
|
undomf_block(block, child);
|
|
}
|
|
for(entry = block->ipdominates; entry; entry = next) {
|
|
next = entry->next;
|
|
child = entry->member;
|
|
unipdom_block(block, child);
|
|
child->ipdom = 0;
|
|
}
|
|
for(entry = block->ipdomfrontier; entry; entry = next) {
|
|
next = entry->next;
|
|
child = entry->member;
|
|
unipdomf_block(block, child);
|
|
}
|
|
if (block->users != 0) {
|
|
internal_error(state, 0, "block still has users");
|
|
}
|
|
free_basic_block(state, block->left);
|
|
block->left = 0;
|
|
free_basic_block(state, block->right);
|
|
block->right = 0;
|
|
memset(block, -1, sizeof(*block));
|
|
xfree(block);
|
|
}
|
|
|
|
static void free_basic_blocks(struct compile_state *state)
|
|
{
|
|
struct triple *first, *ins;
|
|
free_basic_block(state, state->first_block);
|
|
state->last_vertex = 0;
|
|
state->first_block = state->last_block = 0;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
if (triple_stores_block(state, ins)) {
|
|
ins->u.block = 0;
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
|
|
}
|
|
|
|
struct sdom_block {
|
|
struct block *block;
|
|
struct sdom_block *sdominates;
|
|
struct sdom_block *sdom_next;
|
|
struct sdom_block *sdom;
|
|
struct sdom_block *label;
|
|
struct sdom_block *parent;
|
|
struct sdom_block *ancestor;
|
|
int vertex;
|
|
};
|
|
|
|
|
|
static void unsdom_block(struct sdom_block *block)
|
|
{
|
|
struct sdom_block **ptr;
|
|
if (!block->sdom_next) {
|
|
return;
|
|
}
|
|
ptr = &block->sdom->sdominates;
|
|
while(*ptr) {
|
|
if ((*ptr) == block) {
|
|
*ptr = block->sdom_next;
|
|
return;
|
|
}
|
|
ptr = &(*ptr)->sdom_next;
|
|
}
|
|
}
|
|
|
|
static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
|
|
{
|
|
unsdom_block(block);
|
|
block->sdom = sdom;
|
|
block->sdom_next = sdom->sdominates;
|
|
sdom->sdominates = block;
|
|
}
|
|
|
|
|
|
|
|
static int initialize_sdblock(struct sdom_block *sd,
|
|
struct block *parent, struct block *block, int vertex)
|
|
{
|
|
if (!block || (sd[block->vertex].block == block)) {
|
|
return vertex;
|
|
}
|
|
vertex += 1;
|
|
/* Renumber the blocks in a convinient fashion */
|
|
block->vertex = vertex;
|
|
sd[vertex].block = block;
|
|
sd[vertex].sdom = &sd[vertex];
|
|
sd[vertex].label = &sd[vertex];
|
|
sd[vertex].parent = parent? &sd[parent->vertex] : 0;
|
|
sd[vertex].ancestor = 0;
|
|
sd[vertex].vertex = vertex;
|
|
vertex = initialize_sdblock(sd, block, block->left, vertex);
|
|
vertex = initialize_sdblock(sd, block, block->right, vertex);
|
|
return vertex;
|
|
}
|
|
|
|
static int initialize_sdpblock(struct sdom_block *sd,
|
|
struct block *parent, struct block *block, int vertex)
|
|
{
|
|
struct block_set *user;
|
|
if (!block || (sd[block->vertex].block == block)) {
|
|
return vertex;
|
|
}
|
|
vertex += 1;
|
|
/* Renumber the blocks in a convinient fashion */
|
|
block->vertex = vertex;
|
|
sd[vertex].block = block;
|
|
sd[vertex].sdom = &sd[vertex];
|
|
sd[vertex].label = &sd[vertex];
|
|
sd[vertex].parent = parent? &sd[parent->vertex] : 0;
|
|
sd[vertex].ancestor = 0;
|
|
sd[vertex].vertex = vertex;
|
|
for(user = block->use; user; user = user->next) {
|
|
vertex = initialize_sdpblock(sd, block, user->member, vertex);
|
|
}
|
|
return vertex;
|
|
}
|
|
|
|
static void compress_ancestors(struct sdom_block *v)
|
|
{
|
|
/* This procedure assumes ancestor(v) != 0 */
|
|
/* if (ancestor(ancestor(v)) != 0) {
|
|
* compress(ancestor(ancestor(v)));
|
|
* if (semi(label(ancestor(v))) < semi(label(v))) {
|
|
* label(v) = label(ancestor(v));
|
|
* }
|
|
* ancestor(v) = ancestor(ancestor(v));
|
|
* }
|
|
*/
|
|
if (!v->ancestor) {
|
|
return;
|
|
}
|
|
if (v->ancestor->ancestor) {
|
|
compress_ancestors(v->ancestor->ancestor);
|
|
if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
|
|
v->label = v->ancestor->label;
|
|
}
|
|
v->ancestor = v->ancestor->ancestor;
|
|
}
|
|
}
|
|
|
|
static void compute_sdom(struct compile_state *state, struct sdom_block *sd)
|
|
{
|
|
int i;
|
|
/* // step 2
|
|
* for each v <= pred(w) {
|
|
* u = EVAL(v);
|
|
* if (semi[u] < semi[w] {
|
|
* semi[w] = semi[u];
|
|
* }
|
|
* }
|
|
* add w to bucket(vertex(semi[w]));
|
|
* LINK(parent(w), w);
|
|
*
|
|
* // step 3
|
|
* for each v <= bucket(parent(w)) {
|
|
* delete v from bucket(parent(w));
|
|
* u = EVAL(v);
|
|
* dom(v) = (semi[u] < semi[v]) ? u : parent(w);
|
|
* }
|
|
*/
|
|
for(i = state->last_vertex; i >= 2; i--) {
|
|
struct sdom_block *v, *parent, *next;
|
|
struct block_set *user;
|
|
struct block *block;
|
|
block = sd[i].block;
|
|
parent = sd[i].parent;
|
|
/* Step 2 */
|
|
for(user = block->use; user; user = user->next) {
|
|
struct sdom_block *v, *u;
|
|
v = &sd[user->member->vertex];
|
|
u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
|
|
if (u->sdom->vertex < sd[i].sdom->vertex) {
|
|
sd[i].sdom = u->sdom;
|
|
}
|
|
}
|
|
sdom_block(sd[i].sdom, &sd[i]);
|
|
sd[i].ancestor = parent;
|
|
/* Step 3 */
|
|
for(v = parent->sdominates; v; v = next) {
|
|
struct sdom_block *u;
|
|
next = v->sdom_next;
|
|
unsdom_block(v);
|
|
u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
|
|
v->block->idom = (u->sdom->vertex < v->sdom->vertex)?
|
|
u->block : parent->block;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void compute_spdom(struct compile_state *state, struct sdom_block *sd)
|
|
{
|
|
int i;
|
|
/* // step 2
|
|
* for each v <= pred(w) {
|
|
* u = EVAL(v);
|
|
* if (semi[u] < semi[w] {
|
|
* semi[w] = semi[u];
|
|
* }
|
|
* }
|
|
* add w to bucket(vertex(semi[w]));
|
|
* LINK(parent(w), w);
|
|
*
|
|
* // step 3
|
|
* for each v <= bucket(parent(w)) {
|
|
* delete v from bucket(parent(w));
|
|
* u = EVAL(v);
|
|
* dom(v) = (semi[u] < semi[v]) ? u : parent(w);
|
|
* }
|
|
*/
|
|
for(i = state->last_vertex; i >= 2; i--) {
|
|
struct sdom_block *u, *v, *parent, *next;
|
|
struct block *block;
|
|
block = sd[i].block;
|
|
parent = sd[i].parent;
|
|
/* Step 2 */
|
|
if (block->left) {
|
|
v = &sd[block->left->vertex];
|
|
u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
|
|
if (u->sdom->vertex < sd[i].sdom->vertex) {
|
|
sd[i].sdom = u->sdom;
|
|
}
|
|
}
|
|
if (block->right && (block->right != block->left)) {
|
|
v = &sd[block->right->vertex];
|
|
u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
|
|
if (u->sdom->vertex < sd[i].sdom->vertex) {
|
|
sd[i].sdom = u->sdom;
|
|
}
|
|
}
|
|
sdom_block(sd[i].sdom, &sd[i]);
|
|
sd[i].ancestor = parent;
|
|
/* Step 3 */
|
|
for(v = parent->sdominates; v; v = next) {
|
|
struct sdom_block *u;
|
|
next = v->sdom_next;
|
|
unsdom_block(v);
|
|
u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
|
|
v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)?
|
|
u->block : parent->block;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void compute_idom(struct compile_state *state, struct sdom_block *sd)
|
|
{
|
|
int i;
|
|
for(i = 2; i <= state->last_vertex; i++) {
|
|
struct block *block;
|
|
block = sd[i].block;
|
|
if (block->idom->vertex != sd[i].sdom->vertex) {
|
|
block->idom = block->idom->idom;
|
|
}
|
|
idom_block(block->idom, block);
|
|
}
|
|
sd[1].block->idom = 0;
|
|
}
|
|
|
|
static void compute_ipdom(struct compile_state *state, struct sdom_block *sd)
|
|
{
|
|
int i;
|
|
for(i = 2; i <= state->last_vertex; i++) {
|
|
struct block *block;
|
|
block = sd[i].block;
|
|
if (block->ipdom->vertex != sd[i].sdom->vertex) {
|
|
block->ipdom = block->ipdom->ipdom;
|
|
}
|
|
ipdom_block(block->ipdom, block);
|
|
}
|
|
sd[1].block->ipdom = 0;
|
|
}
|
|
|
|
/* Theorem 1:
|
|
* Every vertex of a flowgraph G = (V, E, r) except r has
|
|
* a unique immediate dominator.
|
|
* The edges {(idom(w), w) |w <= V - {r}} form a directed tree
|
|
* rooted at r, called the dominator tree of G, such that
|
|
* v dominates w if and only if v is a proper ancestor of w in
|
|
* the dominator tree.
|
|
*/
|
|
/* Lemma 1:
|
|
* If v and w are vertices of G such that v <= w,
|
|
* than any path from v to w must contain a common ancestor
|
|
* of v and w in T.
|
|
*/
|
|
/* Lemma 2: For any vertex w != r, idom(w) -> w */
|
|
/* Lemma 3: For any vertex w != r, sdom(w) -> w */
|
|
/* Lemma 4: For any vertex w != r, idom(w) -> sdom(w) */
|
|
/* Theorem 2:
|
|
* Let w != r. Suppose every u for which sdom(w) -> u -> w satisfies
|
|
* sdom(u) >= sdom(w). Then idom(w) = sdom(w).
|
|
*/
|
|
/* Theorem 3:
|
|
* Let w != r and let u be a vertex for which sdom(u) is
|
|
* minimum amoung vertices u satisfying sdom(w) -> u -> w.
|
|
* Then sdom(u) <= sdom(w) and idom(u) = idom(w).
|
|
*/
|
|
/* Lemma 5: Let vertices v,w satisfy v -> w.
|
|
* Then v -> idom(w) or idom(w) -> idom(v)
|
|
*/
|
|
|
|
static void find_immediate_dominators(struct compile_state *state)
|
|
{
|
|
struct sdom_block *sd;
|
|
/* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
|
|
* vi > w for (1 <= i <= k - 1}
|
|
*/
|
|
/* Theorem 4:
|
|
* For any vertex w != r.
|
|
* sdom(w) = min(
|
|
* {v|(v,w) <= E and v < w } U
|
|
* {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
|
|
*/
|
|
/* Corollary 1:
|
|
* Let w != r and let u be a vertex for which sdom(u) is
|
|
* minimum amoung vertices u satisfying sdom(w) -> u -> w.
|
|
* Then:
|
|
* { sdom(w) if sdom(w) = sdom(u),
|
|
* idom(w) = {
|
|
* { idom(u) otherwise
|
|
*/
|
|
/* The algorithm consists of the following 4 steps.
|
|
* Step 1. Carry out a depth-first search of the problem graph.
|
|
* Number the vertices from 1 to N as they are reached during
|
|
* the search. Initialize the variables used in succeeding steps.
|
|
* Step 2. Compute the semidominators of all vertices by applying
|
|
* theorem 4. Carry out the computation vertex by vertex in
|
|
* decreasing order by number.
|
|
* Step 3. Implicitly define the immediate dominator of each vertex
|
|
* by applying Corollary 1.
|
|
* Step 4. Explicitly define the immediate dominator of each vertex,
|
|
* carrying out the computation vertex by vertex in increasing order
|
|
* by number.
|
|
*/
|
|
/* Step 1 initialize the basic block information */
|
|
sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
|
|
initialize_sdblock(sd, 0, state->first_block, 0);
|
|
#if 0
|
|
sd[1].size = 0;
|
|
sd[1].label = 0;
|
|
sd[1].sdom = 0;
|
|
#endif
|
|
/* Step 2 compute the semidominators */
|
|
/* Step 3 implicitly define the immediate dominator of each vertex */
|
|
compute_sdom(state, sd);
|
|
/* Step 4 explicitly define the immediate dominator of each vertex */
|
|
compute_idom(state, sd);
|
|
xfree(sd);
|
|
}
|
|
|
|
static void find_post_dominators(struct compile_state *state)
|
|
{
|
|
struct sdom_block *sd;
|
|
/* Step 1 initialize the basic block information */
|
|
sd = xcmalloc(sizeof(*sd) * (state->last_vertex + 1), "sdom_state");
|
|
|
|
initialize_sdpblock(sd, 0, state->last_block, 0);
|
|
|
|
/* Step 2 compute the semidominators */
|
|
/* Step 3 implicitly define the immediate dominator of each vertex */
|
|
compute_spdom(state, sd);
|
|
/* Step 4 explicitly define the immediate dominator of each vertex */
|
|
compute_ipdom(state, sd);
|
|
xfree(sd);
|
|
}
|
|
|
|
|
|
|
|
static void find_block_domf(struct compile_state *state, struct block *block)
|
|
{
|
|
struct block *child;
|
|
struct block_set *user;
|
|
if (block->domfrontier != 0) {
|
|
internal_error(state, block->first, "domfrontier present?");
|
|
}
|
|
for(user = block->idominates; user; user = user->next) {
|
|
child = user->member;
|
|
if (child->idom != block) {
|
|
internal_error(state, block->first, "bad idom");
|
|
}
|
|
find_block_domf(state, child);
|
|
}
|
|
if (block->left && block->left->idom != block) {
|
|
domf_block(block, block->left);
|
|
}
|
|
if (block->right && block->right->idom != block) {
|
|
domf_block(block, block->right);
|
|
}
|
|
for(user = block->idominates; user; user = user->next) {
|
|
struct block_set *frontier;
|
|
child = user->member;
|
|
for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
|
|
if (frontier->member->idom != block) {
|
|
domf_block(block, frontier->member);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void find_block_ipdomf(struct compile_state *state, struct block *block)
|
|
{
|
|
struct block *child;
|
|
struct block_set *user;
|
|
if (block->ipdomfrontier != 0) {
|
|
internal_error(state, block->first, "ipdomfrontier present?");
|
|
}
|
|
for(user = block->ipdominates; user; user = user->next) {
|
|
child = user->member;
|
|
if (child->ipdom != block) {
|
|
internal_error(state, block->first, "bad ipdom");
|
|
}
|
|
find_block_ipdomf(state, child);
|
|
}
|
|
if (block->left && block->left->ipdom != block) {
|
|
ipdomf_block(block, block->left);
|
|
}
|
|
if (block->right && block->right->ipdom != block) {
|
|
ipdomf_block(block, block->right);
|
|
}
|
|
for(user = block->idominates; user; user = user->next) {
|
|
struct block_set *frontier;
|
|
child = user->member;
|
|
for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
|
|
if (frontier->member->ipdom != block) {
|
|
ipdomf_block(block, frontier->member);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void print_dominated(
|
|
struct compile_state *state, struct block *block, void *arg)
|
|
{
|
|
struct block_set *user;
|
|
FILE *fp = arg;
|
|
|
|
fprintf(fp, "%d:", block->vertex);
|
|
for(user = block->idominates; user; user = user->next) {
|
|
fprintf(fp, " %d", user->member->vertex);
|
|
if (user->member->idom != block) {
|
|
internal_error(state, user->member->first, "bad idom");
|
|
}
|
|
}
|
|
fprintf(fp,"\n");
|
|
}
|
|
|
|
static void print_dominators(struct compile_state *state, FILE *fp)
|
|
{
|
|
fprintf(fp, "\ndominates\n");
|
|
walk_blocks(state, print_dominated, fp);
|
|
}
|
|
|
|
|
|
static int print_frontiers(
|
|
struct compile_state *state, struct block *block, int vertex)
|
|
{
|
|
struct block_set *user;
|
|
|
|
if (!block || (block->vertex != vertex + 1)) {
|
|
return vertex;
|
|
}
|
|
vertex += 1;
|
|
|
|
printf("%d:", block->vertex);
|
|
for(user = block->domfrontier; user; user = user->next) {
|
|
printf(" %d", user->member->vertex);
|
|
}
|
|
printf("\n");
|
|
|
|
vertex = print_frontiers(state, block->left, vertex);
|
|
vertex = print_frontiers(state, block->right, vertex);
|
|
return vertex;
|
|
}
|
|
static void print_dominance_frontiers(struct compile_state *state)
|
|
{
|
|
printf("\ndominance frontiers\n");
|
|
print_frontiers(state, state->first_block, 0);
|
|
|
|
}
|
|
|
|
static void analyze_idominators(struct compile_state *state)
|
|
{
|
|
/* Find the immediate dominators */
|
|
find_immediate_dominators(state);
|
|
/* Find the dominance frontiers */
|
|
find_block_domf(state, state->first_block);
|
|
/* If debuging print the print what I have just found */
|
|
if (state->debug & DEBUG_FDOMINATORS) {
|
|
print_dominators(state, stdout);
|
|
print_dominance_frontiers(state);
|
|
print_control_flow(state);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void print_ipdominated(
|
|
struct compile_state *state, struct block *block, void *arg)
|
|
{
|
|
struct block_set *user;
|
|
FILE *fp = arg;
|
|
|
|
fprintf(fp, "%d:", block->vertex);
|
|
for(user = block->ipdominates; user; user = user->next) {
|
|
fprintf(fp, " %d", user->member->vertex);
|
|
if (user->member->ipdom != block) {
|
|
internal_error(state, user->member->first, "bad ipdom");
|
|
}
|
|
}
|
|
fprintf(fp, "\n");
|
|
}
|
|
|
|
static void print_ipdominators(struct compile_state *state, FILE *fp)
|
|
{
|
|
fprintf(fp, "\nipdominates\n");
|
|
walk_blocks(state, print_ipdominated, fp);
|
|
}
|
|
|
|
static int print_pfrontiers(
|
|
struct compile_state *state, struct block *block, int vertex)
|
|
{
|
|
struct block_set *user;
|
|
|
|
if (!block || (block->vertex != vertex + 1)) {
|
|
return vertex;
|
|
}
|
|
vertex += 1;
|
|
|
|
printf("%d:", block->vertex);
|
|
for(user = block->ipdomfrontier; user; user = user->next) {
|
|
printf(" %d", user->member->vertex);
|
|
}
|
|
printf("\n");
|
|
for(user = block->use; user; user = user->next) {
|
|
vertex = print_pfrontiers(state, user->member, vertex);
|
|
}
|
|
return vertex;
|
|
}
|
|
static void print_ipdominance_frontiers(struct compile_state *state)
|
|
{
|
|
printf("\nipdominance frontiers\n");
|
|
print_pfrontiers(state, state->last_block, 0);
|
|
|
|
}
|
|
|
|
static void analyze_ipdominators(struct compile_state *state)
|
|
{
|
|
/* Find the post dominators */
|
|
find_post_dominators(state);
|
|
/* Find the control dependencies (post dominance frontiers) */
|
|
find_block_ipdomf(state, state->last_block);
|
|
/* If debuging print the print what I have just found */
|
|
if (state->debug & DEBUG_RDOMINATORS) {
|
|
print_ipdominators(state, stdout);
|
|
print_ipdominance_frontiers(state);
|
|
print_control_flow(state);
|
|
}
|
|
}
|
|
|
|
static int bdominates(struct compile_state *state,
|
|
struct block *dom, struct block *sub)
|
|
{
|
|
while(sub && (sub != dom)) {
|
|
sub = sub->idom;
|
|
}
|
|
return sub == dom;
|
|
}
|
|
|
|
static int tdominates(struct compile_state *state,
|
|
struct triple *dom, struct triple *sub)
|
|
{
|
|
struct block *bdom, *bsub;
|
|
int result;
|
|
bdom = block_of_triple(state, dom);
|
|
bsub = block_of_triple(state, sub);
|
|
if (bdom != bsub) {
|
|
result = bdominates(state, bdom, bsub);
|
|
}
|
|
else {
|
|
struct triple *ins;
|
|
ins = sub;
|
|
while((ins != bsub->first) && (ins != dom)) {
|
|
ins = ins->prev;
|
|
}
|
|
result = (ins == dom);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void insert_phi_operations(struct compile_state *state)
|
|
{
|
|
size_t size;
|
|
struct triple *first;
|
|
int *has_already, *work;
|
|
struct block *work_list, **work_list_tail;
|
|
int iter;
|
|
struct triple *var;
|
|
|
|
size = sizeof(int) * (state->last_vertex + 1);
|
|
has_already = xcmalloc(size, "has_already");
|
|
work = xcmalloc(size, "work");
|
|
iter = 0;
|
|
|
|
first = RHS(state->main_function, 0);
|
|
for(var = first->next; var != first ; var = var->next) {
|
|
struct block *block;
|
|
struct triple_set *user;
|
|
if ((var->op != OP_ADECL) || !var->use) {
|
|
continue;
|
|
}
|
|
iter += 1;
|
|
work_list = 0;
|
|
work_list_tail = &work_list;
|
|
for(user = var->use; user; user = user->next) {
|
|
if (user->member->op == OP_READ) {
|
|
continue;
|
|
}
|
|
if (user->member->op != OP_WRITE) {
|
|
internal_error(state, user->member,
|
|
"bad variable access");
|
|
}
|
|
block = user->member->u.block;
|
|
if (!block) {
|
|
warning(state, user->member, "dead code");
|
|
}
|
|
if (work[block->vertex] >= iter) {
|
|
continue;
|
|
}
|
|
work[block->vertex] = iter;
|
|
*work_list_tail = block;
|
|
block->work_next = 0;
|
|
work_list_tail = &block->work_next;
|
|
}
|
|
for(block = work_list; block; block = block->work_next) {
|
|
struct block_set *df;
|
|
for(df = block->domfrontier; df; df = df->next) {
|
|
struct triple *phi;
|
|
struct block *front;
|
|
int in_edges;
|
|
front = df->member;
|
|
|
|
if (has_already[front->vertex] >= iter) {
|
|
continue;
|
|
}
|
|
/* Count how many edges flow into this block */
|
|
in_edges = front->users;
|
|
/* Insert a phi function for this variable */
|
|
phi = alloc_triple(
|
|
state, OP_PHI, var->type, -1, in_edges,
|
|
front->first->filename,
|
|
front->first->line,
|
|
front->first->col);
|
|
phi->u.block = front;
|
|
MISC(phi, 0) = var;
|
|
use_triple(var, phi);
|
|
/* Insert the phi functions immediately after the label */
|
|
insert_triple(state, front->first->next, phi);
|
|
if (front->first == front->last) {
|
|
front->last = front->first->next;
|
|
}
|
|
has_already[front->vertex] = iter;
|
|
|
|
/* If necessary plan to visit the basic block */
|
|
if (work[front->vertex] >= iter) {
|
|
continue;
|
|
}
|
|
work[front->vertex] = iter;
|
|
*work_list_tail = front;
|
|
front->work_next = 0;
|
|
work_list_tail = &front->work_next;
|
|
}
|
|
}
|
|
}
|
|
xfree(has_already);
|
|
xfree(work);
|
|
}
|
|
|
|
/*
|
|
* C(V)
|
|
* S(V)
|
|
*/
|
|
static void fixup_block_phi_variables(
|
|
struct compile_state *state, struct block *parent, struct block *block)
|
|
{
|
|
struct block_set *set;
|
|
struct triple *ptr;
|
|
int edge;
|
|
if (!parent || !block)
|
|
return;
|
|
/* Find the edge I am coming in on */
|
|
edge = 0;
|
|
for(set = block->use; set; set = set->next, edge++) {
|
|
if (set->member == parent) {
|
|
break;
|
|
}
|
|
}
|
|
if (!set) {
|
|
internal_error(state, 0, "phi input is not on a control predecessor");
|
|
}
|
|
for(ptr = block->first; ; ptr = ptr->next) {
|
|
if (ptr->op == OP_PHI) {
|
|
struct triple *var, *val, **slot;
|
|
var = MISC(ptr, 0);
|
|
if (!var) {
|
|
internal_error(state, ptr, "no var???");
|
|
}
|
|
/* Find the current value of the variable */
|
|
val = var->use->member;
|
|
if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
|
|
internal_error(state, val, "bad value in phi");
|
|
}
|
|
if (edge >= TRIPLE_RHS(ptr->sizes)) {
|
|
internal_error(state, ptr, "edges > phi rhs");
|
|
}
|
|
slot = &RHS(ptr, edge);
|
|
if ((*slot != 0) && (*slot != val)) {
|
|
internal_error(state, ptr, "phi already bound on this edge");
|
|
}
|
|
*slot = val;
|
|
use_triple(val, ptr);
|
|
}
|
|
if (ptr == block->last) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void rename_block_variables(
|
|
struct compile_state *state, struct block *block)
|
|
{
|
|
struct block_set *user;
|
|
struct triple *ptr, *next, *last;
|
|
int done;
|
|
if (!block)
|
|
return;
|
|
last = block->first;
|
|
done = 0;
|
|
for(ptr = block->first; !done; ptr = next) {
|
|
next = ptr->next;
|
|
if (ptr == block->last) {
|
|
done = 1;
|
|
}
|
|
/* RHS(A) */
|
|
if (ptr->op == OP_READ) {
|
|
struct triple *var, *val;
|
|
var = RHS(ptr, 0);
|
|
unuse_triple(var, ptr);
|
|
if (!var->use) {
|
|
error(state, ptr, "variable used without being set");
|
|
}
|
|
/* Find the current value of the variable */
|
|
val = var->use->member;
|
|
if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
|
|
internal_error(state, val, "bad value in read");
|
|
}
|
|
propogate_use(state, ptr, val);
|
|
release_triple(state, ptr);
|
|
continue;
|
|
}
|
|
/* LHS(A) */
|
|
if (ptr->op == OP_WRITE) {
|
|
struct triple *var, *val;
|
|
var = LHS(ptr, 0);
|
|
val = RHS(ptr, 0);
|
|
if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
|
|
internal_error(state, val, "bad value in write");
|
|
}
|
|
propogate_use(state, ptr, val);
|
|
unuse_triple(var, ptr);
|
|
/* Push OP_WRITE ptr->right onto a stack of variable uses */
|
|
push_triple(var, val);
|
|
}
|
|
if (ptr->op == OP_PHI) {
|
|
struct triple *var;
|
|
var = MISC(ptr, 0);
|
|
/* Push OP_PHI onto a stack of variable uses */
|
|
push_triple(var, ptr);
|
|
}
|
|
last = ptr;
|
|
}
|
|
block->last = last;
|
|
|
|
/* Fixup PHI functions in the cf successors */
|
|
fixup_block_phi_variables(state, block, block->left);
|
|
fixup_block_phi_variables(state, block, block->right);
|
|
/* rename variables in the dominated nodes */
|
|
for(user = block->idominates; user; user = user->next) {
|
|
rename_block_variables(state, user->member);
|
|
}
|
|
/* pop the renamed variable stack */
|
|
last = block->first;
|
|
done = 0;
|
|
for(ptr = block->first; !done ; ptr = next) {
|
|
next = ptr->next;
|
|
if (ptr == block->last) {
|
|
done = 1;
|
|
}
|
|
if (ptr->op == OP_WRITE) {
|
|
struct triple *var;
|
|
var = LHS(ptr, 0);
|
|
/* Pop OP_WRITE ptr->right from the stack of variable uses */
|
|
pop_triple(var, RHS(ptr, 0));
|
|
release_triple(state, ptr);
|
|
continue;
|
|
}
|
|
if (ptr->op == OP_PHI) {
|
|
struct triple *var;
|
|
var = MISC(ptr, 0);
|
|
/* Pop OP_WRITE ptr->right from the stack of variable uses */
|
|
pop_triple(var, ptr);
|
|
}
|
|
last = ptr;
|
|
}
|
|
block->last = last;
|
|
}
|
|
|
|
static void prune_block_variables(struct compile_state *state,
|
|
struct block *block)
|
|
{
|
|
struct block_set *user;
|
|
struct triple *next, *last, *ptr;
|
|
int done;
|
|
last = block->first;
|
|
done = 0;
|
|
for(ptr = block->first; !done; ptr = next) {
|
|
next = ptr->next;
|
|
if (ptr == block->last) {
|
|
done = 1;
|
|
}
|
|
if (ptr->op == OP_ADECL) {
|
|
struct triple_set *user, *next;
|
|
for(user = ptr->use; user; user = next) {
|
|
struct triple *use;
|
|
next = user->next;
|
|
use = user->member;
|
|
if (use->op != OP_PHI) {
|
|
internal_error(state, use, "decl still used");
|
|
}
|
|
if (MISC(use, 0) != ptr) {
|
|
internal_error(state, use, "bad phi use of decl");
|
|
}
|
|
unuse_triple(ptr, use);
|
|
MISC(use, 0) = 0;
|
|
}
|
|
release_triple(state, ptr);
|
|
continue;
|
|
}
|
|
last = ptr;
|
|
}
|
|
block->last = last;
|
|
for(user = block->idominates; user; user = user->next) {
|
|
prune_block_variables(state, user->member);
|
|
}
|
|
}
|
|
|
|
static void transform_to_ssa_form(struct compile_state *state)
|
|
{
|
|
insert_phi_operations(state);
|
|
#if 0
|
|
printf("@%s:%d\n", __FILE__, __LINE__);
|
|
print_blocks(state, stdout);
|
|
#endif
|
|
rename_block_variables(state, state->first_block);
|
|
prune_block_variables(state, state->first_block);
|
|
}
|
|
|
|
|
|
static void clear_vertex(
|
|
struct compile_state *state, struct block *block, void *arg)
|
|
{
|
|
block->vertex = 0;
|
|
}
|
|
|
|
static void mark_live_block(
|
|
struct compile_state *state, struct block *block, int *next_vertex)
|
|
{
|
|
/* See if this is a block that has not been marked */
|
|
if (block->vertex != 0) {
|
|
return;
|
|
}
|
|
block->vertex = *next_vertex;
|
|
*next_vertex += 1;
|
|
if (triple_is_branch(state, block->last)) {
|
|
struct triple **targ;
|
|
targ = triple_targ(state, block->last, 0);
|
|
for(; targ; targ = triple_targ(state, block->last, targ)) {
|
|
if (!*targ) {
|
|
continue;
|
|
}
|
|
if (!triple_stores_block(state, *targ)) {
|
|
internal_error(state, 0, "bad targ");
|
|
}
|
|
mark_live_block(state, (*targ)->u.block, next_vertex);
|
|
}
|
|
}
|
|
else if (block->last->next != RHS(state->main_function, 0)) {
|
|
struct triple *ins;
|
|
ins = block->last->next;
|
|
if (!triple_stores_block(state, ins)) {
|
|
internal_error(state, 0, "bad block start");
|
|
}
|
|
mark_live_block(state, ins->u.block, next_vertex);
|
|
}
|
|
}
|
|
|
|
static void transform_from_ssa_form(struct compile_state *state)
|
|
{
|
|
/* To get out of ssa form we insert moves on the incoming
|
|
* edges to blocks containting phi functions.
|
|
*/
|
|
struct triple *first;
|
|
struct triple *phi, *next;
|
|
int next_vertex;
|
|
|
|
/* Walk the control flow to see which blocks remain alive */
|
|
walk_blocks(state, clear_vertex, 0);
|
|
next_vertex = 1;
|
|
mark_live_block(state, state->first_block, &next_vertex);
|
|
|
|
/* Walk all of the operations to find the phi functions */
|
|
first = RHS(state->main_function, 0);
|
|
for(phi = first->next; phi != first ; phi = next) {
|
|
struct block_set *set;
|
|
struct block *block;
|
|
struct triple **slot;
|
|
struct triple *var, *read;
|
|
struct triple_set *use, *use_next;
|
|
int edge, used;
|
|
next = phi->next;
|
|
if (phi->op != OP_PHI) {
|
|
continue;
|
|
}
|
|
block = phi->u.block;
|
|
slot = &RHS(phi, 0);
|
|
|
|
/* Forget uses from code in dead blocks */
|
|
for(use = phi->use; use; use = use_next) {
|
|
struct block *ublock;
|
|
struct triple **expr;
|
|
use_next = use->next;
|
|
ublock = block_of_triple(state, use->member);
|
|
if ((use->member == phi) || (ublock->vertex != 0)) {
|
|
continue;
|
|
}
|
|
expr = triple_rhs(state, use->member, 0);
|
|
for(; expr; expr = triple_rhs(state, use->member, expr)) {
|
|
if (*expr == phi) {
|
|
*expr = 0;
|
|
}
|
|
}
|
|
unuse_triple(phi, use->member);
|
|
}
|
|
|
|
/* A variable to replace the phi function */
|
|
var = post_triple(state, phi, OP_ADECL, phi->type, 0,0);
|
|
/* A read of the single value that is set into the variable */
|
|
read = post_triple(state, var, OP_READ, phi->type, var, 0);
|
|
use_triple(var, read);
|
|
|
|
/* Replaces uses of the phi with variable reads */
|
|
propogate_use(state, phi, read);
|
|
|
|
/* Walk all of the incoming edges/blocks and insert moves.
|
|
*/
|
|
for(edge = 0, set = block->use; set; set = set->next, edge++) {
|
|
struct block *eblock;
|
|
struct triple *move;
|
|
struct triple *val;
|
|
eblock = set->member;
|
|
val = slot[edge];
|
|
slot[edge] = 0;
|
|
unuse_triple(val, phi);
|
|
|
|
if (!val || (val == &zero_triple) ||
|
|
(block->vertex == 0) || (eblock->vertex == 0) ||
|
|
(val == phi) || (val == read)) {
|
|
continue;
|
|
}
|
|
|
|
move = post_triple(state,
|
|
val, OP_WRITE, phi->type, var, val);
|
|
use_triple(val, move);
|
|
use_triple(var, move);
|
|
}
|
|
/* See if there are any writers of var */
|
|
used = 0;
|
|
for(use = var->use; use; use = use->next) {
|
|
struct triple **expr;
|
|
expr = triple_lhs(state, use->member, 0);
|
|
for(; expr; expr = triple_lhs(state, use->member, expr)) {
|
|
if (*expr == var) {
|
|
used = 1;
|
|
}
|
|
}
|
|
}
|
|
/* If var is not used free it */
|
|
if (!used) {
|
|
unuse_triple(var, read);
|
|
free_triple(state, read);
|
|
free_triple(state, var);
|
|
}
|
|
|
|
/* Release the phi function */
|
|
release_triple(state, phi);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Register conflict resolution
|
|
* =========================================================
|
|
*/
|
|
|
|
static struct reg_info find_def_color(
|
|
struct compile_state *state, struct triple *def)
|
|
{
|
|
struct triple_set *set;
|
|
struct reg_info info;
|
|
info.reg = REG_UNSET;
|
|
info.regcm = 0;
|
|
if (!triple_is_def(state, def)) {
|
|
return info;
|
|
}
|
|
info = arch_reg_lhs(state, def, 0);
|
|
if (info.reg >= MAX_REGISTERS) {
|
|
info.reg = REG_UNSET;
|
|
}
|
|
for(set = def->use; set; set = set->next) {
|
|
struct reg_info tinfo;
|
|
int i;
|
|
i = find_rhs_use(state, set->member, def);
|
|
if (i < 0) {
|
|
continue;
|
|
}
|
|
tinfo = arch_reg_rhs(state, set->member, i);
|
|
if (tinfo.reg >= MAX_REGISTERS) {
|
|
tinfo.reg = REG_UNSET;
|
|
}
|
|
if ((tinfo.reg != REG_UNSET) &&
|
|
(info.reg != REG_UNSET) &&
|
|
(tinfo.reg != info.reg)) {
|
|
internal_error(state, def, "register conflict");
|
|
}
|
|
if ((info.regcm & tinfo.regcm) == 0) {
|
|
internal_error(state, def, "regcm conflict %x & %x == 0",
|
|
info.regcm, tinfo.regcm);
|
|
}
|
|
if (info.reg == REG_UNSET) {
|
|
info.reg = tinfo.reg;
|
|
}
|
|
info.regcm &= tinfo.regcm;
|
|
}
|
|
if (info.reg >= MAX_REGISTERS) {
|
|
internal_error(state, def, "register out of range");
|
|
}
|
|
return info;
|
|
}
|
|
|
|
static struct reg_info find_lhs_pre_color(
|
|
struct compile_state *state, struct triple *ins, int index)
|
|
{
|
|
struct reg_info info;
|
|
int zlhs, zrhs, i;
|
|
zrhs = TRIPLE_RHS(ins->sizes);
|
|
zlhs = TRIPLE_LHS(ins->sizes);
|
|
if (!zlhs && triple_is_def(state, ins)) {
|
|
zlhs = 1;
|
|
}
|
|
if (index >= zlhs) {
|
|
internal_error(state, ins, "Bad lhs %d", index);
|
|
}
|
|
info = arch_reg_lhs(state, ins, index);
|
|
for(i = 0; i < zrhs; i++) {
|
|
struct reg_info rinfo;
|
|
rinfo = arch_reg_rhs(state, ins, i);
|
|
if ((info.reg == rinfo.reg) &&
|
|
(rinfo.reg >= MAX_REGISTERS)) {
|
|
struct reg_info tinfo;
|
|
tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
|
|
info.reg = tinfo.reg;
|
|
info.regcm &= tinfo.regcm;
|
|
break;
|
|
}
|
|
}
|
|
if (info.reg >= MAX_REGISTERS) {
|
|
info.reg = REG_UNSET;
|
|
}
|
|
return info;
|
|
}
|
|
|
|
static struct reg_info find_rhs_post_color(
|
|
struct compile_state *state, struct triple *ins, int index);
|
|
|
|
static struct reg_info find_lhs_post_color(
|
|
struct compile_state *state, struct triple *ins, int index)
|
|
{
|
|
struct triple_set *set;
|
|
struct reg_info info;
|
|
struct triple *lhs;
|
|
#if 0
|
|
fprintf(stderr, "find_lhs_post_color(%p, %d)\n",
|
|
ins, index);
|
|
#endif
|
|
if ((index == 0) && triple_is_def(state, ins)) {
|
|
lhs = ins;
|
|
}
|
|
else if (index < TRIPLE_LHS(ins->sizes)) {
|
|
lhs = LHS(ins, index);
|
|
}
|
|
else {
|
|
internal_error(state, ins, "Bad lhs %d", index);
|
|
lhs = 0;
|
|
}
|
|
info = arch_reg_lhs(state, ins, index);
|
|
if (info.reg >= MAX_REGISTERS) {
|
|
info.reg = REG_UNSET;
|
|
}
|
|
for(set = lhs->use; set; set = set->next) {
|
|
struct reg_info rinfo;
|
|
struct triple *user;
|
|
int zrhs, i;
|
|
user = set->member;
|
|
zrhs = TRIPLE_RHS(user->sizes);
|
|
for(i = 0; i < zrhs; i++) {
|
|
if (RHS(user, i) != lhs) {
|
|
continue;
|
|
}
|
|
rinfo = find_rhs_post_color(state, user, i);
|
|
if ((info.reg != REG_UNSET) &&
|
|
(rinfo.reg != REG_UNSET) &&
|
|
(info.reg != rinfo.reg)) {
|
|
internal_error(state, ins, "register conflict");
|
|
}
|
|
if ((info.regcm & rinfo.regcm) == 0) {
|
|
internal_error(state, ins, "regcm conflict %x & %x == 0",
|
|
info.regcm, rinfo.regcm);
|
|
}
|
|
if (info.reg == REG_UNSET) {
|
|
info.reg = rinfo.reg;
|
|
}
|
|
info.regcm &= rinfo.regcm;
|
|
}
|
|
}
|
|
#if 0
|
|
fprintf(stderr, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
|
|
ins, index, info.reg, info.regcm);
|
|
#endif
|
|
return info;
|
|
}
|
|
|
|
static struct reg_info find_rhs_post_color(
|
|
struct compile_state *state, struct triple *ins, int index)
|
|
{
|
|
struct reg_info info, rinfo;
|
|
int zlhs, i;
|
|
#if 0
|
|
fprintf(stderr, "find_rhs_post_color(%p, %d)\n",
|
|
ins, index);
|
|
#endif
|
|
rinfo = arch_reg_rhs(state, ins, index);
|
|
zlhs = TRIPLE_LHS(ins->sizes);
|
|
if (!zlhs && triple_is_def(state, ins)) {
|
|
zlhs = 1;
|
|
}
|
|
info = rinfo;
|
|
if (info.reg >= MAX_REGISTERS) {
|
|
info.reg = REG_UNSET;
|
|
}
|
|
for(i = 0; i < zlhs; i++) {
|
|
struct reg_info linfo;
|
|
linfo = arch_reg_lhs(state, ins, i);
|
|
if ((linfo.reg == rinfo.reg) &&
|
|
(linfo.reg >= MAX_REGISTERS)) {
|
|
struct reg_info tinfo;
|
|
tinfo = find_lhs_post_color(state, ins, i);
|
|
if (tinfo.reg >= MAX_REGISTERS) {
|
|
tinfo.reg = REG_UNSET;
|
|
}
|
|
info.regcm &= linfo.reg;
|
|
info.regcm &= tinfo.regcm;
|
|
if (info.reg != REG_UNSET) {
|
|
internal_error(state, ins, "register conflict");
|
|
}
|
|
if (info.regcm == 0) {
|
|
internal_error(state, ins, "regcm conflict");
|
|
}
|
|
info.reg = tinfo.reg;
|
|
}
|
|
}
|
|
#if 0
|
|
fprintf(stderr, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
|
|
ins, index, info.reg, info.regcm);
|
|
#endif
|
|
return info;
|
|
}
|
|
|
|
static struct reg_info find_lhs_color(
|
|
struct compile_state *state, struct triple *ins, int index)
|
|
{
|
|
struct reg_info pre, post, info;
|
|
#if 0
|
|
fprintf(stderr, "find_lhs_color(%p, %d)\n",
|
|
ins, index);
|
|
#endif
|
|
pre = find_lhs_pre_color(state, ins, index);
|
|
post = find_lhs_post_color(state, ins, index);
|
|
if ((pre.reg != post.reg) &&
|
|
(pre.reg != REG_UNSET) &&
|
|
(post.reg != REG_UNSET)) {
|
|
internal_error(state, ins, "register conflict");
|
|
}
|
|
info.regcm = pre.regcm & post.regcm;
|
|
info.reg = pre.reg;
|
|
if (info.reg == REG_UNSET) {
|
|
info.reg = post.reg;
|
|
}
|
|
#if 0
|
|
fprintf(stderr, "find_lhs_color(%p, %d) -> ( %d, %x)\n",
|
|
ins, index, info.reg, info.regcm);
|
|
#endif
|
|
return info;
|
|
}
|
|
|
|
static struct triple *post_copy(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct triple_set *entry, *next;
|
|
struct triple *out;
|
|
struct reg_info info, rinfo;
|
|
|
|
info = arch_reg_lhs(state, ins, 0);
|
|
out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
|
|
use_triple(RHS(out, 0), out);
|
|
/* Get the users of ins to use out instead */
|
|
for(entry = ins->use; entry; entry = next) {
|
|
int i;
|
|
next = entry->next;
|
|
if (entry->member == out) {
|
|
continue;
|
|
}
|
|
i = find_rhs_use(state, entry->member, ins);
|
|
if (i < 0) {
|
|
continue;
|
|
}
|
|
rinfo = arch_reg_rhs(state, entry->member, i);
|
|
if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
|
|
continue;
|
|
}
|
|
replace_rhs_use(state, ins, out, entry->member);
|
|
}
|
|
transform_to_arch_instruction(state, out);
|
|
return out;
|
|
}
|
|
|
|
static struct triple *pre_copy(
|
|
struct compile_state *state, struct triple *ins, int index)
|
|
{
|
|
/* Carefully insert enough operations so that I can
|
|
* enter any operation with a GPR32.
|
|
*/
|
|
struct triple *in;
|
|
struct triple **expr;
|
|
expr = &RHS(ins, index);
|
|
in = pre_triple(state, ins, OP_COPY, (*expr)->type, *expr, 0);
|
|
unuse_triple(*expr, ins);
|
|
*expr = in;
|
|
use_triple(RHS(in, 0), in);
|
|
use_triple(in, ins);
|
|
transform_to_arch_instruction(state, in);
|
|
return in;
|
|
}
|
|
|
|
|
|
static void insert_copies_to_phi(struct compile_state *state)
|
|
{
|
|
/* To get out of ssa form we insert moves on the incoming
|
|
* edges to blocks containting phi functions.
|
|
*/
|
|
struct triple *first;
|
|
struct triple *phi;
|
|
|
|
/* Walk all of the operations to find the phi functions */
|
|
first = RHS(state->main_function, 0);
|
|
for(phi = first->next; phi != first ; phi = phi->next) {
|
|
struct block_set *set;
|
|
struct block *block;
|
|
struct triple **slot;
|
|
int edge;
|
|
if (phi->op != OP_PHI) {
|
|
continue;
|
|
}
|
|
phi->id |= TRIPLE_FLAG_POST_SPLIT;
|
|
block = phi->u.block;
|
|
slot = &RHS(phi, 0);
|
|
/* Walk all of the incoming edges/blocks and insert moves.
|
|
*/
|
|
for(edge = 0, set = block->use; set; set = set->next, edge++) {
|
|
struct block *eblock;
|
|
struct triple *move;
|
|
struct triple *val;
|
|
struct triple *ptr;
|
|
eblock = set->member;
|
|
val = slot[edge];
|
|
|
|
if (val == phi) {
|
|
continue;
|
|
}
|
|
|
|
move = build_triple(state, OP_COPY, phi->type, val, 0,
|
|
val->filename, val->line, val->col);
|
|
move->u.block = eblock;
|
|
move->id |= TRIPLE_FLAG_PRE_SPLIT;
|
|
use_triple(val, move);
|
|
|
|
slot[edge] = move;
|
|
unuse_triple(val, phi);
|
|
use_triple(move, phi);
|
|
|
|
/* Walk through the block backwards to find
|
|
* an appropriate location for the OP_COPY.
|
|
*/
|
|
for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
|
|
struct triple **expr;
|
|
if ((ptr == phi) || (ptr == val)) {
|
|
goto out;
|
|
}
|
|
expr = triple_rhs(state, ptr, 0);
|
|
for(;expr; expr = triple_rhs(state, ptr, expr)) {
|
|
if ((*expr) == phi) {
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
if (triple_is_branch(state, ptr)) {
|
|
internal_error(state, ptr,
|
|
"Could not insert write to phi");
|
|
}
|
|
insert_triple(state, ptr->next, move);
|
|
if (eblock->last == ptr) {
|
|
eblock->last = move;
|
|
}
|
|
transform_to_arch_instruction(state, move);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct triple_reg_set {
|
|
struct triple_reg_set *next;
|
|
struct triple *member;
|
|
struct triple *new;
|
|
};
|
|
|
|
struct reg_block {
|
|
struct block *block;
|
|
struct triple_reg_set *in;
|
|
struct triple_reg_set *out;
|
|
int vertex;
|
|
};
|
|
|
|
static int do_triple_set(struct triple_reg_set **head,
|
|
struct triple *member, struct triple *new_member)
|
|
{
|
|
struct triple_reg_set **ptr, *new;
|
|
if (!member)
|
|
return 0;
|
|
ptr = head;
|
|
while(*ptr) {
|
|
if ((*ptr)->member == member) {
|
|
return 0;
|
|
}
|
|
ptr = &(*ptr)->next;
|
|
}
|
|
new = xcmalloc(sizeof(*new), "triple_set");
|
|
new->member = member;
|
|
new->new = new_member;
|
|
new->next = *head;
|
|
*head = new;
|
|
return 1;
|
|
}
|
|
|
|
static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
|
|
{
|
|
struct triple_reg_set *entry, **ptr;
|
|
ptr = head;
|
|
while(*ptr) {
|
|
entry = *ptr;
|
|
if (entry->member == member) {
|
|
*ptr = entry->next;
|
|
xfree(entry);
|
|
return;
|
|
}
|
|
else {
|
|
ptr = &entry->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int in_triple(struct reg_block *rb, struct triple *in)
|
|
{
|
|
return do_triple_set(&rb->in, in, 0);
|
|
}
|
|
static void unin_triple(struct reg_block *rb, struct triple *unin)
|
|
{
|
|
do_triple_unset(&rb->in, unin);
|
|
}
|
|
|
|
static int out_triple(struct reg_block *rb, struct triple *out)
|
|
{
|
|
return do_triple_set(&rb->out, out, 0);
|
|
}
|
|
static void unout_triple(struct reg_block *rb, struct triple *unout)
|
|
{
|
|
do_triple_unset(&rb->out, unout);
|
|
}
|
|
|
|
static int initialize_regblock(struct reg_block *blocks,
|
|
struct block *block, int vertex)
|
|
{
|
|
struct block_set *user;
|
|
if (!block || (blocks[block->vertex].block == block)) {
|
|
return vertex;
|
|
}
|
|
vertex += 1;
|
|
/* Renumber the blocks in a convinient fashion */
|
|
block->vertex = vertex;
|
|
blocks[vertex].block = block;
|
|
blocks[vertex].vertex = vertex;
|
|
for(user = block->use; user; user = user->next) {
|
|
vertex = initialize_regblock(blocks, user->member, vertex);
|
|
}
|
|
return vertex;
|
|
}
|
|
|
|
static int phi_in(struct compile_state *state, struct reg_block *blocks,
|
|
struct reg_block *rb, struct block *suc)
|
|
{
|
|
/* Read the conditional input set of a successor block
|
|
* (i.e. the input to the phi nodes) and place it in the
|
|
* current blocks output set.
|
|
*/
|
|
struct block_set *set;
|
|
struct triple *ptr;
|
|
int edge;
|
|
int done, change;
|
|
change = 0;
|
|
/* Find the edge I am coming in on */
|
|
for(edge = 0, set = suc->use; set; set = set->next, edge++) {
|
|
if (set->member == rb->block) {
|
|
break;
|
|
}
|
|
}
|
|
if (!set) {
|
|
internal_error(state, 0, "Not coming on a control edge?");
|
|
}
|
|
for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
|
|
struct triple **slot, *expr, *ptr2;
|
|
int out_change, done2;
|
|
done = (ptr == suc->last);
|
|
if (ptr->op != OP_PHI) {
|
|
continue;
|
|
}
|
|
slot = &RHS(ptr, 0);
|
|
expr = slot[edge];
|
|
out_change = out_triple(rb, expr);
|
|
if (!out_change) {
|
|
continue;
|
|
}
|
|
/* If we don't define the variable also plast it
|
|
* in the current blocks input set.
|
|
*/
|
|
ptr2 = rb->block->first;
|
|
for(done2 = 0; !done2; ptr2 = ptr2->next) {
|
|
if (ptr2 == expr) {
|
|
break;
|
|
}
|
|
done2 = (ptr2 == rb->block->last);
|
|
}
|
|
if (!done2) {
|
|
continue;
|
|
}
|
|
change |= in_triple(rb, expr);
|
|
}
|
|
return change;
|
|
}
|
|
|
|
static int reg_in(struct compile_state *state, struct reg_block *blocks,
|
|
struct reg_block *rb, struct block *suc)
|
|
{
|
|
struct triple_reg_set *in_set;
|
|
int change;
|
|
change = 0;
|
|
/* Read the input set of a successor block
|
|
* and place it in the current blocks output set.
|
|
*/
|
|
in_set = blocks[suc->vertex].in;
|
|
for(; in_set; in_set = in_set->next) {
|
|
int out_change, done;
|
|
struct triple *first, *last, *ptr;
|
|
out_change = out_triple(rb, in_set->member);
|
|
if (!out_change) {
|
|
continue;
|
|
}
|
|
/* If we don't define the variable also place it
|
|
* in the current blocks input set.
|
|
*/
|
|
first = rb->block->first;
|
|
last = rb->block->last;
|
|
done = 0;
|
|
for(ptr = first; !done; ptr = ptr->next) {
|
|
if (ptr == in_set->member) {
|
|
break;
|
|
}
|
|
done = (ptr == last);
|
|
}
|
|
if (!done) {
|
|
continue;
|
|
}
|
|
change |= in_triple(rb, in_set->member);
|
|
}
|
|
change |= phi_in(state, blocks, rb, suc);
|
|
return change;
|
|
}
|
|
|
|
|
|
static int use_in(struct compile_state *state, struct reg_block *rb)
|
|
{
|
|
/* Find the variables we use but don't define and add
|
|
* it to the current blocks input set.
|
|
*/
|
|
#warning "FIXME is this O(N^2) algorithm bad?"
|
|
struct block *block;
|
|
struct triple *ptr;
|
|
int done;
|
|
int change;
|
|
block = rb->block;
|
|
change = 0;
|
|
for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
|
|
struct triple **expr;
|
|
done = (ptr == block->first);
|
|
/* The variable a phi function uses depends on the
|
|
* control flow, and is handled in phi_in, not
|
|
* here.
|
|
*/
|
|
if (ptr->op == OP_PHI) {
|
|
continue;
|
|
}
|
|
expr = triple_rhs(state, ptr, 0);
|
|
for(;expr; expr = triple_rhs(state, ptr, expr)) {
|
|
struct triple *rhs, *test;
|
|
int tdone;
|
|
rhs = *expr;
|
|
if (!rhs) {
|
|
continue;
|
|
}
|
|
/* See if rhs is defined in this block */
|
|
for(tdone = 0, test = ptr; !tdone; test = test->prev) {
|
|
tdone = (test == block->first);
|
|
if (test == rhs) {
|
|
rhs = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* If I still have a valid rhs add it to in */
|
|
change |= in_triple(rb, rhs);
|
|
}
|
|
}
|
|
return change;
|
|
}
|
|
|
|
static struct reg_block *compute_variable_lifetimes(
|
|
struct compile_state *state)
|
|
{
|
|
struct reg_block *blocks;
|
|
int change;
|
|
blocks = xcmalloc(
|
|
sizeof(*blocks)*(state->last_vertex + 1), "reg_block");
|
|
initialize_regblock(blocks, state->last_block, 0);
|
|
do {
|
|
int i;
|
|
change = 0;
|
|
for(i = 1; i <= state->last_vertex; i++) {
|
|
struct reg_block *rb;
|
|
rb = &blocks[i];
|
|
/* Add the left successor's input set to in */
|
|
if (rb->block->left) {
|
|
change |= reg_in(state, blocks, rb, rb->block->left);
|
|
}
|
|
/* Add the right successor's input set to in */
|
|
if ((rb->block->right) &&
|
|
(rb->block->right != rb->block->left)) {
|
|
change |= reg_in(state, blocks, rb, rb->block->right);
|
|
}
|
|
/* Add use to in... */
|
|
change |= use_in(state, rb);
|
|
}
|
|
} while(change);
|
|
return blocks;
|
|
}
|
|
|
|
static void free_variable_lifetimes(
|
|
struct compile_state *state, struct reg_block *blocks)
|
|
{
|
|
int i;
|
|
/* free in_set && out_set on each block */
|
|
for(i = 1; i <= state->last_vertex; i++) {
|
|
struct triple_reg_set *entry, *next;
|
|
struct reg_block *rb;
|
|
rb = &blocks[i];
|
|
for(entry = rb->in; entry ; entry = next) {
|
|
next = entry->next;
|
|
do_triple_unset(&rb->in, entry->member);
|
|
}
|
|
for(entry = rb->out; entry; entry = next) {
|
|
next = entry->next;
|
|
do_triple_unset(&rb->out, entry->member);
|
|
}
|
|
}
|
|
xfree(blocks);
|
|
|
|
}
|
|
|
|
typedef struct triple *(*wvl_cb_t)(
|
|
struct compile_state *state,
|
|
struct reg_block *blocks, struct triple_reg_set *live,
|
|
struct reg_block *rb, struct triple *ins, void *arg);
|
|
|
|
static void walk_variable_lifetimes(struct compile_state *state,
|
|
struct reg_block *blocks, wvl_cb_t cb, void *arg)
|
|
{
|
|
int i;
|
|
|
|
for(i = 1; i <= state->last_vertex; i++) {
|
|
struct triple_reg_set *live;
|
|
struct triple_reg_set *entry, *next;
|
|
struct triple *ptr, *prev;
|
|
struct reg_block *rb;
|
|
struct block *block;
|
|
int done;
|
|
|
|
/* Get the blocks */
|
|
rb = &blocks[i];
|
|
block = rb->block;
|
|
|
|
/* Copy out into live */
|
|
live = 0;
|
|
for(entry = rb->out; entry; entry = next) {
|
|
next = entry->next;
|
|
do_triple_set(&live, entry->member, entry->new);
|
|
}
|
|
/* Walk through the basic block calculating live */
|
|
for(done = 0, ptr = block->last; !done; ptr = prev) {
|
|
struct triple **expr, *result;
|
|
|
|
prev = ptr->prev;
|
|
done = (ptr == block->first);
|
|
|
|
/* Ensure the current definition is in live */
|
|
if (triple_is_def(state, ptr)) {
|
|
do_triple_set(&live, ptr, 0);
|
|
}
|
|
|
|
/* Inform the callback function of what is
|
|
* going on.
|
|
*/
|
|
result = cb(state, blocks, live, rb, ptr, arg);
|
|
|
|
/* Remove the current definition from live */
|
|
do_triple_unset(&live, ptr);
|
|
|
|
/* If the current instruction was deleted continue */
|
|
if (!result) {
|
|
if (block->last == ptr) {
|
|
block->last = prev;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
|
|
/* Add the current uses to live.
|
|
*
|
|
* It is safe to skip phi functions because they do
|
|
* not have any block local uses, and the block
|
|
* output sets already properly account for what
|
|
* control flow depedent uses phi functions do have.
|
|
*/
|
|
if (ptr->op == OP_PHI) {
|
|
continue;
|
|
}
|
|
expr = triple_rhs(state, ptr, 0);
|
|
for(;expr; expr = triple_rhs(state, ptr, expr)) {
|
|
/* If the triple is not a definition skip it. */
|
|
if (!*expr || !triple_is_def(state, *expr)) {
|
|
continue;
|
|
}
|
|
do_triple_set(&live, *expr, 0);
|
|
}
|
|
}
|
|
/* Free live */
|
|
for(entry = live; entry; entry = next) {
|
|
next = entry->next;
|
|
do_triple_unset(&live, entry->member);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int count_triples(struct compile_state *state)
|
|
{
|
|
struct triple *first, *ins;
|
|
int triples = 0;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
triples++;
|
|
ins = ins->next;
|
|
} while (ins != first);
|
|
return triples;
|
|
}
|
|
struct dead_triple {
|
|
struct triple *triple;
|
|
struct dead_triple *work_next;
|
|
struct block *block;
|
|
int color;
|
|
int flags;
|
|
#define TRIPLE_FLAG_ALIVE 1
|
|
};
|
|
|
|
|
|
static void awaken(
|
|
struct compile_state *state,
|
|
struct dead_triple *dtriple, struct triple **expr,
|
|
struct dead_triple ***work_list_tail)
|
|
{
|
|
struct triple *triple;
|
|
struct dead_triple *dt;
|
|
if (!expr) {
|
|
return;
|
|
}
|
|
triple = *expr;
|
|
if (!triple) {
|
|
return;
|
|
}
|
|
if (triple->id <= 0) {
|
|
internal_error(state, triple, "bad triple id: %d",
|
|
triple->id);
|
|
}
|
|
if (triple->op == OP_NOOP) {
|
|
internal_warning(state, triple, "awakening noop?");
|
|
return;
|
|
}
|
|
dt = &dtriple[triple->id];
|
|
if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
|
|
dt->flags |= TRIPLE_FLAG_ALIVE;
|
|
if (!dt->work_next) {
|
|
**work_list_tail = dt;
|
|
*work_list_tail = &dt->work_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void eliminate_inefectual_code(struct compile_state *state)
|
|
{
|
|
struct block *block;
|
|
struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
|
|
int triples, i;
|
|
struct triple *first, *ins;
|
|
|
|
/* Setup the work list */
|
|
work_list = 0;
|
|
work_list_tail = &work_list;
|
|
|
|
first = RHS(state->main_function, 0);
|
|
|
|
/* Count how many triples I have */
|
|
triples = count_triples(state);
|
|
|
|
/* Now put then in an array and mark all of the triples dead */
|
|
dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
|
|
|
|
ins = first;
|
|
i = 1;
|
|
block = 0;
|
|
do {
|
|
if (ins->op == OP_LABEL) {
|
|
block = ins->u.block;
|
|
}
|
|
dtriple[i].triple = ins;
|
|
dtriple[i].block = block;
|
|
dtriple[i].flags = 0;
|
|
dtriple[i].color = ins->id;
|
|
ins->id = i;
|
|
/* See if it is an operation we always keep */
|
|
#warning "FIXME handle the case of killing a branch instruction"
|
|
if (!triple_is_pure(state, ins) || triple_is_branch(state, ins)) {
|
|
awaken(state, dtriple, &ins, &work_list_tail);
|
|
}
|
|
i++;
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
while(work_list) {
|
|
struct dead_triple *dt;
|
|
struct block_set *user;
|
|
struct triple **expr;
|
|
dt = work_list;
|
|
work_list = dt->work_next;
|
|
if (!work_list) {
|
|
work_list_tail = &work_list;
|
|
}
|
|
/* Wake up the data depencencies of this triple */
|
|
expr = 0;
|
|
do {
|
|
expr = triple_rhs(state, dt->triple, expr);
|
|
awaken(state, dtriple, expr, &work_list_tail);
|
|
} while(expr);
|
|
do {
|
|
expr = triple_lhs(state, dt->triple, expr);
|
|
awaken(state, dtriple, expr, &work_list_tail);
|
|
} while(expr);
|
|
do {
|
|
expr = triple_misc(state, dt->triple, expr);
|
|
awaken(state, dtriple, expr, &work_list_tail);
|
|
} while(expr);
|
|
/* Wake up the forward control dependencies */
|
|
do {
|
|
expr = triple_targ(state, dt->triple, expr);
|
|
awaken(state, dtriple, expr, &work_list_tail);
|
|
} while(expr);
|
|
/* Wake up the reverse control dependencies of this triple */
|
|
for(user = dt->block->ipdomfrontier; user; user = user->next) {
|
|
awaken(state, dtriple, &user->member->last, &work_list_tail);
|
|
}
|
|
}
|
|
for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
|
|
if ((dt->triple->op == OP_NOOP) &&
|
|
(dt->flags & TRIPLE_FLAG_ALIVE)) {
|
|
internal_error(state, dt->triple, "noop effective?");
|
|
}
|
|
dt->triple->id = dt->color; /* Restore the color */
|
|
if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
|
|
#warning "FIXME handle the case of killing a basic block"
|
|
if (dt->block->first == dt->triple) {
|
|
continue;
|
|
}
|
|
if (dt->block->last == dt->triple) {
|
|
dt->block->last = dt->triple->prev;
|
|
}
|
|
release_triple(state, dt->triple);
|
|
}
|
|
}
|
|
xfree(dtriple);
|
|
}
|
|
|
|
|
|
static void insert_mandatory_copies(struct compile_state *state)
|
|
{
|
|
struct triple *ins, *first;
|
|
|
|
/* The object is with a minimum of inserted copies,
|
|
* to resolve in fundamental register conflicts between
|
|
* register value producers and consumers.
|
|
* Theoretically we may be greater than minimal when we
|
|
* are inserting copies before instructions but that
|
|
* case should be rare.
|
|
*/
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
struct triple_set *entry, *next;
|
|
struct triple *tmp;
|
|
struct reg_info info;
|
|
unsigned reg, regcm;
|
|
int do_post_copy, do_pre_copy;
|
|
tmp = 0;
|
|
if (!triple_is_def(state, ins)) {
|
|
goto next;
|
|
}
|
|
/* Find the architecture specific color information */
|
|
info = arch_reg_lhs(state, ins, 0);
|
|
if (info.reg >= MAX_REGISTERS) {
|
|
info.reg = REG_UNSET;
|
|
}
|
|
|
|
reg = REG_UNSET;
|
|
regcm = arch_type_to_regcm(state, ins->type);
|
|
do_post_copy = do_pre_copy = 0;
|
|
|
|
/* Walk through the uses of ins and check for conflicts */
|
|
for(entry = ins->use; entry; entry = next) {
|
|
struct reg_info rinfo;
|
|
int i;
|
|
next = entry->next;
|
|
i = find_rhs_use(state, entry->member, ins);
|
|
if (i < 0) {
|
|
continue;
|
|
}
|
|
|
|
/* Find the users color requirements */
|
|
rinfo = arch_reg_rhs(state, entry->member, i);
|
|
if (rinfo.reg >= MAX_REGISTERS) {
|
|
rinfo.reg = REG_UNSET;
|
|
}
|
|
|
|
/* See if I need a pre_copy */
|
|
if (rinfo.reg != REG_UNSET) {
|
|
if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
|
|
do_pre_copy = 1;
|
|
}
|
|
reg = rinfo.reg;
|
|
}
|
|
regcm &= rinfo.regcm;
|
|
regcm = arch_regcm_normalize(state, regcm);
|
|
if (regcm == 0) {
|
|
do_pre_copy = 1;
|
|
}
|
|
}
|
|
do_post_copy =
|
|
!do_pre_copy &&
|
|
(((info.reg != REG_UNSET) &&
|
|
(reg != REG_UNSET) &&
|
|
(info.reg != reg)) ||
|
|
((info.regcm & regcm) == 0));
|
|
|
|
reg = info.reg;
|
|
regcm = info.regcm;
|
|
/* Walk through the uses of insert and do a pre_copy or see if a post_copy is warranted */
|
|
for(entry = ins->use; entry; entry = next) {
|
|
struct reg_info rinfo;
|
|
int i;
|
|
next = entry->next;
|
|
i = find_rhs_use(state, entry->member, ins);
|
|
if (i < 0) {
|
|
continue;
|
|
}
|
|
|
|
/* Find the users color requirements */
|
|
rinfo = arch_reg_rhs(state, entry->member, i);
|
|
if (rinfo.reg >= MAX_REGISTERS) {
|
|
rinfo.reg = REG_UNSET;
|
|
}
|
|
|
|
/* Now see if it is time to do the pre_copy */
|
|
if (rinfo.reg != REG_UNSET) {
|
|
if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
|
|
((regcm & rinfo.regcm) == 0) ||
|
|
/* Don't let a mandatory coalesce sneak
|
|
* into a operation that is marked to prevent
|
|
* coalescing.
|
|
*/
|
|
((reg != REG_UNNEEDED) &&
|
|
((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
|
|
(entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
|
|
) {
|
|
if (do_pre_copy) {
|
|
struct triple *user;
|
|
user = entry->member;
|
|
if (RHS(user, i) != ins) {
|
|
internal_error(state, user, "bad rhs");
|
|
}
|
|
tmp = pre_copy(state, user, i);
|
|
continue;
|
|
} else {
|
|
do_post_copy = 1;
|
|
}
|
|
}
|
|
reg = rinfo.reg;
|
|
}
|
|
if ((regcm & rinfo.regcm) == 0) {
|
|
if (do_pre_copy) {
|
|
struct triple *user;
|
|
user = entry->member;
|
|
if (RHS(user, i) != ins) {
|
|
internal_error(state, user, "bad rhs");
|
|
}
|
|
tmp = pre_copy(state, user, i);
|
|
continue;
|
|
} else {
|
|
do_post_copy = 1;
|
|
}
|
|
}
|
|
regcm &= rinfo.regcm;
|
|
|
|
}
|
|
if (do_post_copy) {
|
|
struct reg_info pre, post;
|
|
tmp = post_copy(state, ins);
|
|
pre = arch_reg_lhs(state, ins, 0);
|
|
post = arch_reg_lhs(state, tmp, 0);
|
|
if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
|
|
internal_error(state, tmp, "useless copy");
|
|
}
|
|
}
|
|
next:
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
|
|
struct live_range_edge;
|
|
struct live_range_def;
|
|
struct live_range {
|
|
struct live_range_edge *edges;
|
|
struct live_range_def *defs;
|
|
/* Note. The list pointed to by defs is kept in order.
|
|
* That is baring splits in the flow control
|
|
* defs dominates defs->next wich dominates defs->next->next
|
|
* etc.
|
|
*/
|
|
unsigned color;
|
|
unsigned classes;
|
|
unsigned degree;
|
|
unsigned length;
|
|
struct live_range *group_next, **group_prev;
|
|
};
|
|
|
|
struct live_range_edge {
|
|
struct live_range_edge *next;
|
|
struct live_range *node;
|
|
};
|
|
|
|
struct live_range_def {
|
|
struct live_range_def *next;
|
|
struct live_range_def *prev;
|
|
struct live_range *lr;
|
|
struct triple *def;
|
|
unsigned orig_id;
|
|
};
|
|
|
|
#define LRE_HASH_SIZE 2048
|
|
struct lre_hash {
|
|
struct lre_hash *next;
|
|
struct live_range *left;
|
|
struct live_range *right;
|
|
};
|
|
|
|
|
|
struct reg_state {
|
|
struct lre_hash *hash[LRE_HASH_SIZE];
|
|
struct reg_block *blocks;
|
|
struct live_range_def *lrd;
|
|
struct live_range *lr;
|
|
struct live_range *low, **low_tail;
|
|
struct live_range *high, **high_tail;
|
|
unsigned defs;
|
|
unsigned ranges;
|
|
int passes, max_passes;
|
|
#define MAX_ALLOCATION_PASSES 100
|
|
};
|
|
|
|
|
|
static unsigned regc_max_size(struct compile_state *state, int classes)
|
|
{
|
|
unsigned max_size;
|
|
int i;
|
|
max_size = 0;
|
|
for(i = 0; i < MAX_REGC; i++) {
|
|
if (classes & (1 << i)) {
|
|
unsigned size;
|
|
size = arch_regc_size(state, i);
|
|
if (size > max_size) {
|
|
max_size = size;
|
|
}
|
|
}
|
|
}
|
|
return max_size;
|
|
}
|
|
|
|
static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
|
|
{
|
|
unsigned equivs[MAX_REG_EQUIVS];
|
|
int i;
|
|
if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
|
|
internal_error(state, 0, "invalid register");
|
|
}
|
|
if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
|
|
internal_error(state, 0, "invalid register");
|
|
}
|
|
arch_reg_equivs(state, equivs, reg1);
|
|
for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
|
|
if (equivs[i] == reg2) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void reg_fill_used(struct compile_state *state, char *used, int reg)
|
|
{
|
|
unsigned equivs[MAX_REG_EQUIVS];
|
|
int i;
|
|
if (reg == REG_UNNEEDED) {
|
|
return;
|
|
}
|
|
arch_reg_equivs(state, equivs, reg);
|
|
for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
|
|
used[equivs[i]] = 1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void reg_inc_used(struct compile_state *state, char *used, int reg)
|
|
{
|
|
unsigned equivs[MAX_REG_EQUIVS];
|
|
int i;
|
|
if (reg == REG_UNNEEDED) {
|
|
return;
|
|
}
|
|
arch_reg_equivs(state, equivs, reg);
|
|
for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
|
|
used[equivs[i]] += 1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static unsigned int hash_live_edge(
|
|
struct live_range *left, struct live_range *right)
|
|
{
|
|
unsigned int hash, val;
|
|
unsigned long lval, rval;
|
|
lval = ((unsigned long)left)/sizeof(struct live_range);
|
|
rval = ((unsigned long)right)/sizeof(struct live_range);
|
|
hash = 0;
|
|
while(lval) {
|
|
val = lval & 0xff;
|
|
lval >>= 8;
|
|
hash = (hash *263) + val;
|
|
}
|
|
while(rval) {
|
|
val = rval & 0xff;
|
|
rval >>= 8;
|
|
hash = (hash *263) + val;
|
|
}
|
|
hash = hash & (LRE_HASH_SIZE - 1);
|
|
return hash;
|
|
}
|
|
|
|
static struct lre_hash **lre_probe(struct reg_state *rstate,
|
|
struct live_range *left, struct live_range *right)
|
|
{
|
|
struct lre_hash **ptr;
|
|
unsigned int index;
|
|
/* Ensure left <= right */
|
|
if (left > right) {
|
|
struct live_range *tmp;
|
|
tmp = left;
|
|
left = right;
|
|
right = tmp;
|
|
}
|
|
index = hash_live_edge(left, right);
|
|
|
|
ptr = &rstate->hash[index];
|
|
while((*ptr) && ((*ptr)->left != left) && ((*ptr)->right != right)) {
|
|
ptr = &(*ptr)->next;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
static int interfere(struct reg_state *rstate,
|
|
struct live_range *left, struct live_range *right)
|
|
{
|
|
struct lre_hash **ptr;
|
|
ptr = lre_probe(rstate, left, right);
|
|
return ptr && *ptr;
|
|
}
|
|
|
|
static void add_live_edge(struct reg_state *rstate,
|
|
struct live_range *left, struct live_range *right)
|
|
{
|
|
/* FIXME the memory allocation overhead is noticeable here... */
|
|
struct lre_hash **ptr, *new_hash;
|
|
struct live_range_edge *edge;
|
|
|
|
if (left == right) {
|
|
return;
|
|
}
|
|
if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
|
|
return;
|
|
}
|
|
/* Ensure left <= right */
|
|
if (left > right) {
|
|
struct live_range *tmp;
|
|
tmp = left;
|
|
left = right;
|
|
right = tmp;
|
|
}
|
|
ptr = lre_probe(rstate, left, right);
|
|
if (*ptr) {
|
|
return;
|
|
}
|
|
new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
|
|
new_hash->next = *ptr;
|
|
new_hash->left = left;
|
|
new_hash->right = right;
|
|
*ptr = new_hash;
|
|
|
|
edge = xmalloc(sizeof(*edge), "live_range_edge");
|
|
edge->next = left->edges;
|
|
edge->node = right;
|
|
left->edges = edge;
|
|
left->degree += 1;
|
|
|
|
edge = xmalloc(sizeof(*edge), "live_range_edge");
|
|
edge->next = right->edges;
|
|
edge->node = left;
|
|
right->edges = edge;
|
|
right->degree += 1;
|
|
}
|
|
|
|
static void remove_live_edge(struct reg_state *rstate,
|
|
struct live_range *left, struct live_range *right)
|
|
{
|
|
struct live_range_edge *edge, **ptr;
|
|
struct lre_hash **hptr, *entry;
|
|
hptr = lre_probe(rstate, left, right);
|
|
if (!hptr || !*hptr) {
|
|
return;
|
|
}
|
|
entry = *hptr;
|
|
*hptr = entry->next;
|
|
xfree(entry);
|
|
|
|
for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
|
|
edge = *ptr;
|
|
if (edge->node == right) {
|
|
*ptr = edge->next;
|
|
memset(edge, 0, sizeof(*edge));
|
|
xfree(edge);
|
|
break;
|
|
}
|
|
}
|
|
for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
|
|
edge = *ptr;
|
|
if (edge->node == left) {
|
|
*ptr = edge->next;
|
|
memset(edge, 0, sizeof(*edge));
|
|
xfree(edge);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
|
|
{
|
|
struct live_range_edge *edge, *next;
|
|
for(edge = range->edges; edge; edge = next) {
|
|
next = edge->next;
|
|
remove_live_edge(rstate, range, edge->node);
|
|
}
|
|
}
|
|
|
|
|
|
/* Interference graph...
|
|
*
|
|
* new(n) --- Return a graph with n nodes but no edges.
|
|
* add(g,x,y) --- Return a graph including g with an between x and y
|
|
* interfere(g, x, y) --- Return true if there exists an edge between the nodes
|
|
* x and y in the graph g
|
|
* degree(g, x) --- Return the degree of the node x in the graph g
|
|
* neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
|
|
*
|
|
* Implement with a hash table && a set of adjcency vectors.
|
|
* The hash table supports constant time implementations of add and interfere.
|
|
* The adjacency vectors support an efficient implementation of neighbors.
|
|
*/
|
|
|
|
/*
|
|
* +---------------------------------------------------+
|
|
* | +--------------+ |
|
|
* v v | |
|
|
* renumber -> build graph -> colalesce -> spill_costs -> simplify -> select
|
|
*
|
|
* -- In simplify implment optimistic coloring... (No backtracking)
|
|
* -- Implement Rematerialization it is the only form of spilling we can perform
|
|
* Essentially this means dropping a constant from a register because
|
|
* we can regenerate it later.
|
|
*
|
|
* --- Very conservative colalescing (don't colalesce just mark the opportunities)
|
|
* coalesce at phi points...
|
|
* --- Bias coloring if at all possible do the coalesing a compile time.
|
|
*
|
|
*
|
|
*/
|
|
|
|
static void different_colored(
|
|
struct compile_state *state, struct reg_state *rstate,
|
|
struct triple *parent, struct triple *ins)
|
|
{
|
|
struct live_range *lr;
|
|
struct triple **expr;
|
|
lr = rstate->lrd[ins->id].lr;
|
|
expr = triple_rhs(state, ins, 0);
|
|
for(;expr; expr = triple_rhs(state, ins, expr)) {
|
|
struct live_range *lr2;
|
|
if (!*expr || (*expr == parent) || (*expr == ins)) {
|
|
continue;
|
|
}
|
|
lr2 = rstate->lrd[(*expr)->id].lr;
|
|
if (lr->color == lr2->color) {
|
|
internal_error(state, ins, "live range too big");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static struct live_range *coalesce_ranges(
|
|
struct compile_state *state, struct reg_state *rstate,
|
|
struct live_range *lr1, struct live_range *lr2)
|
|
{
|
|
struct live_range_def *head, *mid1, *mid2, *end, *lrd;
|
|
unsigned color;
|
|
unsigned classes;
|
|
if (lr1 == lr2) {
|
|
return lr1;
|
|
}
|
|
if (!lr1->defs || !lr2->defs) {
|
|
internal_error(state, 0,
|
|
"cannot coalese dead live ranges");
|
|
}
|
|
if ((lr1->color == REG_UNNEEDED) ||
|
|
(lr2->color == REG_UNNEEDED)) {
|
|
internal_error(state, 0,
|
|
"cannot coalesce live ranges without a possible color");
|
|
}
|
|
if ((lr1->color != lr2->color) &&
|
|
(lr1->color != REG_UNSET) &&
|
|
(lr2->color != REG_UNSET)) {
|
|
internal_error(state, lr1->defs->def,
|
|
"cannot coalesce live ranges of different colors");
|
|
}
|
|
color = lr1->color;
|
|
if (color == REG_UNSET) {
|
|
color = lr2->color;
|
|
}
|
|
classes = lr1->classes & lr2->classes;
|
|
if (!classes) {
|
|
internal_error(state, lr1->defs->def,
|
|
"cannot coalesce live ranges with dissimilar register classes");
|
|
}
|
|
/* If there is a clear dominate live range put it in lr1,
|
|
* For purposes of this test phi functions are
|
|
* considered dominated by the definitions that feed into
|
|
* them.
|
|
*/
|
|
if ((lr1->defs->prev->def->op == OP_PHI) ||
|
|
((lr2->defs->prev->def->op != OP_PHI) &&
|
|
tdominates(state, lr2->defs->def, lr1->defs->def))) {
|
|
struct live_range *tmp;
|
|
tmp = lr1;
|
|
lr1 = lr2;
|
|
lr2 = tmp;
|
|
}
|
|
#if 0
|
|
if (lr1->defs->orig_id & TRIPLE_FLAG_POST_SPLIT) {
|
|
fprintf(stderr, "lr1 post\n");
|
|
}
|
|
if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
|
|
fprintf(stderr, "lr1 pre\n");
|
|
}
|
|
if (lr2->defs->orig_id & TRIPLE_FLAG_POST_SPLIT) {
|
|
fprintf(stderr, "lr2 post\n");
|
|
}
|
|
if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
|
|
fprintf(stderr, "lr2 pre\n");
|
|
}
|
|
#endif
|
|
#if 0
|
|
fprintf(stderr, "coalesce color1(%p): %3d color2(%p) %3d\n",
|
|
lr1->defs->def,
|
|
lr1->color,
|
|
lr2->defs->def,
|
|
lr2->color);
|
|
#endif
|
|
|
|
lr1->classes = classes;
|
|
/* Append lr2 onto lr1 */
|
|
#warning "FIXME should this be a merge instead of a splice?"
|
|
head = lr1->defs;
|
|
mid1 = lr1->defs->prev;
|
|
mid2 = lr2->defs;
|
|
end = lr2->defs->prev;
|
|
|
|
head->prev = end;
|
|
end->next = head;
|
|
|
|
mid1->next = mid2;
|
|
mid2->prev = mid1;
|
|
|
|
/* Fixup the live range in the added live range defs */
|
|
lrd = head;
|
|
do {
|
|
lrd->lr = lr1;
|
|
lrd = lrd->next;
|
|
} while(lrd != head);
|
|
|
|
/* Mark lr2 as free. */
|
|
lr2->defs = 0;
|
|
lr2->color = REG_UNNEEDED;
|
|
lr2->classes = 0;
|
|
|
|
if (!lr1->defs) {
|
|
internal_error(state, 0, "lr1->defs == 0 ?");
|
|
}
|
|
|
|
lr1->color = color;
|
|
lr1->classes = classes;
|
|
|
|
return lr1;
|
|
}
|
|
|
|
static struct live_range_def *live_range_head(
|
|
struct compile_state *state, struct live_range *lr,
|
|
struct live_range_def *last)
|
|
{
|
|
struct live_range_def *result;
|
|
result = 0;
|
|
if (last == 0) {
|
|
result = lr->defs;
|
|
}
|
|
else if (!tdominates(state, lr->defs->def, last->next->def)) {
|
|
result = last->next;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static struct live_range_def *live_range_end(
|
|
struct compile_state *state, struct live_range *lr,
|
|
struct live_range_def *last)
|
|
{
|
|
struct live_range_def *result;
|
|
result = 0;
|
|
if (last == 0) {
|
|
result = lr->defs->prev;
|
|
}
|
|
else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
|
|
result = last->prev;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static void initialize_live_ranges(
|
|
struct compile_state *state, struct reg_state *rstate)
|
|
{
|
|
struct triple *ins, *first;
|
|
size_t count, size;
|
|
int i, j;
|
|
|
|
first = RHS(state->main_function, 0);
|
|
/* First count how many instructions I have.
|
|
*/
|
|
count = count_triples(state);
|
|
/* Potentially I need one live range definitions for each
|
|
* instruction, plus an extra for the split routines.
|
|
*/
|
|
rstate->defs = count + 1;
|
|
/* Potentially I need one live range for each instruction
|
|
* plus an extra for the dummy live range.
|
|
*/
|
|
rstate->ranges = count + 1;
|
|
size = sizeof(rstate->lrd[0]) * rstate->defs;
|
|
rstate->lrd = xcmalloc(size, "live_range_def");
|
|
size = sizeof(rstate->lr[0]) * rstate->ranges;
|
|
rstate->lr = xcmalloc(size, "live_range");
|
|
|
|
/* Setup the dummy live range */
|
|
rstate->lr[0].classes = 0;
|
|
rstate->lr[0].color = REG_UNSET;
|
|
rstate->lr[0].defs = 0;
|
|
i = j = 0;
|
|
ins = first;
|
|
do {
|
|
/* If the triple is a variable give it a live range */
|
|
if (triple_is_def(state, ins)) {
|
|
struct reg_info info;
|
|
/* Find the architecture specific color information */
|
|
info = find_def_color(state, ins);
|
|
|
|
i++;
|
|
rstate->lr[i].defs = &rstate->lrd[j];
|
|
rstate->lr[i].color = info.reg;
|
|
rstate->lr[i].classes = info.regcm;
|
|
rstate->lr[i].degree = 0;
|
|
rstate->lrd[j].lr = &rstate->lr[i];
|
|
}
|
|
/* Otherwise give the triple the dummy live range. */
|
|
else {
|
|
rstate->lrd[j].lr = &rstate->lr[0];
|
|
}
|
|
|
|
/* Initalize the live_range_def */
|
|
rstate->lrd[j].next = &rstate->lrd[j];
|
|
rstate->lrd[j].prev = &rstate->lrd[j];
|
|
rstate->lrd[j].def = ins;
|
|
rstate->lrd[j].orig_id = ins->id;
|
|
ins->id = j;
|
|
|
|
j++;
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
rstate->ranges = i;
|
|
rstate->defs -= 1;
|
|
|
|
/* Make a second pass to handle achitecture specific register
|
|
* constraints.
|
|
*/
|
|
ins = first;
|
|
do {
|
|
int zlhs, zrhs, i, j;
|
|
if (ins->id > rstate->defs) {
|
|
internal_error(state, ins, "bad id");
|
|
}
|
|
|
|
/* Walk through the template of ins and coalesce live ranges */
|
|
zlhs = TRIPLE_LHS(ins->sizes);
|
|
if ((zlhs == 0) && triple_is_def(state, ins)) {
|
|
zlhs = 1;
|
|
}
|
|
zrhs = TRIPLE_RHS(ins->sizes);
|
|
|
|
for(i = 0; i < zlhs; i++) {
|
|
struct reg_info linfo;
|
|
struct live_range_def *lhs;
|
|
linfo = arch_reg_lhs(state, ins, i);
|
|
if (linfo.reg < MAX_REGISTERS) {
|
|
continue;
|
|
}
|
|
if (triple_is_def(state, ins)) {
|
|
lhs = &rstate->lrd[ins->id];
|
|
} else {
|
|
lhs = &rstate->lrd[LHS(ins, i)->id];
|
|
}
|
|
for(j = 0; j < zrhs; j++) {
|
|
struct reg_info rinfo;
|
|
struct live_range_def *rhs;
|
|
rinfo = arch_reg_rhs(state, ins, j);
|
|
if (rinfo.reg < MAX_REGISTERS) {
|
|
continue;
|
|
}
|
|
rhs = &rstate->lrd[RHS(ins, i)->id];
|
|
if (rinfo.reg == linfo.reg) {
|
|
coalesce_ranges(state, rstate,
|
|
lhs->lr, rhs->lr);
|
|
}
|
|
}
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
static struct triple *graph_ins(
|
|
struct compile_state *state,
|
|
struct reg_block *blocks, struct triple_reg_set *live,
|
|
struct reg_block *rb, struct triple *ins, void *arg)
|
|
{
|
|
struct reg_state *rstate = arg;
|
|
struct live_range *def;
|
|
struct triple_reg_set *entry;
|
|
|
|
/* If the triple is not a definition
|
|
* we do not have a definition to add to
|
|
* the interference graph.
|
|
*/
|
|
if (!triple_is_def(state, ins)) {
|
|
return ins;
|
|
}
|
|
def = rstate->lrd[ins->id].lr;
|
|
|
|
/* Create an edge between ins and everything that is
|
|
* alive, unless the live_range cannot share
|
|
* a physical register with ins.
|
|
*/
|
|
for(entry = live; entry; entry = entry->next) {
|
|
struct live_range *lr;
|
|
if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
|
|
internal_error(state, 0, "bad entry?");
|
|
}
|
|
lr = rstate->lrd[entry->member->id].lr;
|
|
if (def == lr) {
|
|
continue;
|
|
}
|
|
if (!arch_regcm_intersect(def->classes, lr->classes)) {
|
|
continue;
|
|
}
|
|
add_live_edge(rstate, def, lr);
|
|
}
|
|
return ins;
|
|
}
|
|
|
|
|
|
static struct triple *print_interference_ins(
|
|
struct compile_state *state,
|
|
struct reg_block *blocks, struct triple_reg_set *live,
|
|
struct reg_block *rb, struct triple *ins, void *arg)
|
|
{
|
|
struct reg_state *rstate = arg;
|
|
struct live_range *lr;
|
|
|
|
lr = rstate->lrd[ins->id].lr;
|
|
display_triple(stdout, ins);
|
|
|
|
if (lr->defs) {
|
|
struct live_range_def *lrd;
|
|
printf(" range:");
|
|
lrd = lr->defs;
|
|
do {
|
|
printf(" %-10p", lrd->def);
|
|
lrd = lrd->next;
|
|
} while(lrd != lr->defs);
|
|
printf("\n");
|
|
}
|
|
if (live) {
|
|
struct triple_reg_set *entry;
|
|
printf(" live:");
|
|
for(entry = live; entry; entry = entry->next) {
|
|
printf(" %-10p", entry->member);
|
|
}
|
|
printf("\n");
|
|
}
|
|
if (lr->edges) {
|
|
struct live_range_edge *entry;
|
|
printf(" edges:");
|
|
for(entry = lr->edges; entry; entry = entry->next) {
|
|
struct live_range_def *lrd;
|
|
lrd = entry->node->defs;
|
|
do {
|
|
printf(" %-10p", lrd->def);
|
|
lrd = lrd->next;
|
|
} while(lrd != entry->node->defs);
|
|
printf("|");
|
|
}
|
|
printf("\n");
|
|
}
|
|
if (triple_is_branch(state, ins)) {
|
|
printf("\n");
|
|
}
|
|
return ins;
|
|
}
|
|
|
|
static int coalesce_live_ranges(
|
|
struct compile_state *state, struct reg_state *rstate)
|
|
{
|
|
/* At the point where a value is moved from one
|
|
* register to another that value requires two
|
|
* registers, thus increasing register pressure.
|
|
* Live range coaleescing reduces the register
|
|
* pressure by keeping a value in one register
|
|
* longer.
|
|
*
|
|
* In the case of a phi function all paths leading
|
|
* into it must be allocated to the same register
|
|
* otherwise the phi function may not be removed.
|
|
*
|
|
* Forcing a value to stay in a single register
|
|
* for an extended period of time does have
|
|
* limitations when applied to non homogenous
|
|
* register pool.
|
|
*
|
|
* The two cases I have identified are:
|
|
* 1) Two forced register assignments may
|
|
* collide.
|
|
* 2) Registers may go unused because they
|
|
* are only good for storing the value
|
|
* and not manipulating it.
|
|
*
|
|
* Because of this I need to split live ranges,
|
|
* even outside of the context of coalesced live
|
|
* ranges. The need to split live ranges does
|
|
* impose some constraints on live range coalescing.
|
|
*
|
|
* - Live ranges may not be coalesced across phi
|
|
* functions. This creates a 2 headed live
|
|
* range that cannot be sanely split.
|
|
*
|
|
* - phi functions (coalesced in initialize_live_ranges)
|
|
* are handled as pre split live ranges so we will
|
|
* never attempt to split them.
|
|
*/
|
|
int coalesced;
|
|
int i;
|
|
|
|
coalesced = 0;
|
|
for(i = 0; i <= rstate->ranges; i++) {
|
|
struct live_range *lr1;
|
|
struct live_range_def *lrd1;
|
|
lr1 = &rstate->lr[i];
|
|
if (!lr1->defs) {
|
|
continue;
|
|
}
|
|
lrd1 = live_range_end(state, lr1, 0);
|
|
for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
|
|
struct triple_set *set;
|
|
if (lrd1->def->op != OP_COPY) {
|
|
continue;
|
|
}
|
|
/* Skip copies that are the result of a live range split. */
|
|
if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
|
|
continue;
|
|
}
|
|
for(set = lrd1->def->use; set; set = set->next) {
|
|
struct live_range_def *lrd2;
|
|
struct live_range *lr2, *res;
|
|
|
|
lrd2 = &rstate->lrd[set->member->id];
|
|
|
|
/* Don't coalesce with instructions
|
|
* that are the result of a live range
|
|
* split.
|
|
*/
|
|
if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
|
|
continue;
|
|
}
|
|
lr2 = rstate->lrd[set->member->id].lr;
|
|
if (lr1 == lr2) {
|
|
continue;
|
|
}
|
|
if ((lr1->color != lr2->color) &&
|
|
(lr1->color != REG_UNSET) &&
|
|
(lr2->color != REG_UNSET)) {
|
|
continue;
|
|
}
|
|
if ((lr1->classes & lr2->classes) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (interfere(rstate, lr1, lr2)) {
|
|
continue;
|
|
}
|
|
|
|
res = coalesce_ranges(state, rstate, lr1, lr2);
|
|
coalesced += 1;
|
|
if (res != lr1) {
|
|
goto next;
|
|
}
|
|
}
|
|
}
|
|
next:
|
|
;
|
|
}
|
|
return coalesced;
|
|
}
|
|
|
|
|
|
struct coalesce_conflict {
|
|
struct triple *ins;
|
|
int index;
|
|
};
|
|
static struct triple *spot_coalesce_conflict(struct compile_state *state,
|
|
struct reg_block *blocks, struct triple_reg_set *live,
|
|
struct reg_block *rb, struct triple *ins, void *arg)
|
|
{
|
|
struct coalesce_conflict *conflict = arg;
|
|
int zlhs, zrhs, i, j;
|
|
int found;
|
|
|
|
/* See if we have a mandatory coalesce operation between
|
|
* a lhs and a rhs value. If so and the rhs value is also
|
|
* alive then this triple needs to be pre copied. Otherwise
|
|
* we would have two definitions in the same live range simultaneously
|
|
* alive.
|
|
*/
|
|
found = -1;
|
|
zlhs = TRIPLE_LHS(ins->sizes);
|
|
if ((zlhs == 0) && triple_is_def(state, ins)) {
|
|
zlhs = 1;
|
|
}
|
|
zrhs = TRIPLE_RHS(ins->sizes);
|
|
for(i = 0; (i < zlhs) && (found == -1); i++) {
|
|
struct reg_info linfo;
|
|
linfo = arch_reg_lhs(state, ins, i);
|
|
if (linfo.reg < MAX_REGISTERS) {
|
|
continue;
|
|
}
|
|
for(j = 0; (j < zrhs) && (found == -1); j++) {
|
|
struct reg_info rinfo;
|
|
struct triple *rhs;
|
|
struct triple_reg_set *set;
|
|
rinfo = arch_reg_rhs(state, ins, j);
|
|
if (rinfo.reg != linfo.reg) {
|
|
continue;
|
|
}
|
|
rhs = RHS(ins, j);
|
|
for(set = live; set && (found == -1); set = set->next) {
|
|
if (set->member == rhs) {
|
|
found = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Only update conflict if we are the least dominated conflict */
|
|
if ((found != -1) &&
|
|
(!conflict->ins || tdominates(state, ins, conflict->ins))) {
|
|
conflict->ins = ins;
|
|
conflict->index = found;
|
|
}
|
|
return ins;
|
|
}
|
|
|
|
static void resolve_coalesce_conflict(
|
|
struct compile_state *state, struct coalesce_conflict *conflict)
|
|
{
|
|
struct triple *copy;
|
|
copy = pre_copy(state, conflict->ins, conflict->index);
|
|
copy->id |= TRIPLE_FLAG_PRE_SPLIT;
|
|
}
|
|
|
|
|
|
static struct triple *spot_tangle(struct compile_state *state,
|
|
struct reg_block *blocks, struct triple_reg_set *live,
|
|
struct reg_block *rb, struct triple *ins, void *arg)
|
|
{
|
|
struct triple **tangle = arg;
|
|
char used[MAX_REGISTERS];
|
|
struct triple_reg_set *set;
|
|
|
|
/* Find out which registers have multiple uses at this point */
|
|
memset(used, 0, sizeof(used));
|
|
for(set = live; set; set = set->next) {
|
|
struct reg_info info;
|
|
info = find_lhs_color(state, set->member, 0);
|
|
if (info.reg == REG_UNSET) {
|
|
continue;
|
|
}
|
|
reg_inc_used(state, used, info.reg);
|
|
}
|
|
|
|
/* Now find the least dominated definition of a register in
|
|
* conflict I have seen so far.
|
|
*/
|
|
for(set = live; set; set = set->next) {
|
|
struct reg_info info;
|
|
info = find_lhs_color(state, set->member, 0);
|
|
if (used[info.reg] < 2) {
|
|
continue;
|
|
}
|
|
if (!*tangle || tdominates(state, set->member, *tangle)) {
|
|
*tangle = set->member;
|
|
}
|
|
}
|
|
return ins;
|
|
}
|
|
|
|
static void resolve_tangle(struct compile_state *state, struct triple *tangle)
|
|
{
|
|
struct reg_info info, uinfo;
|
|
struct triple_set *set, *next;
|
|
struct triple *copy;
|
|
|
|
#if 0
|
|
fprintf(stderr, "Resolving tangle: %p\n", tangle);
|
|
print_blocks(state, stderr);
|
|
#endif
|
|
info = find_lhs_color(state, tangle, 0);
|
|
#if 0
|
|
fprintf(stderr, "color: %d\n", info.reg);
|
|
#endif
|
|
for(set = tangle->use; set; set = next) {
|
|
struct triple *user;
|
|
int i, zrhs;
|
|
next = set->next;
|
|
user = set->member;
|
|
zrhs = TRIPLE_RHS(user->sizes);
|
|
for(i = 0; i < zrhs; i++) {
|
|
if (RHS(user, i) != tangle) {
|
|
continue;
|
|
}
|
|
uinfo = find_rhs_post_color(state, user, i);
|
|
#if 0
|
|
fprintf(stderr, "%p rhs %d color: %d\n",
|
|
user, i, uinfo.reg);
|
|
#endif
|
|
if (uinfo.reg == info.reg) {
|
|
copy = pre_copy(state, user, i);
|
|
copy->id |= TRIPLE_FLAG_PRE_SPLIT;
|
|
}
|
|
}
|
|
}
|
|
uinfo = find_lhs_pre_color(state, tangle, 0);
|
|
#if 0
|
|
fprintf(stderr, "pre color: %d\n", uinfo.reg);
|
|
#endif
|
|
if (uinfo.reg == info.reg) {
|
|
copy = post_copy(state, tangle);
|
|
copy->id |= TRIPLE_FLAG_PRE_SPLIT;
|
|
}
|
|
}
|
|
|
|
|
|
struct least_conflict {
|
|
struct reg_state *rstate;
|
|
struct live_range *ref_range;
|
|
struct triple *ins;
|
|
struct triple_reg_set *live;
|
|
size_t count;
|
|
};
|
|
static struct triple *least_conflict(struct compile_state *state,
|
|
struct reg_block *blocks, struct triple_reg_set *live,
|
|
struct reg_block *rb, struct triple *ins, void *arg)
|
|
{
|
|
struct least_conflict *conflict = arg;
|
|
struct live_range_edge *edge;
|
|
struct triple_reg_set *set;
|
|
size_t count;
|
|
|
|
#warning "FIXME handle instructions with left hand sides..."
|
|
/* Only instructions that introduce a new definition
|
|
* can be the conflict instruction.
|
|
*/
|
|
if (!triple_is_def(state, ins)) {
|
|
return ins;
|
|
}
|
|
|
|
/* See if live ranges at this instruction are a
|
|
* strict subset of the live ranges that are in conflict.
|
|
*/
|
|
count = 0;
|
|
for(set = live; set; set = set->next) {
|
|
struct live_range *lr;
|
|
lr = conflict->rstate->lrd[set->member->id].lr;
|
|
for(edge = conflict->ref_range->edges; edge; edge = edge->next) {
|
|
if (edge->node == lr) {
|
|
break;
|
|
}
|
|
}
|
|
if (!edge && (lr != conflict->ref_range)) {
|
|
return ins;
|
|
}
|
|
count++;
|
|
}
|
|
if (count <= 1) {
|
|
return ins;
|
|
}
|
|
|
|
/* See if there is an uncolored member in this subset.
|
|
*/
|
|
for(set = live; set; set = set->next) {
|
|
struct live_range *lr;
|
|
lr = conflict->rstate->lrd[set->member->id].lr;
|
|
if (lr->color == REG_UNSET) {
|
|
break;
|
|
}
|
|
}
|
|
if (!set && (conflict->ref_range != REG_UNSET)) {
|
|
return ins;
|
|
}
|
|
|
|
|
|
/* Find the instruction with the largest possible subset of
|
|
* conflict ranges and that dominates any other instruction
|
|
* with an equal sized set of conflicting ranges.
|
|
*/
|
|
if ((count > conflict->count) ||
|
|
((count == conflict->count) &&
|
|
tdominates(state, ins, conflict->ins))) {
|
|
struct triple_reg_set *next;
|
|
/* Remember the canidate instruction */
|
|
conflict->ins = ins;
|
|
conflict->count = count;
|
|
/* Free the old collection of live registers */
|
|
for(set = conflict->live; set; set = next) {
|
|
next = set->next;
|
|
do_triple_unset(&conflict->live, set->member);
|
|
}
|
|
conflict->live = 0;
|
|
/* Rember the registers that are alive but do not feed
|
|
* into or out of conflict->ins.
|
|
*/
|
|
for(set = live; set; set = set->next) {
|
|
struct triple **expr;
|
|
if (set->member == ins) {
|
|
goto next;
|
|
}
|
|
expr = triple_rhs(state, ins, 0);
|
|
for(;expr; expr = triple_rhs(state, ins, expr)) {
|
|
if (*expr == set->member) {
|
|
goto next;
|
|
}
|
|
}
|
|
expr = triple_lhs(state, ins, 0);
|
|
for(; expr; expr = triple_lhs(state, ins, expr)) {
|
|
if (*expr == set->member) {
|
|
goto next;
|
|
}
|
|
}
|
|
do_triple_set(&conflict->live, set->member, set->new);
|
|
next:
|
|
;
|
|
}
|
|
}
|
|
return ins;
|
|
}
|
|
|
|
static void find_range_conflict(struct compile_state *state,
|
|
struct reg_state *rstate, char *used, struct live_range *ref_range,
|
|
struct least_conflict *conflict)
|
|
{
|
|
/* there are 3 kinds ways conflicts can occure.
|
|
* 1) the life time of 2 values simply overlap.
|
|
* 2) the 2 values feed into the same instruction.
|
|
* 3) the 2 values feed into a phi function.
|
|
*/
|
|
|
|
/* find the instruction where the problematic conflict comes
|
|
* into existance. that the instruction where all of
|
|
* the values are alive, and among such instructions it is
|
|
* the least dominated one.
|
|
*
|
|
* a value is alive an an instruction if either;
|
|
* 1) the value defintion dominates the instruction and there
|
|
* is a use at or after that instrction
|
|
* 2) the value definition feeds into a phi function in the
|
|
* same block as the instruction. and the phi function
|
|
* is at or after the instruction.
|
|
*/
|
|
memset(conflict, 0, sizeof(*conflict));
|
|
conflict->rstate = rstate;
|
|
conflict->ref_range = ref_range;
|
|
conflict->ins = 0;
|
|
conflict->count = 0;
|
|
conflict->live = 0;
|
|
walk_variable_lifetimes(state, rstate->blocks, least_conflict, conflict);
|
|
|
|
if (!conflict->ins) {
|
|
internal_error(state, 0, "No conflict ins?");
|
|
}
|
|
if (!conflict->live) {
|
|
internal_error(state, 0, "No conflict live?");
|
|
}
|
|
return;
|
|
}
|
|
|
|
static struct triple *split_constrained_range(struct compile_state *state,
|
|
struct reg_state *rstate, char *used, struct least_conflict *conflict)
|
|
{
|
|
unsigned constrained_size;
|
|
struct triple *new, *constrained;
|
|
struct triple_reg_set *cset;
|
|
/* Find a range that is having problems because it is
|
|
* artificially constrained.
|
|
*/
|
|
constrained_size = ~0;
|
|
constrained = 0;
|
|
new = 0;
|
|
for(cset = conflict->live; cset; cset = cset->next) {
|
|
struct triple_set *set;
|
|
struct reg_info info;
|
|
unsigned classes;
|
|
unsigned cur_size, size;
|
|
/* Skip the live range that starts with conflict->ins */
|
|
if (cset->member == conflict->ins) {
|
|
continue;
|
|
}
|
|
/* Find how many registers this value can potentially
|
|
* be assigned to.
|
|
*/
|
|
classes = arch_type_to_regcm(state, cset->member->type);
|
|
size = regc_max_size(state, classes);
|
|
|
|
/* Find how many registers we allow this value to
|
|
* be assigned to.
|
|
*/
|
|
info = arch_reg_lhs(state, cset->member, 0);
|
|
#warning "FIXME do I need a call to arch_reg_rhs around here somewhere?"
|
|
if ((info.reg == REG_UNSET) || (info.reg >= MAX_REGISTERS)) {
|
|
cur_size = regc_max_size(state, info.regcm);
|
|
} else {
|
|
cur_size = 1;
|
|
}
|
|
/* If this live_range feeds into conflict->ins
|
|
* splitting it is unlikely to help.
|
|
*/
|
|
for(set = cset->member->use; set; set = set->next) {
|
|
if (set->member == conflict->ins) {
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
/* If there is no difference between potential and
|
|
* actual register count there is nothing to do.
|
|
*/
|
|
if (cur_size >= size) {
|
|
continue;
|
|
}
|
|
/* Of the constrained registers deal with the
|
|
* most constrained one first.
|
|
*/
|
|
if (!constrained ||
|
|
(size < constrained_size)) {
|
|
constrained = cset->member;
|
|
constrained_size = size;
|
|
}
|
|
next:
|
|
;
|
|
}
|
|
if (constrained) {
|
|
new = post_copy(state, constrained);
|
|
new->id |= TRIPLE_FLAG_POST_SPLIT;
|
|
}
|
|
return new;
|
|
}
|
|
|
|
static int split_ranges(
|
|
struct compile_state *state, struct reg_state *rstate,
|
|
char *used, struct live_range *range)
|
|
{
|
|
struct triple *new;
|
|
|
|
if ((range->color == REG_UNNEEDED) ||
|
|
(rstate->passes >= rstate->max_passes)) {
|
|
return 0;
|
|
}
|
|
new = 0;
|
|
/* If I can't allocate a register something needs to be split */
|
|
if (arch_select_free_register(state, used, range->classes) == REG_UNSET) {
|
|
struct least_conflict conflict;
|
|
|
|
/* Find where in the set of registers the conflict
|
|
* actually occurs.
|
|
*/
|
|
find_range_conflict(state, rstate, used, range, &conflict);
|
|
|
|
/* If a range has been artifically constrained split it */
|
|
new = split_constrained_range(state, rstate, used, &conflict);
|
|
|
|
if (!new) {
|
|
/* Ideally I would split the live range that will not be used
|
|
* for the longest period of time in hopes that this will
|
|
* (a) allow me to spill a register or
|
|
* (b) allow me to place a value in another register.
|
|
*
|
|
* So far I don't have a test case for this, the resolving
|
|
* of mandatory constraints has solved all of my
|
|
* know issues. So I have choosen not to write any
|
|
* code until I cat get a better feel for cases where
|
|
* it would be useful to have.
|
|
*
|
|
*/
|
|
#warning "WISHLIST implement live range splitting..."
|
|
return 0;
|
|
}
|
|
}
|
|
if (new) {
|
|
rstate->lrd[rstate->defs].orig_id = new->id;
|
|
new->id = rstate->defs;
|
|
rstate->defs++;
|
|
#if 0
|
|
fprintf(stderr, "new: %p\n", new);
|
|
#endif
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if DEBUG_COLOR_GRAPH > 1
|
|
#define cgdebug_printf(...) fprintf(stdout, __VA_ARGS__)
|
|
#define cgdebug_flush() fflush(stdout)
|
|
#elif DEBUG_COLOR_GRAPH == 1
|
|
#define cgdebug_printf(...) fprintf(stderr, __VA_ARGS__)
|
|
#define cgdebug_flush() fflush(stderr)
|
|
#else
|
|
#define cgdebug_printf(...)
|
|
#define cgdebug_flush()
|
|
#endif
|
|
|
|
|
|
static int select_free_color(struct compile_state *state,
|
|
struct reg_state *rstate, struct live_range *range)
|
|
{
|
|
struct triple_set *entry;
|
|
struct live_range_def *lrd;
|
|
struct live_range_def *phi;
|
|
struct live_range_edge *edge;
|
|
char used[MAX_REGISTERS];
|
|
struct triple **expr;
|
|
|
|
/* Instead of doing just the trivial color select here I try
|
|
* a few extra things because a good color selection will help reduce
|
|
* copies.
|
|
*/
|
|
|
|
/* Find the registers currently in use */
|
|
memset(used, 0, sizeof(used));
|
|
for(edge = range->edges; edge; edge = edge->next) {
|
|
if (edge->node->color == REG_UNSET) {
|
|
continue;
|
|
}
|
|
reg_fill_used(state, used, edge->node->color);
|
|
}
|
|
#if DEBUG_COLOR_GRAPH > 1
|
|
{
|
|
int i;
|
|
i = 0;
|
|
for(edge = range->edges; edge; edge = edge->next) {
|
|
i++;
|
|
}
|
|
cgdebug_printf("\n%s edges: %d @%s:%d.%d\n",
|
|
tops(range->def->op), i,
|
|
range->def->filename, range->def->line, range->def->col);
|
|
for(i = 0; i < MAX_REGISTERS; i++) {
|
|
if (used[i]) {
|
|
cgdebug_printf("used: %s\n",
|
|
arch_reg_str(i));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#warning "FIXME detect conflicts caused by the source and destination being the same register"
|
|
|
|
/* If a color is already assigned see if it will work */
|
|
if (range->color != REG_UNSET) {
|
|
struct live_range_def *lrd;
|
|
if (!used[range->color]) {
|
|
return 1;
|
|
}
|
|
for(edge = range->edges; edge; edge = edge->next) {
|
|
if (edge->node->color != range->color) {
|
|
continue;
|
|
}
|
|
warning(state, edge->node->defs->def, "edge: ");
|
|
lrd = edge->node->defs;
|
|
do {
|
|
warning(state, lrd->def, " %p %s",
|
|
lrd->def, tops(lrd->def->op));
|
|
lrd = lrd->next;
|
|
} while(lrd != edge->node->defs);
|
|
}
|
|
lrd = range->defs;
|
|
warning(state, range->defs->def, "def: ");
|
|
do {
|
|
warning(state, lrd->def, " %p %s",
|
|
lrd->def, tops(lrd->def->op));
|
|
lrd = lrd->next;
|
|
} while(lrd != range->defs);
|
|
internal_error(state, range->defs->def,
|
|
"live range with already used color %s",
|
|
arch_reg_str(range->color));
|
|
}
|
|
|
|
/* If I feed into an expression reuse it's color.
|
|
* This should help remove copies in the case of 2 register instructions
|
|
* and phi functions.
|
|
*/
|
|
phi = 0;
|
|
lrd = live_range_end(state, range, 0);
|
|
for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
|
|
entry = lrd->def->use;
|
|
for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
|
|
struct live_range_def *insd;
|
|
insd = &rstate->lrd[entry->member->id];
|
|
if (insd->lr->defs == 0) {
|
|
continue;
|
|
}
|
|
if (!phi && (insd->def->op == OP_PHI) &&
|
|
!interfere(rstate, range, insd->lr)) {
|
|
phi = insd;
|
|
}
|
|
if ((insd->lr->color == REG_UNSET) ||
|
|
((insd->lr->classes & range->classes) == 0) ||
|
|
(used[insd->lr->color])) {
|
|
continue;
|
|
}
|
|
if (interfere(rstate, range, insd->lr)) {
|
|
continue;
|
|
}
|
|
range->color = insd->lr->color;
|
|
}
|
|
}
|
|
/* If I feed into a phi function reuse it's color or the color
|
|
* of something else that feeds into the phi function.
|
|
*/
|
|
if (phi) {
|
|
if (phi->lr->color != REG_UNSET) {
|
|
if (used[phi->lr->color]) {
|
|
range->color = phi->lr->color;
|
|
}
|
|
}
|
|
else {
|
|
expr = triple_rhs(state, phi->def, 0);
|
|
for(; expr; expr = triple_rhs(state, phi->def, expr)) {
|
|
struct live_range *lr;
|
|
if (!*expr) {
|
|
continue;
|
|
}
|
|
lr = rstate->lrd[(*expr)->id].lr;
|
|
if ((lr->color == REG_UNSET) ||
|
|
((lr->classes & range->classes) == 0) ||
|
|
(used[lr->color])) {
|
|
continue;
|
|
}
|
|
if (interfere(rstate, range, lr)) {
|
|
continue;
|
|
}
|
|
range->color = lr->color;
|
|
}
|
|
}
|
|
}
|
|
/* If I don't interfere with a rhs node reuse it's color */
|
|
lrd = live_range_head(state, range, 0);
|
|
for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
|
|
expr = triple_rhs(state, lrd->def, 0);
|
|
for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
|
|
struct live_range *lr;
|
|
if (!*expr) {
|
|
continue;
|
|
}
|
|
lr = rstate->lrd[(*expr)->id].lr;
|
|
if ((lr->color == -1) ||
|
|
((lr->classes & range->classes) == 0) ||
|
|
(used[lr->color])) {
|
|
continue;
|
|
}
|
|
if (interfere(rstate, range, lr)) {
|
|
continue;
|
|
}
|
|
range->color = lr->color;
|
|
break;
|
|
}
|
|
}
|
|
/* If I have not opportunitically picked a useful color
|
|
* pick the first color that is free.
|
|
*/
|
|
if (range->color == REG_UNSET) {
|
|
range->color =
|
|
arch_select_free_register(state, used, range->classes);
|
|
}
|
|
if (range->color == REG_UNSET) {
|
|
int i;
|
|
if (split_ranges(state, rstate, used, range)) {
|
|
return 0;
|
|
}
|
|
for(edge = range->edges; edge; edge = edge->next) {
|
|
if (edge->node->color == REG_UNSET) {
|
|
continue;
|
|
}
|
|
warning(state, edge->node->defs->def, "reg %s",
|
|
arch_reg_str(edge->node->color));
|
|
}
|
|
warning(state, range->defs->def, "classes: %x",
|
|
range->classes);
|
|
for(i = 0; i < MAX_REGISTERS; i++) {
|
|
if (used[i]) {
|
|
warning(state, range->defs->def, "used: %s",
|
|
arch_reg_str(i));
|
|
}
|
|
}
|
|
#if DEBUG_COLOR_GRAPH < 2
|
|
error(state, range->defs->def, "too few registers");
|
|
#else
|
|
internal_error(state, range->defs->def, "too few registers");
|
|
#endif
|
|
}
|
|
range->classes = arch_reg_regcm(state, range->color);
|
|
if (range->color == -1) {
|
|
internal_error(state, range->defs->def, "select_free_color did not?");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int color_graph(struct compile_state *state, struct reg_state *rstate)
|
|
{
|
|
int colored;
|
|
struct live_range_edge *edge;
|
|
struct live_range *range;
|
|
if (rstate->low) {
|
|
cgdebug_printf("Lo: ");
|
|
range = rstate->low;
|
|
if (*range->group_prev != range) {
|
|
internal_error(state, 0, "lo: *prev != range?");
|
|
}
|
|
*range->group_prev = range->group_next;
|
|
if (range->group_next) {
|
|
range->group_next->group_prev = range->group_prev;
|
|
}
|
|
if (&range->group_next == rstate->low_tail) {
|
|
rstate->low_tail = range->group_prev;
|
|
}
|
|
if (rstate->low == range) {
|
|
internal_error(state, 0, "low: next != prev?");
|
|
}
|
|
}
|
|
else if (rstate->high) {
|
|
cgdebug_printf("Hi: ");
|
|
range = rstate->high;
|
|
if (*range->group_prev != range) {
|
|
internal_error(state, 0, "hi: *prev != range?");
|
|
}
|
|
*range->group_prev = range->group_next;
|
|
if (range->group_next) {
|
|
range->group_next->group_prev = range->group_prev;
|
|
}
|
|
if (&range->group_next == rstate->high_tail) {
|
|
rstate->high_tail = range->group_prev;
|
|
}
|
|
if (rstate->high == range) {
|
|
internal_error(state, 0, "high: next != prev?");
|
|
}
|
|
}
|
|
else {
|
|
return 1;
|
|
}
|
|
cgdebug_printf(" %d\n", range - rstate->lr);
|
|
range->group_prev = 0;
|
|
for(edge = range->edges; edge; edge = edge->next) {
|
|
struct live_range *node;
|
|
node = edge->node;
|
|
/* Move nodes from the high to the low list */
|
|
if (node->group_prev && (node->color == REG_UNSET) &&
|
|
(node->degree == regc_max_size(state, node->classes))) {
|
|
if (*node->group_prev != node) {
|
|
internal_error(state, 0, "move: *prev != node?");
|
|
}
|
|
*node->group_prev = node->group_next;
|
|
if (node->group_next) {
|
|
node->group_next->group_prev = node->group_prev;
|
|
}
|
|
if (&node->group_next == rstate->high_tail) {
|
|
rstate->high_tail = node->group_prev;
|
|
}
|
|
cgdebug_printf("Moving...%d to low\n", node - rstate->lr);
|
|
node->group_prev = rstate->low_tail;
|
|
node->group_next = 0;
|
|
*rstate->low_tail = node;
|
|
rstate->low_tail = &node->group_next;
|
|
if (*node->group_prev != node) {
|
|
internal_error(state, 0, "move2: *prev != node?");
|
|
}
|
|
}
|
|
node->degree -= 1;
|
|
}
|
|
colored = color_graph(state, rstate);
|
|
if (colored) {
|
|
cgdebug_printf("Coloring %d @%s:%d.%d:",
|
|
range - rstate->lr,
|
|
range->def->filename, range->def->line, range->def->col);
|
|
cgdebug_flush();
|
|
colored = select_free_color(state, rstate, range);
|
|
cgdebug_printf(" %s\n", arch_reg_str(range->color));
|
|
}
|
|
return colored;
|
|
}
|
|
|
|
static void verify_colors(struct compile_state *state, struct reg_state *rstate)
|
|
{
|
|
struct live_range *lr;
|
|
struct live_range_edge *edge;
|
|
struct triple *ins, *first;
|
|
char used[MAX_REGISTERS];
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
if (triple_is_def(state, ins)) {
|
|
if ((ins->id < 0) || (ins->id > rstate->defs)) {
|
|
internal_error(state, ins,
|
|
"triple without a live range def");
|
|
}
|
|
lr = rstate->lrd[ins->id].lr;
|
|
if (lr->color == REG_UNSET) {
|
|
internal_error(state, ins,
|
|
"triple without a color");
|
|
}
|
|
/* Find the registers used by the edges */
|
|
memset(used, 0, sizeof(used));
|
|
for(edge = lr->edges; edge; edge = edge->next) {
|
|
if (edge->node->color == REG_UNSET) {
|
|
internal_error(state, 0,
|
|
"live range without a color");
|
|
}
|
|
reg_fill_used(state, used, edge->node->color);
|
|
}
|
|
if (used[lr->color]) {
|
|
internal_error(state, ins,
|
|
"triple with already used color");
|
|
}
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
static void color_triples(struct compile_state *state, struct reg_state *rstate)
|
|
{
|
|
struct live_range *lr;
|
|
struct triple *first, *ins;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
if ((ins->id < 0) || (ins->id > rstate->defs)) {
|
|
internal_error(state, ins,
|
|
"triple without a live range");
|
|
}
|
|
lr = rstate->lrd[ins->id].lr;
|
|
SET_REG(ins->id, lr->color);
|
|
ins = ins->next;
|
|
} while (ins != first);
|
|
}
|
|
|
|
static void print_interference_block(
|
|
struct compile_state *state, struct block *block, void *arg)
|
|
|
|
{
|
|
struct reg_state *rstate = arg;
|
|
struct reg_block *rb;
|
|
struct triple *ptr;
|
|
int phi_present;
|
|
int done;
|
|
rb = &rstate->blocks[block->vertex];
|
|
|
|
printf("\nblock: %p (%d), %p<-%p %p<-%p\n",
|
|
block,
|
|
block->vertex,
|
|
block->left,
|
|
block->left && block->left->use?block->left->use->member : 0,
|
|
block->right,
|
|
block->right && block->right->use?block->right->use->member : 0);
|
|
if (rb->in) {
|
|
struct triple_reg_set *in_set;
|
|
printf(" in:");
|
|
for(in_set = rb->in; in_set; in_set = in_set->next) {
|
|
printf(" %-10p", in_set->member);
|
|
}
|
|
printf("\n");
|
|
}
|
|
phi_present = 0;
|
|
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
|
|
done = (ptr == block->last);
|
|
if (ptr->op == OP_PHI) {
|
|
phi_present = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (phi_present) {
|
|
int edge;
|
|
for(edge = 0; edge < block->users; edge++) {
|
|
printf(" in(%d):", edge);
|
|
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
|
|
struct triple **slot;
|
|
done = (ptr == block->last);
|
|
if (ptr->op != OP_PHI) {
|
|
continue;
|
|
}
|
|
slot = &RHS(ptr, 0);
|
|
printf(" %-10p", slot[edge]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
if (block->first->op == OP_LABEL) {
|
|
printf("%p:\n", block->first);
|
|
}
|
|
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
|
|
struct triple_set *user;
|
|
struct live_range *lr;
|
|
unsigned id;
|
|
int op;
|
|
op = ptr->op;
|
|
done = (ptr == block->last);
|
|
lr = rstate->lrd[ptr->id].lr;
|
|
|
|
if (triple_stores_block(state, ptr)) {
|
|
if (ptr->u.block != block) {
|
|
internal_error(state, ptr,
|
|
"Wrong block pointer: %p",
|
|
ptr->u.block);
|
|
}
|
|
}
|
|
if (op == OP_ADECL) {
|
|
for(user = ptr->use; user; user = user->next) {
|
|
if (!user->member->u.block) {
|
|
internal_error(state, user->member,
|
|
"Use %p not in a block?",
|
|
user->member);
|
|
}
|
|
|
|
}
|
|
}
|
|
id = ptr->id;
|
|
SET_REG(ptr->id, lr->color);
|
|
display_triple(stdout, ptr);
|
|
ptr->id = id;
|
|
|
|
if (triple_is_def(state, ptr) && (lr->defs == 0)) {
|
|
internal_error(state, ptr, "lr has no defs!");
|
|
}
|
|
|
|
if (lr->defs) {
|
|
struct live_range_def *lrd;
|
|
printf(" range:");
|
|
lrd = lr->defs;
|
|
do {
|
|
printf(" %-10p", lrd->def);
|
|
lrd = lrd->next;
|
|
} while(lrd != lr->defs);
|
|
printf("\n");
|
|
}
|
|
if (lr->edges > 0) {
|
|
struct live_range_edge *edge;
|
|
printf(" edges:");
|
|
for(edge = lr->edges; edge; edge = edge->next) {
|
|
struct live_range_def *lrd;
|
|
lrd = edge->node->defs;
|
|
do {
|
|
printf(" %-10p", lrd->def);
|
|
lrd = lrd->next;
|
|
} while(lrd != edge->node->defs);
|
|
printf("|");
|
|
}
|
|
printf("\n");
|
|
}
|
|
/* Do a bunch of sanity checks */
|
|
valid_ins(state, ptr);
|
|
if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
|
|
internal_error(state, ptr, "Invalid triple id: %d",
|
|
ptr->id);
|
|
}
|
|
for(user = ptr->use; user; user = user->next) {
|
|
struct triple *use;
|
|
struct live_range *ulr;
|
|
use = user->member;
|
|
valid_ins(state, use);
|
|
if ((use->id < 0) || (use->id > rstate->defs)) {
|
|
internal_error(state, use, "Invalid triple id: %d",
|
|
use->id);
|
|
}
|
|
ulr = rstate->lrd[user->member->id].lr;
|
|
if (triple_stores_block(state, user->member) &&
|
|
!user->member->u.block) {
|
|
internal_error(state, user->member,
|
|
"Use %p not in a block?",
|
|
user->member);
|
|
}
|
|
}
|
|
}
|
|
if (rb->out) {
|
|
struct triple_reg_set *out_set;
|
|
printf(" out:");
|
|
for(out_set = rb->out; out_set; out_set = out_set->next) {
|
|
printf(" %-10p", out_set->member);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static struct live_range *merge_sort_lr(
|
|
struct live_range *first, struct live_range *last)
|
|
{
|
|
struct live_range *mid, *join, **join_tail, *pick;
|
|
size_t size;
|
|
size = (last - first) + 1;
|
|
if (size >= 2) {
|
|
mid = first + size/2;
|
|
first = merge_sort_lr(first, mid -1);
|
|
mid = merge_sort_lr(mid, last);
|
|
|
|
join = 0;
|
|
join_tail = &join;
|
|
/* merge the two lists */
|
|
while(first && mid) {
|
|
if ((first->degree < mid->degree) ||
|
|
((first->degree == mid->degree) &&
|
|
(first->length < mid->length))) {
|
|
pick = first;
|
|
first = first->group_next;
|
|
if (first) {
|
|
first->group_prev = 0;
|
|
}
|
|
}
|
|
else {
|
|
pick = mid;
|
|
mid = mid->group_next;
|
|
if (mid) {
|
|
mid->group_prev = 0;
|
|
}
|
|
}
|
|
pick->group_next = 0;
|
|
pick->group_prev = join_tail;
|
|
*join_tail = pick;
|
|
join_tail = &pick->group_next;
|
|
}
|
|
/* Splice the remaining list */
|
|
pick = (first)? first : mid;
|
|
*join_tail = pick;
|
|
if (pick) {
|
|
pick->group_prev = join_tail;
|
|
}
|
|
}
|
|
else {
|
|
if (!first->defs) {
|
|
first = 0;
|
|
}
|
|
join = first;
|
|
}
|
|
return join;
|
|
}
|
|
|
|
static void ids_from_rstate(struct compile_state *state,
|
|
struct reg_state *rstate)
|
|
{
|
|
struct triple *ins, *first;
|
|
if (!rstate->defs) {
|
|
return;
|
|
}
|
|
/* Display the graph if desired */
|
|
if (state->debug & DEBUG_INTERFERENCE) {
|
|
print_blocks(state, stdout);
|
|
print_control_flow(state);
|
|
}
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
if (ins->id) {
|
|
struct live_range_def *lrd;
|
|
lrd = &rstate->lrd[ins->id];
|
|
ins->id = lrd->orig_id;
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
static void cleanup_live_edges(struct reg_state *rstate)
|
|
{
|
|
int i;
|
|
/* Free the edges on each node */
|
|
for(i = 1; i <= rstate->ranges; i++) {
|
|
remove_live_edges(rstate, &rstate->lr[i]);
|
|
}
|
|
}
|
|
|
|
static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
|
|
{
|
|
cleanup_live_edges(rstate);
|
|
xfree(rstate->lrd);
|
|
xfree(rstate->lr);
|
|
|
|
/* Free the variable lifetime information */
|
|
if (rstate->blocks) {
|
|
free_variable_lifetimes(state, rstate->blocks);
|
|
}
|
|
rstate->defs = 0;
|
|
rstate->ranges = 0;
|
|
rstate->lrd = 0;
|
|
rstate->lr = 0;
|
|
rstate->blocks = 0;
|
|
}
|
|
|
|
static void allocate_registers(struct compile_state *state)
|
|
{
|
|
struct reg_state rstate;
|
|
int colored;
|
|
|
|
/* Clear out the reg_state */
|
|
memset(&rstate, 0, sizeof(rstate));
|
|
rstate.max_passes = MAX_ALLOCATION_PASSES;
|
|
|
|
do {
|
|
struct live_range **point, **next;
|
|
struct triple *tangle;
|
|
struct coalesce_conflict conflict;
|
|
int coalesced;
|
|
|
|
/* Restore ids */
|
|
ids_from_rstate(state, &rstate);
|
|
|
|
do {
|
|
/* Cleanup the temporary data structures */
|
|
cleanup_rstate(state, &rstate);
|
|
|
|
/* Compute the variable lifetimes */
|
|
rstate.blocks = compute_variable_lifetimes(state);
|
|
|
|
/* Find an invalid mandatory live range coalesce */
|
|
conflict.ins = 0;
|
|
conflict.index = -1;
|
|
walk_variable_lifetimes(
|
|
state, rstate.blocks, spot_coalesce_conflict, &conflict);
|
|
|
|
/* If a tangle was found resolve it */
|
|
if (conflict.ins) {
|
|
resolve_coalesce_conflict(state, &conflict);
|
|
}
|
|
} while(conflict.ins);
|
|
|
|
do {
|
|
/* Cleanup the temporary data structures */
|
|
cleanup_rstate(state, &rstate);
|
|
|
|
/* Compute the variable lifetimes */
|
|
rstate.blocks = compute_variable_lifetimes(state);
|
|
|
|
/* Find two simultaneous uses of the same register */
|
|
tangle = 0;
|
|
walk_variable_lifetimes(
|
|
state, rstate.blocks, spot_tangle, &tangle);
|
|
|
|
/* If a tangle was found resolve it */
|
|
if (tangle) {
|
|
resolve_tangle(state, tangle);
|
|
}
|
|
} while(tangle);
|
|
|
|
if (state->debug & DEBUG_INSERTED_COPIES) {
|
|
printf("After resolve_tangles\n");
|
|
print_blocks(state, stdout);
|
|
print_control_flow(state);
|
|
}
|
|
|
|
|
|
/* Allocate and initialize the live ranges */
|
|
initialize_live_ranges(state, &rstate);
|
|
|
|
do {
|
|
/* Forget previous live range edge calculations */
|
|
cleanup_live_edges(&rstate);
|
|
|
|
/* Compute the interference graph */
|
|
walk_variable_lifetimes(
|
|
state, rstate.blocks, graph_ins, &rstate);
|
|
|
|
/* Display the interference graph if desired */
|
|
if (state->debug & DEBUG_INTERFERENCE) {
|
|
printf("\nlive variables by block\n");
|
|
walk_blocks(state, print_interference_block, &rstate);
|
|
printf("\nlive variables by instruction\n");
|
|
walk_variable_lifetimes(
|
|
state, rstate.blocks,
|
|
print_interference_ins, &rstate);
|
|
}
|
|
|
|
coalesced = coalesce_live_ranges(state, &rstate);
|
|
} while(coalesced);
|
|
|
|
/* Build the groups low and high. But with the nodes
|
|
* first sorted by degree order.
|
|
*/
|
|
rstate.low_tail = &rstate.low;
|
|
rstate.high_tail = &rstate.high;
|
|
rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
|
|
if (rstate.high) {
|
|
rstate.high->group_prev = &rstate.high;
|
|
}
|
|
for(point = &rstate.high; *point; point = &(*point)->group_next)
|
|
;
|
|
rstate.high_tail = point;
|
|
/* Walk through the high list and move everything that needs
|
|
* to be onto low.
|
|
*/
|
|
for(point = &rstate.high; *point; point = next) {
|
|
struct live_range *range;
|
|
next = &(*point)->group_next;
|
|
range = *point;
|
|
|
|
/* If it has a low degree or it already has a color
|
|
* place the node in low.
|
|
*/
|
|
if ((range->degree < regc_max_size(state, range->classes)) ||
|
|
(range->color != REG_UNSET)) {
|
|
cgdebug_printf("Lo: %5d degree %5d%s\n",
|
|
range - rstate.lr, range->degree,
|
|
(range->color != REG_UNSET) ? " (colored)": "");
|
|
*range->group_prev = range->group_next;
|
|
if (range->group_next) {
|
|
range->group_next->group_prev = range->group_prev;
|
|
}
|
|
if (&range->group_next == rstate.high_tail) {
|
|
rstate.high_tail = range->group_prev;
|
|
}
|
|
range->group_prev = rstate.low_tail;
|
|
range->group_next = 0;
|
|
*rstate.low_tail = range;
|
|
rstate.low_tail = &range->group_next;
|
|
next = point;
|
|
}
|
|
else {
|
|
cgdebug_printf("hi: %5d degree %5d%s\n",
|
|
range - rstate.lr, range->degree,
|
|
(range->color != REG_UNSET) ? " (colored)": "");
|
|
}
|
|
}
|
|
/* Color the live_ranges */
|
|
colored = color_graph(state, &rstate);
|
|
rstate.passes++;
|
|
} while (!colored);
|
|
|
|
/* Verify the graph was properly colored */
|
|
verify_colors(state, &rstate);
|
|
|
|
/* Move the colors from the graph to the triples */
|
|
color_triples(state, &rstate);
|
|
|
|
/* Cleanup the temporary data structures */
|
|
cleanup_rstate(state, &rstate);
|
|
}
|
|
|
|
/* Sparce Conditional Constant Propogation
|
|
* =========================================
|
|
*/
|
|
struct ssa_edge;
|
|
struct flow_block;
|
|
struct lattice_node {
|
|
unsigned old_id;
|
|
struct triple *def;
|
|
struct ssa_edge *out;
|
|
struct flow_block *fblock;
|
|
struct triple *val;
|
|
/* lattice high val && !is_const(val)
|
|
* lattice const is_const(val)
|
|
* lattice low val == 0
|
|
*/
|
|
};
|
|
struct ssa_edge {
|
|
struct lattice_node *src;
|
|
struct lattice_node *dst;
|
|
struct ssa_edge *work_next;
|
|
struct ssa_edge *work_prev;
|
|
struct ssa_edge *out_next;
|
|
};
|
|
struct flow_edge {
|
|
struct flow_block *src;
|
|
struct flow_block *dst;
|
|
struct flow_edge *work_next;
|
|
struct flow_edge *work_prev;
|
|
struct flow_edge *in_next;
|
|
struct flow_edge *out_next;
|
|
int executable;
|
|
};
|
|
struct flow_block {
|
|
struct block *block;
|
|
struct flow_edge *in;
|
|
struct flow_edge *out;
|
|
struct flow_edge left, right;
|
|
};
|
|
|
|
struct scc_state {
|
|
int ins_count;
|
|
struct lattice_node *lattice;
|
|
struct ssa_edge *ssa_edges;
|
|
struct flow_block *flow_blocks;
|
|
struct flow_edge *flow_work_list;
|
|
struct ssa_edge *ssa_work_list;
|
|
};
|
|
|
|
|
|
static void scc_add_fedge(struct compile_state *state, struct scc_state *scc,
|
|
struct flow_edge *fedge)
|
|
{
|
|
if (!scc->flow_work_list) {
|
|
scc->flow_work_list = fedge;
|
|
fedge->work_next = fedge->work_prev = fedge;
|
|
}
|
|
else {
|
|
struct flow_edge *ftail;
|
|
ftail = scc->flow_work_list->work_prev;
|
|
fedge->work_next = ftail->work_next;
|
|
fedge->work_prev = ftail;
|
|
fedge->work_next->work_prev = fedge;
|
|
fedge->work_prev->work_next = fedge;
|
|
}
|
|
}
|
|
|
|
static struct flow_edge *scc_next_fedge(
|
|
struct compile_state *state, struct scc_state *scc)
|
|
{
|
|
struct flow_edge *fedge;
|
|
fedge = scc->flow_work_list;
|
|
if (fedge) {
|
|
fedge->work_next->work_prev = fedge->work_prev;
|
|
fedge->work_prev->work_next = fedge->work_next;
|
|
if (fedge->work_next != fedge) {
|
|
scc->flow_work_list = fedge->work_next;
|
|
} else {
|
|
scc->flow_work_list = 0;
|
|
}
|
|
}
|
|
return fedge;
|
|
}
|
|
|
|
static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
|
|
struct ssa_edge *sedge)
|
|
{
|
|
if (!scc->ssa_work_list) {
|
|
scc->ssa_work_list = sedge;
|
|
sedge->work_next = sedge->work_prev = sedge;
|
|
}
|
|
else {
|
|
struct ssa_edge *stail;
|
|
stail = scc->ssa_work_list->work_prev;
|
|
sedge->work_next = stail->work_next;
|
|
sedge->work_prev = stail;
|
|
sedge->work_next->work_prev = sedge;
|
|
sedge->work_prev->work_next = sedge;
|
|
}
|
|
}
|
|
|
|
static struct ssa_edge *scc_next_sedge(
|
|
struct compile_state *state, struct scc_state *scc)
|
|
{
|
|
struct ssa_edge *sedge;
|
|
sedge = scc->ssa_work_list;
|
|
if (sedge) {
|
|
sedge->work_next->work_prev = sedge->work_prev;
|
|
sedge->work_prev->work_next = sedge->work_next;
|
|
if (sedge->work_next != sedge) {
|
|
scc->ssa_work_list = sedge->work_next;
|
|
} else {
|
|
scc->ssa_work_list = 0;
|
|
}
|
|
}
|
|
return sedge;
|
|
}
|
|
|
|
static void initialize_scc_state(
|
|
struct compile_state *state, struct scc_state *scc)
|
|
{
|
|
int ins_count, ssa_edge_count;
|
|
int ins_index, ssa_edge_index, fblock_index;
|
|
struct triple *first, *ins;
|
|
struct block *block;
|
|
struct flow_block *fblock;
|
|
|
|
memset(scc, 0, sizeof(*scc));
|
|
|
|
/* Inialize pass zero find out how much memory we need */
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
ins_count = ssa_edge_count = 0;
|
|
do {
|
|
struct triple_set *edge;
|
|
ins_count += 1;
|
|
for(edge = ins->use; edge; edge = edge->next) {
|
|
ssa_edge_count++;
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
#if DEBUG_SCC
|
|
fprintf(stderr, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
|
|
ins_count, ssa_edge_count, state->last_vertex);
|
|
#endif
|
|
scc->ins_count = ins_count;
|
|
scc->lattice =
|
|
xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
|
|
scc->ssa_edges =
|
|
xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
|
|
scc->flow_blocks =
|
|
xcmalloc(sizeof(*scc->flow_blocks)*(state->last_vertex + 1),
|
|
"flow_blocks");
|
|
|
|
/* Initialize pass one collect up the nodes */
|
|
fblock = 0;
|
|
block = 0;
|
|
ins_index = ssa_edge_index = fblock_index = 0;
|
|
ins = first;
|
|
do {
|
|
if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
|
|
block = ins->u.block;
|
|
if (!block) {
|
|
internal_error(state, ins, "label without block");
|
|
}
|
|
fblock_index += 1;
|
|
block->vertex = fblock_index;
|
|
fblock = &scc->flow_blocks[fblock_index];
|
|
fblock->block = block;
|
|
}
|
|
{
|
|
struct lattice_node *lnode;
|
|
ins_index += 1;
|
|
lnode = &scc->lattice[ins_index];
|
|
lnode->def = ins;
|
|
lnode->out = 0;
|
|
lnode->fblock = fblock;
|
|
lnode->val = ins; /* LATTICE HIGH */
|
|
lnode->old_id = ins->id;
|
|
ins->id = ins_index;
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
/* Initialize pass two collect up the edges */
|
|
block = 0;
|
|
fblock = 0;
|
|
ins = first;
|
|
do {
|
|
if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
|
|
struct flow_edge *fedge, **ftail;
|
|
struct block_set *bedge;
|
|
block = ins->u.block;
|
|
fblock = &scc->flow_blocks[block->vertex];
|
|
fblock->in = 0;
|
|
fblock->out = 0;
|
|
ftail = &fblock->out;
|
|
if (block->left) {
|
|
fblock->left.dst = &scc->flow_blocks[block->left->vertex];
|
|
if (fblock->left.dst->block != block->left) {
|
|
internal_error(state, 0, "block mismatch");
|
|
}
|
|
fblock->left.out_next = 0;
|
|
*ftail = &fblock->left;
|
|
ftail = &fblock->left.out_next;
|
|
}
|
|
if (block->right) {
|
|
fblock->right.dst = &scc->flow_blocks[block->right->vertex];
|
|
if (fblock->right.dst->block != block->right) {
|
|
internal_error(state, 0, "block mismatch");
|
|
}
|
|
fblock->right.out_next = 0;
|
|
*ftail = &fblock->right;
|
|
ftail = &fblock->right.out_next;
|
|
}
|
|
for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
|
|
fedge->src = fblock;
|
|
fedge->work_next = fedge->work_prev = fedge;
|
|
fedge->executable = 0;
|
|
}
|
|
ftail = &fblock->in;
|
|
for(bedge = block->use; bedge; bedge = bedge->next) {
|
|
struct block *src_block;
|
|
struct flow_block *sfblock;
|
|
struct flow_edge *sfedge;
|
|
src_block = bedge->member;
|
|
sfblock = &scc->flow_blocks[src_block->vertex];
|
|
sfedge = 0;
|
|
if (src_block->left == block) {
|
|
sfedge = &sfblock->left;
|
|
} else {
|
|
sfedge = &sfblock->right;
|
|
}
|
|
*ftail = sfedge;
|
|
ftail = &sfedge->in_next;
|
|
sfedge->in_next = 0;
|
|
}
|
|
}
|
|
{
|
|
struct triple_set *edge;
|
|
struct ssa_edge **stail;
|
|
struct lattice_node *lnode;
|
|
lnode = &scc->lattice[ins->id];
|
|
lnode->out = 0;
|
|
stail = &lnode->out;
|
|
for(edge = ins->use; edge; edge = edge->next) {
|
|
struct ssa_edge *sedge;
|
|
ssa_edge_index += 1;
|
|
sedge = &scc->ssa_edges[ssa_edge_index];
|
|
*stail = sedge;
|
|
stail = &sedge->out_next;
|
|
sedge->src = lnode;
|
|
sedge->dst = &scc->lattice[edge->member->id];
|
|
sedge->work_next = sedge->work_prev = sedge;
|
|
sedge->out_next = 0;
|
|
}
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
/* Setup a dummy block 0 as a node above the start node */
|
|
{
|
|
struct flow_block *fblock, *dst;
|
|
struct flow_edge *fedge;
|
|
fblock = &scc->flow_blocks[0];
|
|
fblock->block = 0;
|
|
fblock->in = 0;
|
|
fblock->out = &fblock->left;
|
|
dst = &scc->flow_blocks[state->first_block->vertex];
|
|
fedge = &fblock->left;
|
|
fedge->src = fblock;
|
|
fedge->dst = dst;
|
|
fedge->work_next = fedge;
|
|
fedge->work_prev = fedge;
|
|
fedge->in_next = fedge->dst->in;
|
|
fedge->out_next = 0;
|
|
fedge->executable = 0;
|
|
fedge->dst->in = fedge;
|
|
|
|
/* Initialize the work lists */
|
|
scc->flow_work_list = 0;
|
|
scc->ssa_work_list = 0;
|
|
scc_add_fedge(state, scc, fedge);
|
|
}
|
|
#if DEBUG_SCC
|
|
fprintf(stderr, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
|
|
ins_index, ssa_edge_index, fblock_index);
|
|
#endif
|
|
}
|
|
|
|
|
|
static void free_scc_state(
|
|
struct compile_state *state, struct scc_state *scc)
|
|
{
|
|
xfree(scc->flow_blocks);
|
|
xfree(scc->ssa_edges);
|
|
xfree(scc->lattice);
|
|
|
|
}
|
|
|
|
static struct lattice_node *triple_to_lattice(
|
|
struct compile_state *state, struct scc_state *scc, struct triple *ins)
|
|
{
|
|
if (ins->id <= 0) {
|
|
internal_error(state, ins, "bad id");
|
|
}
|
|
return &scc->lattice[ins->id];
|
|
}
|
|
|
|
static struct triple *preserve_lval(
|
|
struct compile_state *state, struct lattice_node *lnode)
|
|
{
|
|
struct triple *old;
|
|
/* Preserve the original value */
|
|
if (lnode->val) {
|
|
old = dup_triple(state, lnode->val);
|
|
if (lnode->val != lnode->def) {
|
|
xfree(lnode->val);
|
|
}
|
|
lnode->val = 0;
|
|
} else {
|
|
old = 0;
|
|
}
|
|
return old;
|
|
}
|
|
|
|
static int lval_changed(struct compile_state *state,
|
|
struct triple *old, struct lattice_node *lnode)
|
|
{
|
|
int changed;
|
|
/* See if the lattice value has changed */
|
|
changed = 1;
|
|
if (!old && !lnode->val) {
|
|
changed = 0;
|
|
}
|
|
if (changed && lnode->val && !is_const(lnode->val)) {
|
|
changed = 0;
|
|
}
|
|
if (changed &&
|
|
lnode->val && old &&
|
|
(memcmp(lnode->val->param, old->param,
|
|
TRIPLE_SIZE(lnode->val->sizes) * sizeof(lnode->val->param[0])) == 0) &&
|
|
(memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
|
|
changed = 0;
|
|
}
|
|
if (old) {
|
|
xfree(old);
|
|
}
|
|
return changed;
|
|
|
|
}
|
|
|
|
static void scc_visit_phi(struct compile_state *state, struct scc_state *scc,
|
|
struct lattice_node *lnode)
|
|
{
|
|
struct lattice_node *tmp;
|
|
struct triple **slot, *old;
|
|
struct flow_edge *fedge;
|
|
int index;
|
|
if (lnode->def->op != OP_PHI) {
|
|
internal_error(state, lnode->def, "not phi");
|
|
}
|
|
/* Store the original value */
|
|
old = preserve_lval(state, lnode);
|
|
|
|
/* default to lattice high */
|
|
lnode->val = lnode->def;
|
|
slot = &RHS(lnode->def, 0);
|
|
index = 0;
|
|
for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
|
|
if (!fedge->executable) {
|
|
continue;
|
|
}
|
|
if (!slot[index]) {
|
|
internal_error(state, lnode->def, "no phi value");
|
|
}
|
|
tmp = triple_to_lattice(state, scc, slot[index]);
|
|
/* meet(X, lattice low) = lattice low */
|
|
if (!tmp->val) {
|
|
lnode->val = 0;
|
|
}
|
|
/* meet(X, lattice high) = X */
|
|
else if (!tmp->val) {
|
|
lnode->val = lnode->val;
|
|
}
|
|
/* meet(lattice high, X) = X */
|
|
else if (!is_const(lnode->val)) {
|
|
lnode->val = dup_triple(state, tmp->val);
|
|
lnode->val->type = lnode->def->type;
|
|
}
|
|
/* meet(const, const) = const or lattice low */
|
|
else if (!constants_equal(state, lnode->val, tmp->val)) {
|
|
lnode->val = 0;
|
|
}
|
|
if (!lnode->val) {
|
|
break;
|
|
}
|
|
}
|
|
#if DEBUG_SCC
|
|
fprintf(stderr, "phi: %d -> %s\n",
|
|
lnode->def->id,
|
|
(!lnode->val)? "lo": is_const(lnode->val)? "const": "hi");
|
|
#endif
|
|
/* If the lattice value has changed update the work lists. */
|
|
if (lval_changed(state, old, lnode)) {
|
|
struct ssa_edge *sedge;
|
|
for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
|
|
scc_add_sedge(state, scc, sedge);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
|
|
struct lattice_node *lnode)
|
|
{
|
|
int changed;
|
|
struct triple *old, *scratch;
|
|
struct triple **dexpr, **vexpr;
|
|
int count, i;
|
|
|
|
/* Store the original value */
|
|
old = preserve_lval(state, lnode);
|
|
|
|
/* Reinitialize the value */
|
|
lnode->val = scratch = dup_triple(state, lnode->def);
|
|
scratch->id = lnode->old_id;
|
|
scratch->next = scratch;
|
|
scratch->prev = scratch;
|
|
scratch->use = 0;
|
|
|
|
count = TRIPLE_SIZE(scratch->sizes);
|
|
for(i = 0; i < count; i++) {
|
|
dexpr = &lnode->def->param[i];
|
|
vexpr = &scratch->param[i];
|
|
*vexpr = *dexpr;
|
|
if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
|
|
(i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
|
|
*dexpr) {
|
|
struct lattice_node *tmp;
|
|
tmp = triple_to_lattice(state, scc, *dexpr);
|
|
*vexpr = (tmp->val)? tmp->val : tmp->def;
|
|
}
|
|
}
|
|
if (scratch->op == OP_BRANCH) {
|
|
scratch->next = lnode->def->next;
|
|
}
|
|
/* Recompute the value */
|
|
#warning "FIXME see if simplify does anything bad"
|
|
/* So far it looks like only the strength reduction
|
|
* optimization are things I need to worry about.
|
|
*/
|
|
simplify(state, scratch);
|
|
/* Cleanup my value */
|
|
if (scratch->use) {
|
|
internal_error(state, lnode->def, "scratch used?");
|
|
}
|
|
if ((scratch->prev != scratch) ||
|
|
((scratch->next != scratch) &&
|
|
((lnode->def->op != OP_BRANCH) ||
|
|
(scratch->next != lnode->def->next)))) {
|
|
internal_error(state, lnode->def, "scratch in list?");
|
|
}
|
|
/* undo any uses... */
|
|
count = TRIPLE_SIZE(scratch->sizes);
|
|
for(i = 0; i < count; i++) {
|
|
vexpr = &scratch->param[i];
|
|
if (*vexpr) {
|
|
unuse_triple(*vexpr, scratch);
|
|
}
|
|
}
|
|
if (!is_const(scratch)) {
|
|
for(i = 0; i < count; i++) {
|
|
dexpr = &lnode->def->param[i];
|
|
if (((i < TRIPLE_MISC_OFF(scratch->sizes)) ||
|
|
(i >= TRIPLE_TARG_OFF(scratch->sizes))) &&
|
|
*dexpr) {
|
|
struct lattice_node *tmp;
|
|
tmp = triple_to_lattice(state, scc, *dexpr);
|
|
if (!tmp->val) {
|
|
lnode->val = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (lnode->val &&
|
|
(lnode->val->op == lnode->def->op) &&
|
|
(memcmp(lnode->val->param, lnode->def->param,
|
|
count * sizeof(lnode->val->param[0])) == 0) &&
|
|
(memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
|
|
lnode->val = lnode->def;
|
|
}
|
|
/* Find the cases that are always lattice lo */
|
|
if (lnode->val &&
|
|
triple_is_def(state, lnode->val) &&
|
|
!triple_is_pure(state, lnode->val)) {
|
|
lnode->val = 0;
|
|
}
|
|
if (lnode->val &&
|
|
(lnode->val->op == OP_SDECL) &&
|
|
(lnode->val != lnode->def)) {
|
|
internal_error(state, lnode->def, "bad sdecl");
|
|
}
|
|
/* See if the lattice value has changed */
|
|
changed = lval_changed(state, old, lnode);
|
|
if (lnode->val != scratch) {
|
|
xfree(scratch);
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
static void scc_visit_branch(struct compile_state *state, struct scc_state *scc,
|
|
struct lattice_node *lnode)
|
|
{
|
|
struct lattice_node *cond;
|
|
#if DEBUG_SCC
|
|
{
|
|
struct flow_edge *fedge;
|
|
fprintf(stderr, "branch: %d (",
|
|
lnode->def->id);
|
|
|
|
for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
|
|
fprintf(stderr, " %d", fedge->dst->block->vertex);
|
|
}
|
|
fprintf(stderr, " )");
|
|
if (TRIPLE_RHS(lnode->def->sizes) > 0) {
|
|
fprintf(stderr, " <- %d",
|
|
RHS(lnode->def, 0)->id);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
#endif
|
|
if (lnode->def->op != OP_BRANCH) {
|
|
internal_error(state, lnode->def, "not branch");
|
|
}
|
|
/* This only applies to conditional branches */
|
|
if (TRIPLE_RHS(lnode->def->sizes) == 0) {
|
|
return;
|
|
}
|
|
cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
|
|
if (cond->val && !is_const(cond->val)) {
|
|
#warning "FIXME do I need to do something here?"
|
|
warning(state, cond->def, "condition not constant?");
|
|
return;
|
|
}
|
|
if (cond->val == 0) {
|
|
scc_add_fedge(state, scc, cond->fblock->out);
|
|
scc_add_fedge(state, scc, cond->fblock->out->out_next);
|
|
}
|
|
else if (cond->val->u.cval) {
|
|
scc_add_fedge(state, scc, cond->fblock->out->out_next);
|
|
|
|
} else {
|
|
scc_add_fedge(state, scc, cond->fblock->out);
|
|
}
|
|
|
|
}
|
|
|
|
static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
|
|
struct lattice_node *lnode)
|
|
{
|
|
int changed;
|
|
|
|
changed = compute_lnode_val(state, scc, lnode);
|
|
#if DEBUG_SCC
|
|
{
|
|
struct triple **expr;
|
|
fprintf(stderr, "expr: %3d %10s (",
|
|
lnode->def->id, tops(lnode->def->op));
|
|
expr = triple_rhs(state, lnode->def, 0);
|
|
for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
|
|
if (*expr) {
|
|
fprintf(stderr, " %d", (*expr)->id);
|
|
}
|
|
}
|
|
fprintf(stderr, " ) -> %s\n",
|
|
(!lnode->val)? "lo": is_const(lnode->val)? "const": "hi");
|
|
}
|
|
#endif
|
|
if (lnode->def->op == OP_BRANCH) {
|
|
scc_visit_branch(state, scc, lnode);
|
|
|
|
}
|
|
else if (changed) {
|
|
struct ssa_edge *sedge;
|
|
for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
|
|
scc_add_sedge(state, scc, sedge);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void scc_writeback_values(
|
|
struct compile_state *state, struct scc_state *scc)
|
|
{
|
|
struct triple *first, *ins;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
struct lattice_node *lnode;
|
|
lnode = triple_to_lattice(state, scc, ins);
|
|
/* Restore id */
|
|
ins->id = lnode->old_id;
|
|
#if DEBUG_SCC
|
|
if (lnode->val && !is_const(lnode->val)) {
|
|
warning(state, lnode->def,
|
|
"lattice node still high?");
|
|
}
|
|
#endif
|
|
if (lnode->val && (lnode->val != ins)) {
|
|
/* See if it something I know how to write back */
|
|
switch(lnode->val->op) {
|
|
case OP_INTCONST:
|
|
mkconst(state, ins, lnode->val->u.cval);
|
|
break;
|
|
case OP_ADDRCONST:
|
|
mkaddr_const(state, ins,
|
|
MISC(lnode->val, 0), lnode->val->u.cval);
|
|
break;
|
|
default:
|
|
/* By default don't copy the changes,
|
|
* recompute them in place instead.
|
|
*/
|
|
simplify(state, ins);
|
|
break;
|
|
}
|
|
if (is_const(lnode->val) &&
|
|
!constants_equal(state, lnode->val, ins)) {
|
|
internal_error(state, 0, "constants not equal");
|
|
}
|
|
/* Free the lattice nodes */
|
|
xfree(lnode->val);
|
|
lnode->val = 0;
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
static void scc_transform(struct compile_state *state)
|
|
{
|
|
struct scc_state scc;
|
|
|
|
initialize_scc_state(state, &scc);
|
|
|
|
while(scc.flow_work_list || scc.ssa_work_list) {
|
|
struct flow_edge *fedge;
|
|
struct ssa_edge *sedge;
|
|
struct flow_edge *fptr;
|
|
while((fedge = scc_next_fedge(state, &scc))) {
|
|
struct block *block;
|
|
struct triple *ptr;
|
|
struct flow_block *fblock;
|
|
int time;
|
|
int done;
|
|
if (fedge->executable) {
|
|
continue;
|
|
}
|
|
if (!fedge->dst) {
|
|
internal_error(state, 0, "fedge without dst");
|
|
}
|
|
if (!fedge->src) {
|
|
internal_error(state, 0, "fedge without src");
|
|
}
|
|
fedge->executable = 1;
|
|
fblock = fedge->dst;
|
|
block = fblock->block;
|
|
time = 0;
|
|
for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
|
|
if (fptr->executable) {
|
|
time++;
|
|
}
|
|
}
|
|
#if DEBUG_SCC
|
|
fprintf(stderr, "vertex: %d time: %d\n",
|
|
block->vertex, time);
|
|
|
|
#endif
|
|
done = 0;
|
|
for(ptr = block->first; !done; ptr = ptr->next) {
|
|
struct lattice_node *lnode;
|
|
done = (ptr == block->last);
|
|
lnode = &scc.lattice[ptr->id];
|
|
if (ptr->op == OP_PHI) {
|
|
scc_visit_phi(state, &scc, lnode);
|
|
}
|
|
else if (time == 1) {
|
|
scc_visit_expr(state, &scc, lnode);
|
|
}
|
|
}
|
|
if (fblock->out && !fblock->out->out_next) {
|
|
scc_add_fedge(state, &scc, fblock->out);
|
|
}
|
|
}
|
|
while((sedge = scc_next_sedge(state, &scc))) {
|
|
struct lattice_node *lnode;
|
|
struct flow_block *fblock;
|
|
lnode = sedge->dst;
|
|
fblock = lnode->fblock;
|
|
#if DEBUG_SCC
|
|
fprintf(stderr, "sedge: %5d (%5d -> %5d)\n",
|
|
sedge - scc.ssa_edges,
|
|
sedge->src->def->id,
|
|
sedge->dst->def->id);
|
|
#endif
|
|
if (lnode->def->op == OP_PHI) {
|
|
scc_visit_phi(state, &scc, lnode);
|
|
}
|
|
else {
|
|
for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
|
|
if (fptr->executable) {
|
|
break;
|
|
}
|
|
}
|
|
if (fptr) {
|
|
scc_visit_expr(state, &scc, lnode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
scc_writeback_values(state, &scc);
|
|
free_scc_state(state, &scc);
|
|
}
|
|
|
|
|
|
static void transform_to_arch_instructions(struct compile_state *state)
|
|
{
|
|
struct triple *ins, *first;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
ins = transform_to_arch_instruction(state, ins);
|
|
} while(ins != first);
|
|
}
|
|
|
|
#if DEBUG_CONSISTENCY
|
|
static void verify_uses(struct compile_state *state)
|
|
{
|
|
struct triple *first, *ins;
|
|
struct triple_set *set;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
struct triple **expr;
|
|
expr = triple_rhs(state, ins, 0);
|
|
for(; expr; expr = triple_rhs(state, ins, expr)) {
|
|
for(set = *expr?(*expr)->use:0; set; set = set->next) {
|
|
if (set->member == ins) {
|
|
break;
|
|
}
|
|
}
|
|
if (!set) {
|
|
internal_error(state, ins, "rhs not used");
|
|
}
|
|
}
|
|
expr = triple_lhs(state, ins, 0);
|
|
for(; expr; expr = triple_lhs(state, ins, expr)) {
|
|
for(set = *expr?(*expr)->use:0; set; set = set->next) {
|
|
if (set->member == ins) {
|
|
break;
|
|
}
|
|
}
|
|
if (!set) {
|
|
internal_error(state, ins, "lhs not used");
|
|
}
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
|
|
}
|
|
static void verify_blocks(struct compile_state *state)
|
|
{
|
|
struct triple *ins;
|
|
struct block *block;
|
|
block = state->first_block;
|
|
if (!block) {
|
|
return;
|
|
}
|
|
do {
|
|
for(ins = block->first; ins != block->last->next; ins = ins->next) {
|
|
if (!triple_stores_block(state, ins)) {
|
|
continue;
|
|
}
|
|
if (ins->u.block != block) {
|
|
internal_error(state, ins, "inconsitent block specified");
|
|
}
|
|
}
|
|
if (!triple_stores_block(state, block->last->next)) {
|
|
internal_error(state, block->last->next,
|
|
"cannot find next block");
|
|
}
|
|
block = block->last->next->u.block;
|
|
if (!block) {
|
|
internal_error(state, block->last->next,
|
|
"bad next block");
|
|
}
|
|
} while(block != state->first_block);
|
|
}
|
|
|
|
static void verify_domination(struct compile_state *state)
|
|
{
|
|
struct triple *first, *ins;
|
|
struct triple_set *set;
|
|
if (!state->first_block) {
|
|
return;
|
|
}
|
|
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
for(set = ins->use; set; set = set->next) {
|
|
struct triple **expr;
|
|
if (set->member->op == OP_PHI) {
|
|
continue;
|
|
}
|
|
/* See if the use is on the righ hand side */
|
|
expr = triple_rhs(state, set->member, 0);
|
|
for(; expr ; expr = triple_rhs(state, set->member, expr)) {
|
|
if (*expr == ins) {
|
|
break;
|
|
}
|
|
}
|
|
if (expr &&
|
|
!tdominates(state, ins, set->member)) {
|
|
internal_error(state, set->member,
|
|
"non dominated rhs use?");
|
|
}
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
|
|
static void verify_piece(struct compile_state *state)
|
|
{
|
|
struct triple *first, *ins;
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
struct triple *ptr;
|
|
int lhs, i;
|
|
lhs = TRIPLE_LHS(ins->sizes);
|
|
if ((ins->op == OP_WRITE) || (ins->op == OP_STORE)) {
|
|
lhs = 0;
|
|
}
|
|
for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
|
|
if (ptr != LHS(ins, i)) {
|
|
internal_error(state, ins, "malformed lhs on %s",
|
|
tops(ins->op));
|
|
}
|
|
if (ptr->op != OP_PIECE) {
|
|
internal_error(state, ins, "bad lhs op %s at %d on %s",
|
|
tops(ptr->op), i, tops(ins->op));
|
|
}
|
|
if (ptr->u.cval != i) {
|
|
internal_error(state, ins, "bad u.cval of %d %d expected",
|
|
ptr->u.cval, i);
|
|
}
|
|
}
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
static void verify_ins_colors(struct compile_state *state)
|
|
{
|
|
struct triple *first, *ins;
|
|
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
}
|
|
static void verify_consistency(struct compile_state *state)
|
|
{
|
|
verify_uses(state);
|
|
verify_blocks(state);
|
|
verify_domination(state);
|
|
verify_piece(state);
|
|
verify_ins_colors(state);
|
|
}
|
|
#else
|
|
#define verify_consistency(state) do {} while(0)
|
|
#endif /* DEBUG_USES */
|
|
|
|
static void optimize(struct compile_state *state)
|
|
{
|
|
if (state->debug & DEBUG_TRIPLES) {
|
|
print_triples(state);
|
|
}
|
|
/* Replace structures with simpler data types */
|
|
flatten_structures(state);
|
|
if (state->debug & DEBUG_TRIPLES) {
|
|
print_triples(state);
|
|
}
|
|
verify_consistency(state);
|
|
/* Analize the intermediate code */
|
|
setup_basic_blocks(state);
|
|
analyze_idominators(state);
|
|
analyze_ipdominators(state);
|
|
/* Transform the code to ssa form */
|
|
transform_to_ssa_form(state);
|
|
verify_consistency(state);
|
|
if (state->debug & DEBUG_CODE_ELIMINATION) {
|
|
fprintf(stdout, "After transform_to_ssa_form\n");
|
|
print_blocks(state, stdout);
|
|
}
|
|
/* Do strength reduction and simple constant optimizations */
|
|
if (state->optimize >= 1) {
|
|
simplify_all(state);
|
|
}
|
|
verify_consistency(state);
|
|
/* Propogate constants throughout the code */
|
|
if (state->optimize >= 2) {
|
|
#warning "FIXME fix scc_transform"
|
|
scc_transform(state);
|
|
transform_from_ssa_form(state);
|
|
free_basic_blocks(state);
|
|
setup_basic_blocks(state);
|
|
analyze_idominators(state);
|
|
analyze_ipdominators(state);
|
|
transform_to_ssa_form(state);
|
|
}
|
|
verify_consistency(state);
|
|
#warning "WISHLIST implement single use constants (least possible register pressure)"
|
|
#warning "WISHLIST implement induction variable elimination"
|
|
/* Select architecture instructions and an initial partial
|
|
* coloring based on architecture constraints.
|
|
*/
|
|
transform_to_arch_instructions(state);
|
|
verify_consistency(state);
|
|
if (state->debug & DEBUG_ARCH_CODE) {
|
|
printf("After transform_to_arch_instructions\n");
|
|
print_blocks(state, stdout);
|
|
print_control_flow(state);
|
|
}
|
|
eliminate_inefectual_code(state);
|
|
verify_consistency(state);
|
|
if (state->debug & DEBUG_CODE_ELIMINATION) {
|
|
printf("After eliminate_inefectual_code\n");
|
|
print_blocks(state, stdout);
|
|
print_control_flow(state);
|
|
}
|
|
verify_consistency(state);
|
|
/* Color all of the variables to see if they will fit in registers */
|
|
insert_copies_to_phi(state);
|
|
if (state->debug & DEBUG_INSERTED_COPIES) {
|
|
printf("After insert_copies_to_phi\n");
|
|
print_blocks(state, stdout);
|
|
print_control_flow(state);
|
|
}
|
|
verify_consistency(state);
|
|
insert_mandatory_copies(state);
|
|
if (state->debug & DEBUG_INSERTED_COPIES) {
|
|
printf("After insert_mandatory_copies\n");
|
|
print_blocks(state, stdout);
|
|
print_control_flow(state);
|
|
}
|
|
verify_consistency(state);
|
|
allocate_registers(state);
|
|
verify_consistency(state);
|
|
if (state->debug & DEBUG_INTERMEDIATE_CODE) {
|
|
print_blocks(state, stdout);
|
|
}
|
|
if (state->debug & DEBUG_CONTROL_FLOW) {
|
|
print_control_flow(state);
|
|
}
|
|
/* Remove the optimization information.
|
|
* This is more to check for memory consistency than to free memory.
|
|
*/
|
|
free_basic_blocks(state);
|
|
}
|
|
|
|
static void print_op_asm(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
struct asm_info *info;
|
|
const char *ptr;
|
|
unsigned lhs, rhs, i;
|
|
info = ins->u.ainfo;
|
|
lhs = TRIPLE_LHS(ins->sizes);
|
|
rhs = TRIPLE_RHS(ins->sizes);
|
|
/* Don't count the clobbers in lhs */
|
|
for(i = 0; i < lhs; i++) {
|
|
if (LHS(ins, i)->type == &void_type) {
|
|
break;
|
|
}
|
|
}
|
|
lhs = i;
|
|
fputc('\t', fp);
|
|
for(ptr = info->str; *ptr; ptr++) {
|
|
char *next;
|
|
unsigned long param;
|
|
struct triple *piece;
|
|
if (*ptr != '%') {
|
|
fputc(*ptr, fp);
|
|
continue;
|
|
}
|
|
ptr++;
|
|
if (*ptr == '%') {
|
|
fputc('%', fp);
|
|
continue;
|
|
}
|
|
param = strtoul(ptr, &next, 10);
|
|
if (ptr == next) {
|
|
error(state, ins, "Invalid asm template");
|
|
}
|
|
if (param >= (lhs + rhs)) {
|
|
error(state, ins, "Invalid param %%%u in asm template",
|
|
param);
|
|
}
|
|
piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
|
|
fprintf(fp, "%s",
|
|
arch_reg_str(ID_REG(piece->id)));
|
|
ptr = next;
|
|
}
|
|
fputc('\n', fp);
|
|
}
|
|
|
|
|
|
/* Only use the low x86 byte registers. This allows me
|
|
* allocate the entire register when a byte register is used.
|
|
*/
|
|
#define X86_4_8BIT_GPRS 1
|
|
|
|
/* Recognized x86 cpu variants */
|
|
#define BAD_CPU 0
|
|
#define CPU_I386 1
|
|
#define CPU_P3 2
|
|
#define CPU_P4 3
|
|
#define CPU_K7 4
|
|
#define CPU_K8 5
|
|
|
|
#define CPU_DEFAULT CPU_I386
|
|
|
|
/* The x86 register classes */
|
|
#define REGC_FLAGS 0
|
|
#define REGC_GPR8 1
|
|
#define REGC_GPR16 2
|
|
#define REGC_GPR32 3
|
|
#define REGC_GPR64 4
|
|
#define REGC_MMX 5
|
|
#define REGC_XMM 6
|
|
#define REGC_GPR32_8 7
|
|
#define REGC_GPR16_8 8
|
|
#define REGC_IMM32 9
|
|
#define REGC_IMM16 10
|
|
#define REGC_IMM8 11
|
|
#define LAST_REGC REGC_IMM8
|
|
#if LAST_REGC >= MAX_REGC
|
|
#error "MAX_REGC is to low"
|
|
#endif
|
|
|
|
/* Register class masks */
|
|
#define REGCM_FLAGS (1 << REGC_FLAGS)
|
|
#define REGCM_GPR8 (1 << REGC_GPR8)
|
|
#define REGCM_GPR16 (1 << REGC_GPR16)
|
|
#define REGCM_GPR32 (1 << REGC_GPR32)
|
|
#define REGCM_GPR64 (1 << REGC_GPR64)
|
|
#define REGCM_MMX (1 << REGC_MMX)
|
|
#define REGCM_XMM (1 << REGC_XMM)
|
|
#define REGCM_GPR32_8 (1 << REGC_GPR32_8)
|
|
#define REGCM_GPR16_8 (1 << REGC_GPR16_8)
|
|
#define REGCM_IMM32 (1 << REGC_IMM32)
|
|
#define REGCM_IMM16 (1 << REGC_IMM16)
|
|
#define REGCM_IMM8 (1 << REGC_IMM8)
|
|
#define REGCM_ALL ((1 << (LAST_REGC + 1)) - 1)
|
|
|
|
/* The x86 registers */
|
|
#define REG_EFLAGS 2
|
|
#define REGC_FLAGS_FIRST REG_EFLAGS
|
|
#define REGC_FLAGS_LAST REG_EFLAGS
|
|
#define REG_AL 3
|
|
#define REG_BL 4
|
|
#define REG_CL 5
|
|
#define REG_DL 6
|
|
#define REG_AH 7
|
|
#define REG_BH 8
|
|
#define REG_CH 9
|
|
#define REG_DH 10
|
|
#define REGC_GPR8_FIRST REG_AL
|
|
#if X86_4_8BIT_GPRS
|
|
#define REGC_GPR8_LAST REG_DL
|
|
#else
|
|
#define REGC_GPR8_LAST REG_DH
|
|
#endif
|
|
#define REG_AX 11
|
|
#define REG_BX 12
|
|
#define REG_CX 13
|
|
#define REG_DX 14
|
|
#define REG_SI 15
|
|
#define REG_DI 16
|
|
#define REG_BP 17
|
|
#define REG_SP 18
|
|
#define REGC_GPR16_FIRST REG_AX
|
|
#define REGC_GPR16_LAST REG_SP
|
|
#define REG_EAX 19
|
|
#define REG_EBX 20
|
|
#define REG_ECX 21
|
|
#define REG_EDX 22
|
|
#define REG_ESI 23
|
|
#define REG_EDI 24
|
|
#define REG_EBP 25
|
|
#define REG_ESP 26
|
|
#define REGC_GPR32_FIRST REG_EAX
|
|
#define REGC_GPR32_LAST REG_ESP
|
|
#define REG_EDXEAX 27
|
|
#define REGC_GPR64_FIRST REG_EDXEAX
|
|
#define REGC_GPR64_LAST REG_EDXEAX
|
|
#define REG_MMX0 28
|
|
#define REG_MMX1 29
|
|
#define REG_MMX2 30
|
|
#define REG_MMX3 31
|
|
#define REG_MMX4 32
|
|
#define REG_MMX5 33
|
|
#define REG_MMX6 34
|
|
#define REG_MMX7 35
|
|
#define REGC_MMX_FIRST REG_MMX0
|
|
#define REGC_MMX_LAST REG_MMX7
|
|
#define REG_XMM0 36
|
|
#define REG_XMM1 37
|
|
#define REG_XMM2 38
|
|
#define REG_XMM3 39
|
|
#define REG_XMM4 40
|
|
#define REG_XMM5 41
|
|
#define REG_XMM6 42
|
|
#define REG_XMM7 43
|
|
#define REGC_XMM_FIRST REG_XMM0
|
|
#define REGC_XMM_LAST REG_XMM7
|
|
#warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
|
|
#define LAST_REG REG_XMM7
|
|
|
|
#define REGC_GPR32_8_FIRST REG_EAX
|
|
#define REGC_GPR32_8_LAST REG_EDX
|
|
#define REGC_GPR16_8_FIRST REG_AX
|
|
#define REGC_GPR16_8_LAST REG_DX
|
|
|
|
#define REGC_IMM8_FIRST -1
|
|
#define REGC_IMM8_LAST -1
|
|
#define REGC_IMM16_FIRST -2
|
|
#define REGC_IMM16_LAST -1
|
|
#define REGC_IMM32_FIRST -4
|
|
#define REGC_IMM32_LAST -1
|
|
|
|
#if LAST_REG >= MAX_REGISTERS
|
|
#error "MAX_REGISTERS to low"
|
|
#endif
|
|
|
|
|
|
static unsigned regc_size[LAST_REGC +1] = {
|
|
[REGC_FLAGS] = REGC_FLAGS_LAST - REGC_FLAGS_FIRST + 1,
|
|
[REGC_GPR8] = REGC_GPR8_LAST - REGC_GPR8_FIRST + 1,
|
|
[REGC_GPR16] = REGC_GPR16_LAST - REGC_GPR16_FIRST + 1,
|
|
[REGC_GPR32] = REGC_GPR32_LAST - REGC_GPR32_FIRST + 1,
|
|
[REGC_GPR64] = REGC_GPR64_LAST - REGC_GPR64_FIRST + 1,
|
|
[REGC_MMX] = REGC_MMX_LAST - REGC_MMX_FIRST + 1,
|
|
[REGC_XMM] = REGC_XMM_LAST - REGC_XMM_FIRST + 1,
|
|
[REGC_GPR32_8] = REGC_GPR32_8_LAST - REGC_GPR32_8_FIRST + 1,
|
|
[REGC_GPR16_8] = REGC_GPR16_8_LAST - REGC_GPR16_8_FIRST + 1,
|
|
[REGC_IMM32] = 0,
|
|
[REGC_IMM16] = 0,
|
|
[REGC_IMM8] = 0,
|
|
};
|
|
|
|
static const struct {
|
|
int first, last;
|
|
} regcm_bound[LAST_REGC + 1] = {
|
|
[REGC_FLAGS] = { REGC_FLAGS_FIRST, REGC_FLAGS_LAST },
|
|
[REGC_GPR8] = { REGC_GPR8_FIRST, REGC_GPR8_LAST },
|
|
[REGC_GPR16] = { REGC_GPR16_FIRST, REGC_GPR16_LAST },
|
|
[REGC_GPR32] = { REGC_GPR32_FIRST, REGC_GPR32_LAST },
|
|
[REGC_GPR64] = { REGC_GPR64_FIRST, REGC_GPR64_LAST },
|
|
[REGC_MMX] = { REGC_MMX_FIRST, REGC_MMX_LAST },
|
|
[REGC_XMM] = { REGC_XMM_FIRST, REGC_XMM_LAST },
|
|
[REGC_GPR32_8] = { REGC_GPR32_8_FIRST, REGC_GPR32_8_LAST },
|
|
[REGC_GPR16_8] = { REGC_GPR16_8_FIRST, REGC_GPR16_8_LAST },
|
|
[REGC_IMM32] = { REGC_IMM32_FIRST, REGC_IMM32_LAST },
|
|
[REGC_IMM16] = { REGC_IMM16_FIRST, REGC_IMM16_LAST },
|
|
[REGC_IMM8] = { REGC_IMM8_FIRST, REGC_IMM8_LAST },
|
|
};
|
|
|
|
static int arch_encode_cpu(const char *cpu)
|
|
{
|
|
struct cpu {
|
|
const char *name;
|
|
int cpu;
|
|
} cpus[] = {
|
|
{ "i386", CPU_I386 },
|
|
{ "p3", CPU_P3 },
|
|
{ "p4", CPU_P4 },
|
|
{ "k7", CPU_K7 },
|
|
{ "k8", CPU_K8 },
|
|
{ 0, BAD_CPU }
|
|
};
|
|
struct cpu *ptr;
|
|
for(ptr = cpus; ptr->name; ptr++) {
|
|
if (strcmp(ptr->name, cpu) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
return ptr->cpu;
|
|
}
|
|
|
|
static unsigned arch_regc_size(struct compile_state *state, int class)
|
|
{
|
|
if ((class < 0) || (class > LAST_REGC)) {
|
|
return 0;
|
|
}
|
|
return regc_size[class];
|
|
}
|
|
static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
|
|
{
|
|
/* See if two register classes may have overlapping registers */
|
|
unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR16_8 | REGCM_GPR16 |
|
|
REGCM_GPR32_8 | REGCM_GPR32 | REGCM_GPR64;
|
|
|
|
/* Special case for the immediates */
|
|
if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
|
|
((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
|
|
(regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
|
|
((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) {
|
|
return 0;
|
|
}
|
|
return (regcm1 & regcm2) ||
|
|
((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
|
|
}
|
|
|
|
static void arch_reg_equivs(
|
|
struct compile_state *state, unsigned *equiv, int reg)
|
|
{
|
|
if ((reg < 0) || (reg > LAST_REG)) {
|
|
internal_error(state, 0, "invalid register");
|
|
}
|
|
*equiv++ = reg;
|
|
switch(reg) {
|
|
case REG_AL:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_AH;
|
|
#endif
|
|
*equiv++ = REG_AX;
|
|
*equiv++ = REG_EAX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_AH:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_AL;
|
|
#endif
|
|
*equiv++ = REG_AX;
|
|
*equiv++ = REG_EAX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_BL:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_BH;
|
|
#endif
|
|
*equiv++ = REG_BX;
|
|
*equiv++ = REG_EBX;
|
|
break;
|
|
|
|
case REG_BH:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_BL;
|
|
#endif
|
|
*equiv++ = REG_BX;
|
|
*equiv++ = REG_EBX;
|
|
break;
|
|
case REG_CL:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_CH;
|
|
#endif
|
|
*equiv++ = REG_CX;
|
|
*equiv++ = REG_ECX;
|
|
break;
|
|
|
|
case REG_CH:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_CL;
|
|
#endif
|
|
*equiv++ = REG_CX;
|
|
*equiv++ = REG_ECX;
|
|
break;
|
|
case REG_DL:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_DH;
|
|
#endif
|
|
*equiv++ = REG_DX;
|
|
*equiv++ = REG_EDX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_DH:
|
|
#if X86_4_8BIT_GPRS
|
|
*equiv++ = REG_DL;
|
|
#endif
|
|
*equiv++ = REG_DX;
|
|
*equiv++ = REG_EDX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_AX:
|
|
*equiv++ = REG_AL;
|
|
*equiv++ = REG_AH;
|
|
*equiv++ = REG_EAX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_BX:
|
|
*equiv++ = REG_BL;
|
|
*equiv++ = REG_BH;
|
|
*equiv++ = REG_EBX;
|
|
break;
|
|
case REG_CX:
|
|
*equiv++ = REG_CL;
|
|
*equiv++ = REG_CH;
|
|
*equiv++ = REG_ECX;
|
|
break;
|
|
case REG_DX:
|
|
*equiv++ = REG_DL;
|
|
*equiv++ = REG_DH;
|
|
*equiv++ = REG_EDX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_SI:
|
|
*equiv++ = REG_ESI;
|
|
break;
|
|
case REG_DI:
|
|
*equiv++ = REG_EDI;
|
|
break;
|
|
case REG_BP:
|
|
*equiv++ = REG_EBP;
|
|
break;
|
|
case REG_SP:
|
|
*equiv++ = REG_ESP;
|
|
break;
|
|
case REG_EAX:
|
|
*equiv++ = REG_AL;
|
|
*equiv++ = REG_AH;
|
|
*equiv++ = REG_AX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_EBX:
|
|
*equiv++ = REG_BL;
|
|
*equiv++ = REG_BH;
|
|
*equiv++ = REG_BX;
|
|
break;
|
|
case REG_ECX:
|
|
*equiv++ = REG_CL;
|
|
*equiv++ = REG_CH;
|
|
*equiv++ = REG_CX;
|
|
break;
|
|
case REG_EDX:
|
|
*equiv++ = REG_DL;
|
|
*equiv++ = REG_DH;
|
|
*equiv++ = REG_DX;
|
|
*equiv++ = REG_EDXEAX;
|
|
break;
|
|
case REG_ESI:
|
|
*equiv++ = REG_SI;
|
|
break;
|
|
case REG_EDI:
|
|
*equiv++ = REG_DI;
|
|
break;
|
|
case REG_EBP:
|
|
*equiv++ = REG_BP;
|
|
break;
|
|
case REG_ESP:
|
|
*equiv++ = REG_SP;
|
|
break;
|
|
case REG_EDXEAX:
|
|
*equiv++ = REG_AL;
|
|
*equiv++ = REG_AH;
|
|
*equiv++ = REG_DL;
|
|
*equiv++ = REG_DH;
|
|
*equiv++ = REG_AX;
|
|
*equiv++ = REG_DX;
|
|
*equiv++ = REG_EAX;
|
|
*equiv++ = REG_EDX;
|
|
break;
|
|
}
|
|
*equiv++ = REG_UNSET;
|
|
}
|
|
|
|
static unsigned arch_avail_mask(struct compile_state *state)
|
|
{
|
|
unsigned avail_mask;
|
|
avail_mask = REGCM_GPR8 | REGCM_GPR16_8 | REGCM_GPR16 |
|
|
REGCM_GPR32 | REGCM_GPR32_8 | REGCM_GPR64 |
|
|
REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
|
|
switch(state->cpu) {
|
|
case CPU_P3:
|
|
case CPU_K7:
|
|
avail_mask |= REGCM_MMX;
|
|
break;
|
|
case CPU_P4:
|
|
case CPU_K8:
|
|
avail_mask |= REGCM_MMX | REGCM_XMM;
|
|
break;
|
|
}
|
|
#if 0
|
|
/* Don't enable 8 bit values until I can force both operands
|
|
* to be 8bits simultaneously.
|
|
*/
|
|
avail_mask &= ~(REGCM_GPR8 | REGCM_GPR16_8 | REGCM_GPR16);
|
|
#endif
|
|
return avail_mask;
|
|
}
|
|
|
|
static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
|
|
{
|
|
unsigned mask, result;
|
|
int class, class2;
|
|
result = regcm;
|
|
result &= arch_avail_mask(state);
|
|
|
|
for(class = 0, mask = 1; mask; mask <<= 1, class++) {
|
|
if ((result & mask) == 0) {
|
|
continue;
|
|
}
|
|
if (class > LAST_REGC) {
|
|
result &= ~mask;
|
|
}
|
|
for(class2 = 0; class2 <= LAST_REGC; class2++) {
|
|
if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
|
|
(regcm_bound[class2].last <= regcm_bound[class].last)) {
|
|
result |= (1 << class2);
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static unsigned arch_reg_regcm(struct compile_state *state, int reg)
|
|
{
|
|
unsigned mask;
|
|
int class;
|
|
mask = 0;
|
|
for(class = 0; class <= LAST_REGC; class++) {
|
|
if ((reg >= regcm_bound[class].first) &&
|
|
(reg <= regcm_bound[class].last)) {
|
|
mask |= (1 << class);
|
|
}
|
|
}
|
|
if (!mask) {
|
|
internal_error(state, 0, "reg %d not in any class", reg);
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
static struct reg_info arch_reg_constraint(
|
|
struct compile_state *state, struct type *type, const char *constraint)
|
|
{
|
|
static const struct {
|
|
char class;
|
|
unsigned int mask;
|
|
unsigned int reg;
|
|
} constraints[] = {
|
|
{ 'r', REGCM_GPR32, REG_UNSET },
|
|
{ 'g', REGCM_GPR32, REG_UNSET },
|
|
{ 'p', REGCM_GPR32, REG_UNSET },
|
|
{ 'q', REGCM_GPR8, REG_UNSET },
|
|
{ 'Q', REGCM_GPR32_8, REG_UNSET },
|
|
{ 'x', REGCM_XMM, REG_UNSET },
|
|
{ 'y', REGCM_MMX, REG_UNSET },
|
|
{ 'a', REGCM_GPR32, REG_EAX },
|
|
{ 'b', REGCM_GPR32, REG_EBX },
|
|
{ 'c', REGCM_GPR32, REG_ECX },
|
|
{ 'd', REGCM_GPR32, REG_EDX },
|
|
{ 'D', REGCM_GPR32, REG_EDI },
|
|
{ 'S', REGCM_GPR32, REG_ESI },
|
|
{ '\0', 0, REG_UNSET },
|
|
};
|
|
unsigned int regcm;
|
|
unsigned int mask, reg;
|
|
struct reg_info result;
|
|
const char *ptr;
|
|
regcm = arch_type_to_regcm(state, type);
|
|
reg = REG_UNSET;
|
|
mask = 0;
|
|
for(ptr = constraint; *ptr; ptr++) {
|
|
int i;
|
|
if (*ptr == ' ') {
|
|
continue;
|
|
}
|
|
for(i = 0; constraints[i].class != '\0'; i++) {
|
|
if (constraints[i].class == *ptr) {
|
|
break;
|
|
}
|
|
}
|
|
if (constraints[i].class == '\0') {
|
|
error(state, 0, "invalid register constraint ``%c''", *ptr);
|
|
break;
|
|
}
|
|
if ((constraints[i].mask & regcm) == 0) {
|
|
error(state, 0, "invalid register class %c specified",
|
|
*ptr);
|
|
}
|
|
mask |= constraints[i].mask;
|
|
if (constraints[i].reg != REG_UNSET) {
|
|
if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
|
|
error(state, 0, "Only one register may be specified");
|
|
}
|
|
reg = constraints[i].reg;
|
|
}
|
|
}
|
|
result.reg = reg;
|
|
result.regcm = mask;
|
|
return result;
|
|
}
|
|
|
|
static struct reg_info arch_reg_clobber(
|
|
struct compile_state *state, const char *clobber)
|
|
{
|
|
struct reg_info result;
|
|
if (strcmp(clobber, "memory") == 0) {
|
|
result.reg = REG_UNSET;
|
|
result.regcm = 0;
|
|
}
|
|
else if (strcmp(clobber, "%eax") == 0) {
|
|
result.reg = REG_EAX;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "%ebx") == 0) {
|
|
result.reg = REG_EBX;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "%ecx") == 0) {
|
|
result.reg = REG_ECX;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "%edx") == 0) {
|
|
result.reg = REG_EDX;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "%esi") == 0) {
|
|
result.reg = REG_ESI;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "%edi") == 0) {
|
|
result.reg = REG_EDI;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "%ebp") == 0) {
|
|
result.reg = REG_EBP;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "%esp") == 0) {
|
|
result.reg = REG_ESP;
|
|
result.regcm = REGCM_GPR32;
|
|
}
|
|
else if (strcmp(clobber, "cc") == 0) {
|
|
result.reg = REG_EFLAGS;
|
|
result.regcm = REGCM_FLAGS;
|
|
}
|
|
else if ((strncmp(clobber, "xmm", 3) == 0) &&
|
|
octdigitp(clobber[3]) && (clobber[4] == '\0')) {
|
|
result.reg = REG_XMM0 + octdigval(clobber[3]);
|
|
result.regcm = REGCM_XMM;
|
|
}
|
|
else if ((strncmp(clobber, "mmx", 3) == 0) &&
|
|
octdigitp(clobber[3]) && (clobber[4] == '\0')) {
|
|
result.reg = REG_MMX0 + octdigval(clobber[3]);
|
|
result.regcm = REGCM_MMX;
|
|
}
|
|
else {
|
|
error(state, 0, "Invalid register clobber");
|
|
result.reg = REG_UNSET;
|
|
result.regcm = 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int do_select_reg(struct compile_state *state,
|
|
char *used, int reg, unsigned classes)
|
|
{
|
|
unsigned mask;
|
|
if (used[reg]) {
|
|
return REG_UNSET;
|
|
}
|
|
mask = arch_reg_regcm(state, reg);
|
|
return (classes & mask) ? reg : REG_UNSET;
|
|
}
|
|
|
|
static int arch_select_free_register(
|
|
struct compile_state *state, char *used, int classes)
|
|
{
|
|
/* Preference: flags, 8bit gprs, 32bit gprs, other 32bit reg
|
|
* other types of registers.
|
|
*/
|
|
int i, reg;
|
|
reg = REG_UNSET;
|
|
for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
|
|
reg = do_select_reg(state, used, i, classes);
|
|
}
|
|
for(i = REGC_GPR32_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR32_LAST); i++) {
|
|
reg = do_select_reg(state, used, i, classes);
|
|
}
|
|
for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
|
|
reg = do_select_reg(state, used, i, classes);
|
|
}
|
|
for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
|
|
reg = do_select_reg(state, used, i, classes);
|
|
}
|
|
for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
|
|
reg = do_select_reg(state, used, i, classes);
|
|
}
|
|
for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
|
|
reg = do_select_reg(state, used, i, classes);
|
|
}
|
|
for(i = REGC_GPR64_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR64_LAST); i++) {
|
|
reg = do_select_reg(state, used, i, classes);
|
|
}
|
|
return reg;
|
|
}
|
|
|
|
|
|
static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type)
|
|
{
|
|
#warning "FIXME force types smaller (if legal) before I get here"
|
|
unsigned avail_mask;
|
|
unsigned mask;
|
|
mask = 0;
|
|
avail_mask = arch_avail_mask(state);
|
|
switch(type->type & TYPE_MASK) {
|
|
case TYPE_ARRAY:
|
|
case TYPE_VOID:
|
|
mask = 0;
|
|
break;
|
|
case TYPE_CHAR:
|
|
case TYPE_UCHAR:
|
|
mask = REGCM_GPR8 |
|
|
REGCM_GPR16 | REGCM_GPR16_8 |
|
|
REGCM_GPR32 | REGCM_GPR32_8 |
|
|
REGCM_GPR64 |
|
|
REGCM_MMX | REGCM_XMM |
|
|
REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
|
|
break;
|
|
case TYPE_SHORT:
|
|
case TYPE_USHORT:
|
|
mask = REGCM_GPR16 | REGCM_GPR16_8 |
|
|
REGCM_GPR32 | REGCM_GPR32_8 |
|
|
REGCM_GPR64 |
|
|
REGCM_MMX | REGCM_XMM |
|
|
REGCM_IMM32 | REGCM_IMM16;
|
|
break;
|
|
case TYPE_INT:
|
|
case TYPE_UINT:
|
|
case TYPE_LONG:
|
|
case TYPE_ULONG:
|
|
case TYPE_POINTER:
|
|
mask = REGCM_GPR32 | REGCM_GPR32_8 |
|
|
REGCM_GPR64 | REGCM_MMX | REGCM_XMM |
|
|
REGCM_IMM32;
|
|
break;
|
|
default:
|
|
internal_error(state, 0, "no register class for type");
|
|
break;
|
|
}
|
|
mask &= avail_mask;
|
|
return mask;
|
|
}
|
|
|
|
static int is_imm32(struct triple *imm)
|
|
{
|
|
return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffffffffUL)) ||
|
|
(imm->op == OP_ADDRCONST);
|
|
|
|
}
|
|
static int is_imm16(struct triple *imm)
|
|
{
|
|
return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
|
|
}
|
|
static int is_imm8(struct triple *imm)
|
|
{
|
|
return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
|
|
}
|
|
|
|
static int get_imm32(struct triple *ins, struct triple **expr)
|
|
{
|
|
struct triple *imm;
|
|
imm = *expr;
|
|
while(imm->op == OP_COPY) {
|
|
imm = RHS(imm, 0);
|
|
}
|
|
if (!is_imm32(imm)) {
|
|
return 0;
|
|
}
|
|
unuse_triple(*expr, ins);
|
|
use_triple(imm, ins);
|
|
*expr = imm;
|
|
return 1;
|
|
}
|
|
|
|
static int get_imm8(struct triple *ins, struct triple **expr)
|
|
{
|
|
struct triple *imm;
|
|
imm = *expr;
|
|
while(imm->op == OP_COPY) {
|
|
imm = RHS(imm, 0);
|
|
}
|
|
if (!is_imm8(imm)) {
|
|
return 0;
|
|
}
|
|
unuse_triple(*expr, ins);
|
|
use_triple(imm, ins);
|
|
*expr = imm;
|
|
return 1;
|
|
}
|
|
|
|
#define TEMPLATE_NOP 0
|
|
#define TEMPLATE_INTCONST8 1
|
|
#define TEMPLATE_INTCONST32 2
|
|
#define TEMPLATE_COPY_REG 3
|
|
#define TEMPLATE_COPY_IMM32 4
|
|
#define TEMPLATE_COPY_IMM16 5
|
|
#define TEMPLATE_COPY_IMM8 6
|
|
#define TEMPLATE_PHI 7
|
|
#define TEMPLATE_STORE8 8
|
|
#define TEMPLATE_STORE16 9
|
|
#define TEMPLATE_STORE32 10
|
|
#define TEMPLATE_LOAD8 11
|
|
#define TEMPLATE_LOAD16 12
|
|
#define TEMPLATE_LOAD32 13
|
|
#define TEMPLATE_BINARY_REG 14
|
|
#define TEMPLATE_BINARY_IMM 15
|
|
#define TEMPLATE_SL_CL 16
|
|
#define TEMPLATE_SL_IMM 17
|
|
#define TEMPLATE_UNARY 18
|
|
#define TEMPLATE_CMP_REG 19
|
|
#define TEMPLATE_CMP_IMM 20
|
|
#define TEMPLATE_TEST 21
|
|
#define TEMPLATE_SET 22
|
|
#define TEMPLATE_JMP 23
|
|
#define TEMPLATE_INB_DX 24
|
|
#define TEMPLATE_INB_IMM 25
|
|
#define TEMPLATE_INW_DX 26
|
|
#define TEMPLATE_INW_IMM 27
|
|
#define TEMPLATE_INL_DX 28
|
|
#define TEMPLATE_INL_IMM 29
|
|
#define TEMPLATE_OUTB_DX 30
|
|
#define TEMPLATE_OUTB_IMM 31
|
|
#define TEMPLATE_OUTW_DX 32
|
|
#define TEMPLATE_OUTW_IMM 33
|
|
#define TEMPLATE_OUTL_DX 34
|
|
#define TEMPLATE_OUTL_IMM 35
|
|
#define TEMPLATE_BSF 36
|
|
#define TEMPLATE_RDMSR 37
|
|
#define TEMPLATE_WRMSR 38
|
|
#define LAST_TEMPLATE TEMPLATE_WRMSR
|
|
#if LAST_TEMPLATE >= MAX_TEMPLATES
|
|
#error "MAX_TEMPLATES to low"
|
|
#endif
|
|
|
|
#define COPY_REGCM (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8 | REGCM_MMX | REGCM_XMM)
|
|
#define COPY32_REGCM (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
|
|
|
|
static struct ins_template templates[] = {
|
|
[TEMPLATE_NOP] = {},
|
|
[TEMPLATE_INTCONST8] = {
|
|
.lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
|
|
},
|
|
[TEMPLATE_INTCONST32] = {
|
|
.lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
|
|
},
|
|
[TEMPLATE_COPY_REG] = {
|
|
.lhs = { [0] = { REG_UNSET, COPY_REGCM } },
|
|
.rhs = { [0] = { REG_UNSET, COPY_REGCM } },
|
|
},
|
|
[TEMPLATE_COPY_IMM32] = {
|
|
.lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
|
|
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
|
|
},
|
|
[TEMPLATE_COPY_IMM16] = {
|
|
.lhs = { [0] = { REG_UNSET, COPY32_REGCM | REGCM_GPR16 } },
|
|
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 } },
|
|
},
|
|
[TEMPLATE_COPY_IMM8] = {
|
|
.lhs = { [0] = { REG_UNSET, COPY_REGCM } },
|
|
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
|
|
},
|
|
[TEMPLATE_PHI] = {
|
|
.lhs = { [0] = { REG_VIRT0, COPY_REGCM } },
|
|
.rhs = {
|
|
[ 0] = { REG_VIRT0, COPY_REGCM },
|
|
[ 1] = { REG_VIRT0, COPY_REGCM },
|
|
[ 2] = { REG_VIRT0, COPY_REGCM },
|
|
[ 3] = { REG_VIRT0, COPY_REGCM },
|
|
[ 4] = { REG_VIRT0, COPY_REGCM },
|
|
[ 5] = { REG_VIRT0, COPY_REGCM },
|
|
[ 6] = { REG_VIRT0, COPY_REGCM },
|
|
[ 7] = { REG_VIRT0, COPY_REGCM },
|
|
[ 8] = { REG_VIRT0, COPY_REGCM },
|
|
[ 9] = { REG_VIRT0, COPY_REGCM },
|
|
[10] = { REG_VIRT0, COPY_REGCM },
|
|
[11] = { REG_VIRT0, COPY_REGCM },
|
|
[12] = { REG_VIRT0, COPY_REGCM },
|
|
[13] = { REG_VIRT0, COPY_REGCM },
|
|
[14] = { REG_VIRT0, COPY_REGCM },
|
|
[15] = { REG_VIRT0, COPY_REGCM },
|
|
}, },
|
|
[TEMPLATE_STORE8] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR8 } },
|
|
},
|
|
[TEMPLATE_STORE16] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
|
|
},
|
|
[TEMPLATE_STORE32] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_LOAD8] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR8 } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_LOAD16] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_LOAD32] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_BINARY_REG] = {
|
|
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
|
|
.rhs = {
|
|
[0] = { REG_VIRT0, REGCM_GPR32 },
|
|
[1] = { REG_UNSET, REGCM_GPR32 },
|
|
},
|
|
},
|
|
[TEMPLATE_BINARY_IMM] = {
|
|
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
|
|
.rhs = {
|
|
[0] = { REG_VIRT0, REGCM_GPR32 },
|
|
[1] = { REG_UNNEEDED, REGCM_IMM32 },
|
|
},
|
|
},
|
|
[TEMPLATE_SL_CL] = {
|
|
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
|
|
.rhs = {
|
|
[0] = { REG_VIRT0, REGCM_GPR32 },
|
|
[1] = { REG_CL, REGCM_GPR8 },
|
|
},
|
|
},
|
|
[TEMPLATE_SL_IMM] = {
|
|
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
|
|
.rhs = {
|
|
[0] = { REG_VIRT0, REGCM_GPR32 },
|
|
[1] = { REG_UNNEEDED, REGCM_IMM8 },
|
|
},
|
|
},
|
|
[TEMPLATE_UNARY] = {
|
|
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_CMP_REG] = {
|
|
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
|
|
.rhs = {
|
|
[0] = { REG_UNSET, REGCM_GPR32 },
|
|
[1] = { REG_UNSET, REGCM_GPR32 },
|
|
},
|
|
},
|
|
[TEMPLATE_CMP_IMM] = {
|
|
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
|
|
.rhs = {
|
|
[0] = { REG_UNSET, REGCM_GPR32 },
|
|
[1] = { REG_UNNEEDED, REGCM_IMM32 },
|
|
},
|
|
},
|
|
[TEMPLATE_TEST] = {
|
|
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_SET] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR8 } },
|
|
.rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
|
|
},
|
|
[TEMPLATE_JMP] = {
|
|
.rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
|
|
},
|
|
[TEMPLATE_INB_DX] = {
|
|
.lhs = { [0] = { REG_AL, REGCM_GPR8 } },
|
|
.rhs = { [0] = { REG_DX, REGCM_GPR16 } },
|
|
},
|
|
[TEMPLATE_INB_IMM] = {
|
|
.lhs = { [0] = { REG_AL, REGCM_GPR8 } },
|
|
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
|
|
},
|
|
[TEMPLATE_INW_DX] = {
|
|
.lhs = { [0] = { REG_AX, REGCM_GPR16 } },
|
|
.rhs = { [0] = { REG_DX, REGCM_GPR16 } },
|
|
},
|
|
[TEMPLATE_INW_IMM] = {
|
|
.lhs = { [0] = { REG_AX, REGCM_GPR16 } },
|
|
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
|
|
},
|
|
[TEMPLATE_INL_DX] = {
|
|
.lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_DX, REGCM_GPR16 } },
|
|
},
|
|
[TEMPLATE_INL_IMM] = {
|
|
.lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
|
|
},
|
|
[TEMPLATE_OUTB_DX] = {
|
|
.rhs = {
|
|
[0] = { REG_AL, REGCM_GPR8 },
|
|
[1] = { REG_DX, REGCM_GPR16 },
|
|
},
|
|
},
|
|
[TEMPLATE_OUTB_IMM] = {
|
|
.rhs = {
|
|
[0] = { REG_AL, REGCM_GPR8 },
|
|
[1] = { REG_UNNEEDED, REGCM_IMM8 },
|
|
},
|
|
},
|
|
[TEMPLATE_OUTW_DX] = {
|
|
.rhs = {
|
|
[0] = { REG_AX, REGCM_GPR16 },
|
|
[1] = { REG_DX, REGCM_GPR16 },
|
|
},
|
|
},
|
|
[TEMPLATE_OUTW_IMM] = {
|
|
.rhs = {
|
|
[0] = { REG_AX, REGCM_GPR16 },
|
|
[1] = { REG_UNNEEDED, REGCM_IMM8 },
|
|
},
|
|
},
|
|
[TEMPLATE_OUTL_DX] = {
|
|
.rhs = {
|
|
[0] = { REG_EAX, REGCM_GPR32 },
|
|
[1] = { REG_DX, REGCM_GPR16 },
|
|
},
|
|
},
|
|
[TEMPLATE_OUTL_IMM] = {
|
|
.rhs = {
|
|
[0] = { REG_EAX, REGCM_GPR32 },
|
|
[1] = { REG_UNNEEDED, REGCM_IMM8 },
|
|
},
|
|
},
|
|
[TEMPLATE_BSF] = {
|
|
.lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_RDMSR] = {
|
|
.lhs = {
|
|
[0] = { REG_EAX, REGCM_GPR32 },
|
|
[1] = { REG_EDX, REGCM_GPR32 },
|
|
},
|
|
.rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
|
|
},
|
|
[TEMPLATE_WRMSR] = {
|
|
.rhs = {
|
|
[0] = { REG_ECX, REGCM_GPR32 },
|
|
[1] = { REG_EAX, REGCM_GPR32 },
|
|
[2] = { REG_EDX, REGCM_GPR32 },
|
|
},
|
|
},
|
|
};
|
|
|
|
static void fixup_branches(struct compile_state *state,
|
|
struct triple *cmp, struct triple *use, int jmp_op)
|
|
{
|
|
struct triple_set *entry, *next;
|
|
for(entry = use->use; entry; entry = next) {
|
|
next = entry->next;
|
|
if (entry->member->op == OP_COPY) {
|
|
fixup_branches(state, cmp, entry->member, jmp_op);
|
|
}
|
|
else if (entry->member->op == OP_BRANCH) {
|
|
struct triple *branch, *test;
|
|
struct triple *left, *right;
|
|
left = right = 0;
|
|
left = RHS(cmp, 0);
|
|
if (TRIPLE_RHS(cmp->sizes) > 1) {
|
|
right = RHS(cmp, 1);
|
|
}
|
|
branch = entry->member;
|
|
test = pre_triple(state, branch,
|
|
cmp->op, cmp->type, left, right);
|
|
test->template_id = TEMPLATE_TEST;
|
|
if (cmp->op == OP_CMP) {
|
|
test->template_id = TEMPLATE_CMP_REG;
|
|
if (get_imm32(test, &RHS(test, 1))) {
|
|
test->template_id = TEMPLATE_CMP_IMM;
|
|
}
|
|
}
|
|
use_triple(RHS(test, 0), test);
|
|
use_triple(RHS(test, 1), test);
|
|
unuse_triple(RHS(branch, 0), branch);
|
|
RHS(branch, 0) = test;
|
|
branch->op = jmp_op;
|
|
branch->template_id = TEMPLATE_JMP;
|
|
use_triple(RHS(branch, 0), branch);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bool_cmp(struct compile_state *state,
|
|
struct triple *ins, int cmp_op, int jmp_op, int set_op)
|
|
{
|
|
struct triple_set *entry, *next;
|
|
struct triple *set;
|
|
|
|
/* Put a barrier up before the cmp which preceeds the
|
|
* copy instruction. If a set actually occurs this gives
|
|
* us a chance to move variables in registers out of the way.
|
|
*/
|
|
|
|
/* Modify the comparison operator */
|
|
ins->op = cmp_op;
|
|
ins->template_id = TEMPLATE_TEST;
|
|
if (cmp_op == OP_CMP) {
|
|
ins->template_id = TEMPLATE_CMP_REG;
|
|
if (get_imm32(ins, &RHS(ins, 1))) {
|
|
ins->template_id = TEMPLATE_CMP_IMM;
|
|
}
|
|
}
|
|
/* Generate the instruction sequence that will transform the
|
|
* result of the comparison into a logical value.
|
|
*/
|
|
set = post_triple(state, ins, set_op, ins->type, ins, 0);
|
|
use_triple(ins, set);
|
|
set->template_id = TEMPLATE_SET;
|
|
|
|
for(entry = ins->use; entry; entry = next) {
|
|
next = entry->next;
|
|
if (entry->member == set) {
|
|
continue;
|
|
}
|
|
replace_rhs_use(state, ins, set, entry->member);
|
|
}
|
|
fixup_branches(state, ins, set, jmp_op);
|
|
}
|
|
|
|
static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
|
|
{
|
|
struct triple *next;
|
|
int lhs, i;
|
|
lhs = TRIPLE_LHS(ins->sizes);
|
|
for(next = ins->next, i = 0; i < lhs; i++, next = next->next) {
|
|
if (next != LHS(ins, i)) {
|
|
internal_error(state, ins, "malformed lhs on %s",
|
|
tops(ins->op));
|
|
}
|
|
if (next->op != OP_PIECE) {
|
|
internal_error(state, ins, "bad lhs op %s at %d on %s",
|
|
tops(next->op), i, tops(ins->op));
|
|
}
|
|
if (next->u.cval != i) {
|
|
internal_error(state, ins, "bad u.cval of %d %d expected",
|
|
next->u.cval, i);
|
|
}
|
|
}
|
|
return next;
|
|
}
|
|
|
|
struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
|
|
{
|
|
struct ins_template *template;
|
|
struct reg_info result;
|
|
int zlhs;
|
|
if (ins->op == OP_PIECE) {
|
|
index = ins->u.cval;
|
|
ins = MISC(ins, 0);
|
|
}
|
|
zlhs = TRIPLE_LHS(ins->sizes);
|
|
if (triple_is_def(state, ins)) {
|
|
zlhs = 1;
|
|
}
|
|
if (index >= zlhs) {
|
|
internal_error(state, ins, "index %d out of range for %s\n",
|
|
index, tops(ins->op));
|
|
}
|
|
switch(ins->op) {
|
|
case OP_ASM:
|
|
template = &ins->u.ainfo->tmpl;
|
|
break;
|
|
default:
|
|
if (ins->template_id > LAST_TEMPLATE) {
|
|
internal_error(state, ins, "bad template number %d",
|
|
ins->template_id);
|
|
}
|
|
template = &templates[ins->template_id];
|
|
break;
|
|
}
|
|
result = template->lhs[index];
|
|
result.regcm = arch_regcm_normalize(state, result.regcm);
|
|
if (result.reg != REG_UNNEEDED) {
|
|
result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
|
|
}
|
|
if (result.regcm == 0) {
|
|
internal_error(state, ins, "lhs %d regcm == 0", index);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
|
|
{
|
|
struct reg_info result;
|
|
struct ins_template *template;
|
|
if ((index > TRIPLE_RHS(ins->sizes)) ||
|
|
(ins->op == OP_PIECE)) {
|
|
internal_error(state, ins, "index %d out of range for %s\n",
|
|
index, tops(ins->op));
|
|
}
|
|
switch(ins->op) {
|
|
case OP_ASM:
|
|
template = &ins->u.ainfo->tmpl;
|
|
break;
|
|
default:
|
|
if (ins->template_id > LAST_TEMPLATE) {
|
|
internal_error(state, ins, "bad template number %d",
|
|
ins->template_id);
|
|
}
|
|
template = &templates[ins->template_id];
|
|
break;
|
|
}
|
|
result = template->rhs[index];
|
|
result.regcm = arch_regcm_normalize(state, result.regcm);
|
|
if (result.regcm == 0) {
|
|
internal_error(state, ins, "rhs %d regcm == 0", index);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static struct triple *transform_to_arch_instruction(
|
|
struct compile_state *state, struct triple *ins)
|
|
{
|
|
/* Transform from generic 3 address instructions
|
|
* to archtecture specific instructions.
|
|
* And apply architecture specific constrains to instructions.
|
|
* Copies are inserted to preserve the register flexibility
|
|
* of 3 address instructions.
|
|
*/
|
|
struct triple *next;
|
|
next = ins->next;
|
|
switch(ins->op) {
|
|
case OP_INTCONST:
|
|
ins->template_id = TEMPLATE_INTCONST32;
|
|
if (ins->u.cval < 256) {
|
|
ins->template_id = TEMPLATE_INTCONST8;
|
|
}
|
|
break;
|
|
case OP_ADDRCONST:
|
|
ins->template_id = TEMPLATE_INTCONST32;
|
|
break;
|
|
case OP_NOOP:
|
|
case OP_SDECL:
|
|
case OP_BLOBCONST:
|
|
case OP_LABEL:
|
|
ins->template_id = TEMPLATE_NOP;
|
|
break;
|
|
case OP_COPY:
|
|
ins->template_id = TEMPLATE_COPY_REG;
|
|
if (is_imm8(RHS(ins, 0))) {
|
|
ins->template_id = TEMPLATE_COPY_IMM8;
|
|
}
|
|
else if (is_imm16(RHS(ins, 0))) {
|
|
ins->template_id = TEMPLATE_COPY_IMM16;
|
|
}
|
|
else if (is_imm32(RHS(ins, 0))) {
|
|
ins->template_id = TEMPLATE_COPY_IMM32;
|
|
}
|
|
else if (is_const(RHS(ins, 0))) {
|
|
internal_error(state, ins, "bad constant passed to copy");
|
|
}
|
|
break;
|
|
case OP_PHI:
|
|
ins->template_id = TEMPLATE_PHI;
|
|
break;
|
|
case OP_STORE:
|
|
switch(ins->type->type & TYPE_MASK) {
|
|
case TYPE_CHAR: case TYPE_UCHAR:
|
|
ins->template_id = TEMPLATE_STORE8;
|
|
break;
|
|
case TYPE_SHORT: case TYPE_USHORT:
|
|
ins->template_id = TEMPLATE_STORE16;
|
|
break;
|
|
case TYPE_INT: case TYPE_UINT:
|
|
case TYPE_LONG: case TYPE_ULONG:
|
|
case TYPE_POINTER:
|
|
ins->template_id = TEMPLATE_STORE32;
|
|
break;
|
|
default:
|
|
internal_error(state, ins, "unknown type in store");
|
|
break;
|
|
}
|
|
break;
|
|
case OP_LOAD:
|
|
switch(ins->type->type & TYPE_MASK) {
|
|
case TYPE_CHAR: case TYPE_UCHAR:
|
|
ins->template_id = TEMPLATE_LOAD8;
|
|
break;
|
|
case TYPE_SHORT:
|
|
case TYPE_USHORT:
|
|
ins->template_id = TEMPLATE_LOAD16;
|
|
break;
|
|
case TYPE_INT:
|
|
case TYPE_UINT:
|
|
case TYPE_LONG:
|
|
case TYPE_ULONG:
|
|
case TYPE_POINTER:
|
|
ins->template_id = TEMPLATE_LOAD32;
|
|
break;
|
|
default:
|
|
internal_error(state, ins, "unknown type in load");
|
|
break;
|
|
}
|
|
break;
|
|
case OP_ADD:
|
|
case OP_SUB:
|
|
case OP_AND:
|
|
case OP_XOR:
|
|
case OP_OR:
|
|
case OP_SMUL:
|
|
ins->template_id = TEMPLATE_BINARY_REG;
|
|
if (get_imm32(ins, &RHS(ins, 1))) {
|
|
ins->template_id = TEMPLATE_BINARY_IMM;
|
|
}
|
|
break;
|
|
case OP_SL:
|
|
case OP_SSR:
|
|
case OP_USR:
|
|
ins->template_id = TEMPLATE_SL_CL;
|
|
if (get_imm8(ins, &RHS(ins, 1))) {
|
|
ins->template_id = TEMPLATE_SL_IMM;
|
|
}
|
|
break;
|
|
case OP_INVERT:
|
|
case OP_NEG:
|
|
ins->template_id = TEMPLATE_UNARY;
|
|
break;
|
|
case OP_EQ:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ);
|
|
break;
|
|
case OP_NOTEQ:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
|
|
break;
|
|
case OP_SLESS:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
|
|
break;
|
|
case OP_ULESS:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
|
|
break;
|
|
case OP_SMORE:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
|
|
break;
|
|
case OP_UMORE:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
|
|
break;
|
|
case OP_SLESSEQ:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
|
|
break;
|
|
case OP_ULESSEQ:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
|
|
break;
|
|
case OP_SMOREEQ:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
|
|
break;
|
|
case OP_UMOREEQ:
|
|
bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
|
|
break;
|
|
case OP_LTRUE:
|
|
bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
|
|
break;
|
|
case OP_LFALSE:
|
|
bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
|
|
break;
|
|
case OP_BRANCH:
|
|
if (TRIPLE_RHS(ins->sizes) > 0) {
|
|
internal_error(state, ins, "bad branch test");
|
|
}
|
|
ins->op = OP_JMP;
|
|
ins->template_id = TEMPLATE_NOP;
|
|
break;
|
|
case OP_INB:
|
|
case OP_INW:
|
|
case OP_INL:
|
|
switch(ins->op) {
|
|
case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
|
|
case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
|
|
case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
|
|
}
|
|
if (get_imm8(ins, &RHS(ins, 0))) {
|
|
ins->template_id += 1;
|
|
}
|
|
break;
|
|
case OP_OUTB:
|
|
case OP_OUTW:
|
|
case OP_OUTL:
|
|
switch(ins->op) {
|
|
case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
|
|
case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
|
|
case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
|
|
}
|
|
if (get_imm8(ins, &RHS(ins, 1))) {
|
|
ins->template_id += 1;
|
|
}
|
|
break;
|
|
case OP_BSF:
|
|
case OP_BSR:
|
|
ins->template_id = TEMPLATE_BSF;
|
|
break;
|
|
case OP_RDMSR:
|
|
ins->template_id = TEMPLATE_RDMSR;
|
|
next = after_lhs(state, ins);
|
|
break;
|
|
case OP_WRMSR:
|
|
ins->template_id = TEMPLATE_WRMSR;
|
|
break;
|
|
case OP_HLT:
|
|
ins->template_id = TEMPLATE_NOP;
|
|
break;
|
|
case OP_ASM:
|
|
ins->template_id = TEMPLATE_NOP;
|
|
next = after_lhs(state, ins);
|
|
break;
|
|
/* Already transformed instructions */
|
|
case OP_TEST:
|
|
ins->template_id = TEMPLATE_TEST;
|
|
break;
|
|
case OP_CMP:
|
|
ins->template_id = TEMPLATE_CMP_REG;
|
|
if (get_imm32(ins, &RHS(ins, 1))) {
|
|
ins->template_id = TEMPLATE_CMP_IMM;
|
|
}
|
|
break;
|
|
case OP_JMP_EQ: case OP_JMP_NOTEQ:
|
|
case OP_JMP_SLESS: case OP_JMP_ULESS:
|
|
case OP_JMP_SMORE: case OP_JMP_UMORE:
|
|
case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
|
|
case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
|
|
ins->template_id = TEMPLATE_JMP;
|
|
break;
|
|
case OP_SET_EQ: case OP_SET_NOTEQ:
|
|
case OP_SET_SLESS: case OP_SET_ULESS:
|
|
case OP_SET_SMORE: case OP_SET_UMORE:
|
|
case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
|
|
case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
|
|
ins->template_id = TEMPLATE_SET;
|
|
break;
|
|
/* Unhandled instructions */
|
|
case OP_PIECE:
|
|
default:
|
|
internal_error(state, ins, "unhandled ins: %d %s\n",
|
|
ins->op, tops(ins->op));
|
|
break;
|
|
}
|
|
return next;
|
|
}
|
|
|
|
static void generate_local_labels(struct compile_state *state)
|
|
{
|
|
struct triple *first, *label;
|
|
int label_counter;
|
|
label_counter = 0;
|
|
first = RHS(state->main_function, 0);
|
|
label = first;
|
|
do {
|
|
if ((label->op == OP_LABEL) ||
|
|
(label->op == OP_SDECL)) {
|
|
if (label->use) {
|
|
label->u.cval = ++label_counter;
|
|
} else {
|
|
label->u.cval = 0;
|
|
}
|
|
|
|
}
|
|
label = label->next;
|
|
} while(label != first);
|
|
}
|
|
|
|
static int check_reg(struct compile_state *state,
|
|
struct triple *triple, int classes)
|
|
{
|
|
unsigned mask;
|
|
int reg;
|
|
reg = ID_REG(triple->id);
|
|
if (reg == REG_UNSET) {
|
|
internal_error(state, triple, "register not set");
|
|
}
|
|
mask = arch_reg_regcm(state, reg);
|
|
if (!(classes & mask)) {
|
|
internal_error(state, triple, "reg %d in wrong class",
|
|
reg);
|
|
}
|
|
return reg;
|
|
}
|
|
|
|
static const char *arch_reg_str(int reg)
|
|
{
|
|
static const char *regs[] = {
|
|
"%bad_register",
|
|
"%bad_register2",
|
|
"%eflags",
|
|
"%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
|
|
"%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
|
|
"%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
|
|
"%edx:%eax",
|
|
"%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
|
|
"%xmm0", "%xmm1", "%xmm2", "%xmm3",
|
|
"%xmm4", "%xmm5", "%xmm6", "%xmm7",
|
|
};
|
|
if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
|
|
reg = 0;
|
|
}
|
|
return regs[reg];
|
|
}
|
|
|
|
|
|
static const char *reg(struct compile_state *state, struct triple *triple,
|
|
int classes)
|
|
{
|
|
int reg;
|
|
reg = check_reg(state, triple, classes);
|
|
return arch_reg_str(reg);
|
|
}
|
|
|
|
const char *type_suffix(struct compile_state *state, struct type *type)
|
|
{
|
|
const char *suffix;
|
|
switch(size_of(state, type)) {
|
|
case 1: suffix = "b"; break;
|
|
case 2: suffix = "w"; break;
|
|
case 4: suffix = "l"; break;
|
|
default:
|
|
internal_error(state, 0, "unknown suffix");
|
|
suffix = 0;
|
|
break;
|
|
}
|
|
return suffix;
|
|
}
|
|
|
|
static void print_const_val(
|
|
struct compile_state *state, struct triple *ins, FILE *fp)
|
|
{
|
|
switch(ins->op) {
|
|
case OP_INTCONST:
|
|
fprintf(fp, " $%ld ",
|
|
(long_t)(ins->u.cval));
|
|
break;
|
|
case OP_ADDRCONST:
|
|
fprintf(fp, " $L%s%lu+%lu ",
|
|
state->label_prefix,
|
|
MISC(ins, 0)->u.cval,
|
|
ins->u.cval);
|
|
break;
|
|
default:
|
|
internal_error(state, ins, "unknown constant type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void print_binary_op(struct compile_state *state,
|
|
const char *op, struct triple *ins, FILE *fp)
|
|
{
|
|
unsigned mask;
|
|
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
|
|
if (RHS(ins, 0)->id != ins->id) {
|
|
internal_error(state, ins, "invalid register assignment");
|
|
}
|
|
if (is_const(RHS(ins, 1))) {
|
|
fprintf(fp, "\t%s ", op);
|
|
print_const_val(state, RHS(ins, 1), fp);
|
|
fprintf(fp, ", %s\n",
|
|
reg(state, RHS(ins, 0), mask));
|
|
}
|
|
else {
|
|
unsigned lmask, rmask;
|
|
int lreg, rreg;
|
|
lreg = check_reg(state, RHS(ins, 0), mask);
|
|
rreg = check_reg(state, RHS(ins, 1), mask);
|
|
lmask = arch_reg_regcm(state, lreg);
|
|
rmask = arch_reg_regcm(state, rreg);
|
|
mask = lmask & rmask;
|
|
fprintf(fp, "\t%s %s, %s\n",
|
|
op,
|
|
reg(state, RHS(ins, 1), mask),
|
|
reg(state, RHS(ins, 0), mask));
|
|
}
|
|
}
|
|
static void print_unary_op(struct compile_state *state,
|
|
const char *op, struct triple *ins, FILE *fp)
|
|
{
|
|
unsigned mask;
|
|
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
|
|
fprintf(fp, "\t%s %s\n",
|
|
op,
|
|
reg(state, RHS(ins, 0), mask));
|
|
}
|
|
|
|
static void print_op_shift(struct compile_state *state,
|
|
const char *op, struct triple *ins, FILE *fp)
|
|
{
|
|
unsigned mask;
|
|
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
|
|
if (RHS(ins, 0)->id != ins->id) {
|
|
internal_error(state, ins, "invalid register assignment");
|
|
}
|
|
if (is_const(RHS(ins, 1))) {
|
|
fprintf(fp, "\t%s ", op);
|
|
print_const_val(state, RHS(ins, 1), fp);
|
|
fprintf(fp, ", %s\n",
|
|
reg(state, RHS(ins, 0), mask));
|
|
}
|
|
else {
|
|
fprintf(fp, "\t%s %s, %s\n",
|
|
op,
|
|
reg(state, RHS(ins, 1), REGCM_GPR8),
|
|
reg(state, RHS(ins, 0), mask));
|
|
}
|
|
}
|
|
|
|
static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
|
|
{
|
|
const char *op;
|
|
int mask;
|
|
int dreg;
|
|
mask = 0;
|
|
switch(ins->op) {
|
|
case OP_INB: op = "inb", mask = REGCM_GPR8; break;
|
|
case OP_INW: op = "inw", mask = REGCM_GPR16; break;
|
|
case OP_INL: op = "inl", mask = REGCM_GPR32; break;
|
|
default:
|
|
internal_error(state, ins, "not an in operation");
|
|
op = 0;
|
|
break;
|
|
}
|
|
dreg = check_reg(state, ins, mask);
|
|
if (!reg_is_reg(state, dreg, REG_EAX)) {
|
|
internal_error(state, ins, "dst != %%eax");
|
|
}
|
|
if (is_const(RHS(ins, 0))) {
|
|
fprintf(fp, "\t%s ", op);
|
|
print_const_val(state, RHS(ins, 0), fp);
|
|
fprintf(fp, ", %s\n",
|
|
reg(state, ins, mask));
|
|
}
|
|
else {
|
|
int addr_reg;
|
|
addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
|
|
if (!reg_is_reg(state, addr_reg, REG_DX)) {
|
|
internal_error(state, ins, "src != %%dx");
|
|
}
|
|
fprintf(fp, "\t%s %s, %s\n",
|
|
op,
|
|
reg(state, RHS(ins, 0), REGCM_GPR16),
|
|
reg(state, ins, mask));
|
|
}
|
|
}
|
|
|
|
static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
|
|
{
|
|
const char *op;
|
|
int mask;
|
|
int lreg;
|
|
mask = 0;
|
|
switch(ins->op) {
|
|
case OP_OUTB: op = "outb", mask = REGCM_GPR8; break;
|
|
case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
|
|
case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
|
|
default:
|
|
internal_error(state, ins, "not an out operation");
|
|
op = 0;
|
|
break;
|
|
}
|
|
lreg = check_reg(state, RHS(ins, 0), mask);
|
|
if (!reg_is_reg(state, lreg, REG_EAX)) {
|
|
internal_error(state, ins, "src != %%eax");
|
|
}
|
|
if (is_const(RHS(ins, 1))) {
|
|
fprintf(fp, "\t%s %s,",
|
|
op, reg(state, RHS(ins, 0), mask));
|
|
print_const_val(state, RHS(ins, 1), fp);
|
|
fprintf(fp, "\n");
|
|
}
|
|
else {
|
|
int addr_reg;
|
|
addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
|
|
if (!reg_is_reg(state, addr_reg, REG_DX)) {
|
|
internal_error(state, ins, "dst != %%dx");
|
|
}
|
|
fprintf(fp, "\t%s %s, %s\n",
|
|
op,
|
|
reg(state, RHS(ins, 0), mask),
|
|
reg(state, RHS(ins, 1), REGCM_GPR16));
|
|
}
|
|
}
|
|
|
|
static void print_op_move(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
/* op_move is complex because there are many types
|
|
* of registers we can move between.
|
|
* Because OP_COPY will be introduced in arbitrary locations
|
|
* OP_COPY must not affect flags.
|
|
*/
|
|
int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
|
|
struct triple *dst, *src;
|
|
if (ins->op == OP_COPY) {
|
|
src = RHS(ins, 0);
|
|
dst = ins;
|
|
}
|
|
else if (ins->op == OP_WRITE) {
|
|
dst = LHS(ins, 0);
|
|
src = RHS(ins, 0);
|
|
}
|
|
else {
|
|
internal_error(state, ins, "unknown move operation");
|
|
src = dst = 0;
|
|
}
|
|
if (!is_const(src)) {
|
|
int src_reg, dst_reg;
|
|
int src_regcm, dst_regcm;
|
|
src_reg = ID_REG(src->id);
|
|
dst_reg = ID_REG(dst->id);
|
|
src_regcm = arch_reg_regcm(state, src_reg);
|
|
dst_regcm = arch_reg_regcm(state, dst_reg);
|
|
/* If the class is the same just move the register */
|
|
if (src_regcm & dst_regcm &
|
|
(REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32)) {
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmov %s, %s\n",
|
|
reg(state, src, src_regcm),
|
|
reg(state, dst, dst_regcm));
|
|
}
|
|
}
|
|
/* Move 32bit to 16bit */
|
|
else if ((src_regcm & REGCM_GPR32) &&
|
|
(dst_regcm & REGCM_GPR16)) {
|
|
src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmovw %s, %s\n",
|
|
arch_reg_str(src_reg),
|
|
arch_reg_str(dst_reg));
|
|
}
|
|
}
|
|
/* Move 32bit to 8bit */
|
|
else if ((src_regcm & REGCM_GPR32_8) &&
|
|
(dst_regcm & REGCM_GPR8))
|
|
{
|
|
src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmovb %s, %s\n",
|
|
arch_reg_str(src_reg),
|
|
arch_reg_str(dst_reg));
|
|
}
|
|
}
|
|
/* Move 16bit to 8bit */
|
|
else if ((src_regcm & REGCM_GPR16_8) &&
|
|
(dst_regcm & REGCM_GPR8))
|
|
{
|
|
src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmovb %s, %s\n",
|
|
arch_reg_str(src_reg),
|
|
arch_reg_str(dst_reg));
|
|
}
|
|
}
|
|
/* Move 8/16bit to 16/32bit */
|
|
else if ((src_regcm & (REGCM_GPR8 | REGCM_GPR16)) &&
|
|
(dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
|
|
const char *op;
|
|
op = is_signed(src->type)? "movsx": "movzx";
|
|
fprintf(fp, "\t%s %s, %s\n",
|
|
op,
|
|
reg(state, src, src_regcm),
|
|
reg(state, dst, dst_regcm));
|
|
}
|
|
/* Move between sse registers */
|
|
else if ((src_regcm & dst_regcm & REGCM_XMM)) {
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmovdqa %s, %s\n",
|
|
reg(state, src, src_regcm),
|
|
reg(state, dst, dst_regcm));
|
|
}
|
|
}
|
|
/* Move between mmx registers or mmx & sse registers */
|
|
else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
|
|
(dst_regcm & (REGCM_MMX | REGCM_XMM))) {
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmovq %s, %s\n",
|
|
reg(state, src, src_regcm),
|
|
reg(state, dst, dst_regcm));
|
|
}
|
|
}
|
|
/* Move between 32bit gprs & mmx/sse registers */
|
|
else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
|
|
(dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
|
|
fprintf(fp, "\tmovd %s, %s\n",
|
|
reg(state, src, src_regcm),
|
|
reg(state, dst, dst_regcm));
|
|
}
|
|
#if X86_4_8BIT_GPRS
|
|
/* Move from 8bit gprs to mmx/sse registers */
|
|
else if ((src_regcm & REGCM_GPR8) && (src_reg <= REG_DL) &&
|
|
(dst_regcm & (REGCM_MMX | REGCM_XMM))) {
|
|
const char *op;
|
|
int mid_reg;
|
|
op = is_signed(src->type)? "movsx":"movzx";
|
|
mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
|
|
fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
|
|
op,
|
|
reg(state, src, src_regcm),
|
|
arch_reg_str(mid_reg),
|
|
arch_reg_str(mid_reg),
|
|
reg(state, dst, dst_regcm));
|
|
}
|
|
/* Move from mmx/sse registers and 8bit gprs */
|
|
else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
|
|
(dst_regcm & REGCM_GPR8) && (dst_reg <= REG_DL)) {
|
|
int mid_reg;
|
|
mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
|
|
fprintf(fp, "\tmovd %s, %s\n",
|
|
reg(state, src, src_regcm),
|
|
arch_reg_str(mid_reg));
|
|
}
|
|
/* Move from 32bit gprs to 16bit gprs */
|
|
else if ((src_regcm & REGCM_GPR32) &&
|
|
(dst_regcm & REGCM_GPR16)) {
|
|
dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmov %s, %s\n",
|
|
arch_reg_str(src_reg),
|
|
arch_reg_str(dst_reg));
|
|
}
|
|
}
|
|
/* Move from 32bit gprs to 8bit gprs */
|
|
else if ((src_regcm & REGCM_GPR32) &&
|
|
(dst_regcm & REGCM_GPR8)) {
|
|
dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmov %s, %s\n",
|
|
arch_reg_str(src_reg),
|
|
arch_reg_str(dst_reg));
|
|
}
|
|
}
|
|
/* Move from 16bit gprs to 8bit gprs */
|
|
else if ((src_regcm & REGCM_GPR16) &&
|
|
(dst_regcm & REGCM_GPR8)) {
|
|
dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
|
|
if ((src_reg != dst_reg) || !omit_copy) {
|
|
fprintf(fp, "\tmov %s, %s\n",
|
|
arch_reg_str(src_reg),
|
|
arch_reg_str(dst_reg));
|
|
}
|
|
}
|
|
#endif /* X86_4_8BIT_GPRS */
|
|
else {
|
|
internal_error(state, ins, "unknown copy type");
|
|
}
|
|
}
|
|
else {
|
|
fprintf(fp, "\tmov ");
|
|
print_const_val(state, src, fp);
|
|
fprintf(fp, ", %s\n",
|
|
reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8));
|
|
}
|
|
}
|
|
|
|
static void print_op_load(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
struct triple *dst, *src;
|
|
dst = ins;
|
|
src = RHS(ins, 0);
|
|
if (is_const(src) || is_const(dst)) {
|
|
internal_error(state, ins, "unknown load operation");
|
|
}
|
|
fprintf(fp, "\tmov (%s), %s\n",
|
|
reg(state, src, REGCM_GPR32),
|
|
reg(state, dst, REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32));
|
|
}
|
|
|
|
|
|
static void print_op_store(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
struct triple *dst, *src;
|
|
dst = LHS(ins, 0);
|
|
src = RHS(ins, 0);
|
|
if (is_const(src) && (src->op == OP_INTCONST)) {
|
|
long_t value;
|
|
value = (long_t)(src->u.cval);
|
|
fprintf(fp, "\tmov%s $%ld, (%s)\n",
|
|
type_suffix(state, src->type),
|
|
value,
|
|
reg(state, dst, REGCM_GPR32));
|
|
}
|
|
else if (is_const(dst) && (dst->op == OP_INTCONST)) {
|
|
fprintf(fp, "\tmov%s %s, 0x%08lx\n",
|
|
type_suffix(state, src->type),
|
|
reg(state, src, REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32),
|
|
dst->u.cval);
|
|
}
|
|
else {
|
|
if (is_const(src) || is_const(dst)) {
|
|
internal_error(state, ins, "unknown store operation");
|
|
}
|
|
fprintf(fp, "\tmov%s %s, (%s)\n",
|
|
type_suffix(state, src->type),
|
|
reg(state, src, REGCM_GPR8 | REGCM_GPR16 | REGCM_GPR32),
|
|
reg(state, dst, REGCM_GPR32));
|
|
}
|
|
|
|
|
|
}
|
|
|
|
static void print_op_smul(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
if (!is_const(RHS(ins, 1))) {
|
|
fprintf(fp, "\timul %s, %s\n",
|
|
reg(state, RHS(ins, 1), REGCM_GPR32),
|
|
reg(state, RHS(ins, 0), REGCM_GPR32));
|
|
}
|
|
else {
|
|
fprintf(fp, "\timul ");
|
|
print_const_val(state, RHS(ins, 1), fp);
|
|
fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
|
|
}
|
|
}
|
|
|
|
static void print_op_cmp(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
unsigned mask;
|
|
int dreg;
|
|
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
|
|
dreg = check_reg(state, ins, REGCM_FLAGS);
|
|
if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
|
|
internal_error(state, ins, "bad dest register for cmp");
|
|
}
|
|
if (is_const(RHS(ins, 1))) {
|
|
fprintf(fp, "\tcmp ");
|
|
print_const_val(state, RHS(ins, 1), fp);
|
|
fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
|
|
}
|
|
else {
|
|
unsigned lmask, rmask;
|
|
int lreg, rreg;
|
|
lreg = check_reg(state, RHS(ins, 0), mask);
|
|
rreg = check_reg(state, RHS(ins, 1), mask);
|
|
lmask = arch_reg_regcm(state, lreg);
|
|
rmask = arch_reg_regcm(state, rreg);
|
|
mask = lmask & rmask;
|
|
fprintf(fp, "\tcmp %s, %s\n",
|
|
reg(state, RHS(ins, 1), mask),
|
|
reg(state, RHS(ins, 0), mask));
|
|
}
|
|
}
|
|
|
|
static void print_op_test(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
unsigned mask;
|
|
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8;
|
|
fprintf(fp, "\ttest %s, %s\n",
|
|
reg(state, RHS(ins, 0), mask),
|
|
reg(state, RHS(ins, 0), mask));
|
|
}
|
|
|
|
static void print_op_branch(struct compile_state *state,
|
|
struct triple *branch, FILE *fp)
|
|
{
|
|
const char *bop = "j";
|
|
if (branch->op == OP_JMP) {
|
|
if (TRIPLE_RHS(branch->sizes) != 0) {
|
|
internal_error(state, branch, "jmp with condition?");
|
|
}
|
|
bop = "jmp";
|
|
}
|
|
else {
|
|
struct triple *ptr;
|
|
if (TRIPLE_RHS(branch->sizes) != 1) {
|
|
internal_error(state, branch, "jmpcc without condition?");
|
|
}
|
|
check_reg(state, RHS(branch, 0), REGCM_FLAGS);
|
|
if ((RHS(branch, 0)->op != OP_CMP) &&
|
|
(RHS(branch, 0)->op != OP_TEST)) {
|
|
internal_error(state, branch, "bad branch test");
|
|
}
|
|
#warning "FIXME I have observed instructions between the test and branch instructions"
|
|
ptr = RHS(branch, 0);
|
|
for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
|
|
if (ptr->op != OP_COPY) {
|
|
internal_error(state, branch, "branch does not follow test");
|
|
}
|
|
}
|
|
switch(branch->op) {
|
|
case OP_JMP_EQ: bop = "jz"; break;
|
|
case OP_JMP_NOTEQ: bop = "jnz"; break;
|
|
case OP_JMP_SLESS: bop = "jl"; break;
|
|
case OP_JMP_ULESS: bop = "jb"; break;
|
|
case OP_JMP_SMORE: bop = "jg"; break;
|
|
case OP_JMP_UMORE: bop = "ja"; break;
|
|
case OP_JMP_SLESSEQ: bop = "jle"; break;
|
|
case OP_JMP_ULESSEQ: bop = "jbe"; break;
|
|
case OP_JMP_SMOREEQ: bop = "jge"; break;
|
|
case OP_JMP_UMOREEQ: bop = "jae"; break;
|
|
default:
|
|
internal_error(state, branch, "Invalid branch op");
|
|
break;
|
|
}
|
|
|
|
}
|
|
fprintf(fp, "\t%s L%s%lu\n",
|
|
bop,
|
|
state->label_prefix,
|
|
TARG(branch, 0)->u.cval);
|
|
}
|
|
|
|
static void print_op_set(struct compile_state *state,
|
|
struct triple *set, FILE *fp)
|
|
{
|
|
const char *sop = "set";
|
|
if (TRIPLE_RHS(set->sizes) != 1) {
|
|
internal_error(state, set, "setcc without condition?");
|
|
}
|
|
check_reg(state, RHS(set, 0), REGCM_FLAGS);
|
|
if ((RHS(set, 0)->op != OP_CMP) &&
|
|
(RHS(set, 0)->op != OP_TEST)) {
|
|
internal_error(state, set, "bad set test");
|
|
}
|
|
if (RHS(set, 0)->next != set) {
|
|
internal_error(state, set, "set does not follow test");
|
|
}
|
|
switch(set->op) {
|
|
case OP_SET_EQ: sop = "setz"; break;
|
|
case OP_SET_NOTEQ: sop = "setnz"; break;
|
|
case OP_SET_SLESS: sop = "setl"; break;
|
|
case OP_SET_ULESS: sop = "setb"; break;
|
|
case OP_SET_SMORE: sop = "setg"; break;
|
|
case OP_SET_UMORE: sop = "seta"; break;
|
|
case OP_SET_SLESSEQ: sop = "setle"; break;
|
|
case OP_SET_ULESSEQ: sop = "setbe"; break;
|
|
case OP_SET_SMOREEQ: sop = "setge"; break;
|
|
case OP_SET_UMOREEQ: sop = "setae"; break;
|
|
default:
|
|
internal_error(state, set, "Invalid set op");
|
|
break;
|
|
}
|
|
fprintf(fp, "\t%s %s\n",
|
|
sop, reg(state, set, REGCM_GPR8));
|
|
}
|
|
|
|
static void print_op_bit_scan(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
const char *op;
|
|
switch(ins->op) {
|
|
case OP_BSF: op = "bsf"; break;
|
|
case OP_BSR: op = "bsr"; break;
|
|
default:
|
|
internal_error(state, ins, "unknown bit scan");
|
|
op = 0;
|
|
break;
|
|
}
|
|
fprintf(fp,
|
|
"\t%s %s, %s\n"
|
|
"\tjnz 1f\n"
|
|
"\tmovl $-1, %s\n"
|
|
"1:\n",
|
|
op,
|
|
reg(state, RHS(ins, 0), REGCM_GPR32),
|
|
reg(state, ins, REGCM_GPR32),
|
|
reg(state, ins, REGCM_GPR32));
|
|
}
|
|
|
|
static void print_const(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
switch(ins->op) {
|
|
case OP_INTCONST:
|
|
switch(ins->type->type & TYPE_MASK) {
|
|
case TYPE_CHAR:
|
|
case TYPE_UCHAR:
|
|
fprintf(fp, ".byte 0x%02lx\n", ins->u.cval);
|
|
break;
|
|
case TYPE_SHORT:
|
|
case TYPE_USHORT:
|
|
fprintf(fp, ".short 0x%04lx\n", ins->u.cval);
|
|
break;
|
|
case TYPE_INT:
|
|
case TYPE_UINT:
|
|
case TYPE_LONG:
|
|
case TYPE_ULONG:
|
|
fprintf(fp, ".int %lu\n", ins->u.cval);
|
|
break;
|
|
default:
|
|
internal_error(state, ins, "Unknown constant type");
|
|
}
|
|
break;
|
|
case OP_BLOBCONST:
|
|
{
|
|
unsigned char *blob;
|
|
size_t size, i;
|
|
size = size_of(state, ins->type);
|
|
blob = ins->u.blob;
|
|
for(i = 0; i < size; i++) {
|
|
fprintf(fp, ".byte 0x%02x\n",
|
|
blob[i]);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
internal_error(state, ins, "Unknown constant type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define TEXT_SECTION ".rom.text"
|
|
#define DATA_SECTION ".rom.data"
|
|
|
|
static void print_sdecl(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
fprintf(fp, ".section \"" DATA_SECTION "\"\n");
|
|
fprintf(fp, ".balign %d\n", align_of(state, ins->type));
|
|
fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
|
|
print_const(state, MISC(ins, 0), fp);
|
|
fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
|
|
|
|
}
|
|
|
|
static void print_instruction(struct compile_state *state,
|
|
struct triple *ins, FILE *fp)
|
|
{
|
|
/* Assumption: after I have exted the register allocator
|
|
* everything is in a valid register.
|
|
*/
|
|
switch(ins->op) {
|
|
case OP_ASM:
|
|
print_op_asm(state, ins, fp);
|
|
break;
|
|
case OP_ADD: print_binary_op(state, "add", ins, fp); break;
|
|
case OP_SUB: print_binary_op(state, "sub", ins, fp); break;
|
|
case OP_AND: print_binary_op(state, "and", ins, fp); break;
|
|
case OP_XOR: print_binary_op(state, "xor", ins, fp); break;
|
|
case OP_OR: print_binary_op(state, "or", ins, fp); break;
|
|
case OP_SL: print_op_shift(state, "shl", ins, fp); break;
|
|
case OP_USR: print_op_shift(state, "shr", ins, fp); break;
|
|
case OP_SSR: print_op_shift(state, "sar", ins, fp); break;
|
|
case OP_POS: break;
|
|
case OP_NEG: print_unary_op(state, "neg", ins, fp); break;
|
|
case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
|
|
case OP_INTCONST:
|
|
case OP_ADDRCONST:
|
|
case OP_BLOBCONST:
|
|
/* Don't generate anything here for constants */
|
|
case OP_PHI:
|
|
/* Don't generate anything for variable declarations. */
|
|
break;
|
|
case OP_SDECL:
|
|
print_sdecl(state, ins, fp);
|
|
break;
|
|
case OP_WRITE:
|
|
case OP_COPY:
|
|
print_op_move(state, ins, fp);
|
|
break;
|
|
case OP_LOAD:
|
|
print_op_load(state, ins, fp);
|
|
break;
|
|
case OP_STORE:
|
|
print_op_store(state, ins, fp);
|
|
break;
|
|
case OP_SMUL:
|
|
print_op_smul(state, ins, fp);
|
|
break;
|
|
case OP_CMP: print_op_cmp(state, ins, fp); break;
|
|
case OP_TEST: print_op_test(state, ins, fp); break;
|
|
case OP_JMP:
|
|
case OP_JMP_EQ: case OP_JMP_NOTEQ:
|
|
case OP_JMP_SLESS: case OP_JMP_ULESS:
|
|
case OP_JMP_SMORE: case OP_JMP_UMORE:
|
|
case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
|
|
case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
|
|
print_op_branch(state, ins, fp);
|
|
break;
|
|
case OP_SET_EQ: case OP_SET_NOTEQ:
|
|
case OP_SET_SLESS: case OP_SET_ULESS:
|
|
case OP_SET_SMORE: case OP_SET_UMORE:
|
|
case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
|
|
case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
|
|
print_op_set(state, ins, fp);
|
|
break;
|
|
case OP_INB: case OP_INW: case OP_INL:
|
|
print_op_in(state, ins, fp);
|
|
break;
|
|
case OP_OUTB: case OP_OUTW: case OP_OUTL:
|
|
print_op_out(state, ins, fp);
|
|
break;
|
|
case OP_BSF:
|
|
case OP_BSR:
|
|
print_op_bit_scan(state, ins, fp);
|
|
break;
|
|
case OP_RDMSR:
|
|
after_lhs(state, ins);
|
|
fprintf(fp, "\trdmsr\n");
|
|
break;
|
|
case OP_WRMSR:
|
|
fprintf(fp, "\twrmsr\n");
|
|
break;
|
|
case OP_HLT:
|
|
fprintf(fp, "\thlt\n");
|
|
break;
|
|
case OP_LABEL:
|
|
if (!ins->use) {
|
|
return;
|
|
}
|
|
fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
|
|
break;
|
|
/* Ignore OP_PIECE */
|
|
case OP_PIECE:
|
|
break;
|
|
/* Operations I am not yet certain how to handle */
|
|
case OP_UMUL:
|
|
case OP_SDIV: case OP_UDIV:
|
|
case OP_SMOD: case OP_UMOD:
|
|
/* Operations that should never get here */
|
|
case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
|
|
case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
|
|
case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
|
|
default:
|
|
internal_error(state, ins, "unknown op: %d %s",
|
|
ins->op, tops(ins->op));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void print_instructions(struct compile_state *state)
|
|
{
|
|
struct triple *first, *ins;
|
|
int print_location;
|
|
int last_line;
|
|
int last_col;
|
|
const char *last_filename;
|
|
FILE *fp;
|
|
print_location = 1;
|
|
last_line = -1;
|
|
last_col = -1;
|
|
last_filename = 0;
|
|
fp = state->output;
|
|
fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
|
|
first = RHS(state->main_function, 0);
|
|
ins = first;
|
|
do {
|
|
if (print_location &&
|
|
((last_filename != ins->filename) ||
|
|
(last_line != ins->line) ||
|
|
(last_col != ins->col))) {
|
|
fprintf(fp, "\t/* %s:%d */\n",
|
|
ins->filename, ins->line);
|
|
last_filename = ins->filename;
|
|
last_line = ins->line;
|
|
last_col = ins->col;
|
|
}
|
|
|
|
print_instruction(state, ins, fp);
|
|
ins = ins->next;
|
|
} while(ins != first);
|
|
|
|
}
|
|
static void generate_code(struct compile_state *state)
|
|
{
|
|
generate_local_labels(state);
|
|
print_instructions(state);
|
|
|
|
}
|
|
|
|
static void print_tokens(struct compile_state *state)
|
|
{
|
|
struct token *tk;
|
|
tk = &state->token[0];
|
|
do {
|
|
#if 1
|
|
token(state, 0);
|
|
#else
|
|
next_token(state, 0);
|
|
#endif
|
|
loc(stdout, state, 0);
|
|
printf("%s <- `%s'\n",
|
|
tokens[tk->tok],
|
|
tk->ident ? tk->ident->name :
|
|
tk->str_len ? tk->val.str : "");
|
|
|
|
} while(tk->tok != TOK_EOF);
|
|
}
|
|
|
|
static void compile(const char *filename, const char *ofilename,
|
|
int cpu, int debug, int opt, const char *label_prefix)
|
|
{
|
|
int i;
|
|
struct compile_state state;
|
|
memset(&state, 0, sizeof(state));
|
|
state.file = 0;
|
|
for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
|
|
memset(&state.token[i], 0, sizeof(state.token[i]));
|
|
state.token[i].tok = -1;
|
|
}
|
|
/* Remember the debug settings */
|
|
state.cpu = cpu;
|
|
state.debug = debug;
|
|
state.optimize = opt;
|
|
/* Remember the output filename */
|
|
state.ofilename = ofilename;
|
|
state.output = fopen(state.ofilename, "w");
|
|
if (!state.output) {
|
|
error(&state, 0, "Cannot open output file %s\n",
|
|
ofilename);
|
|
}
|
|
/* Remember the label prefix */
|
|
state.label_prefix = label_prefix;
|
|
/* Prep the preprocessor */
|
|
state.if_depth = 0;
|
|
state.if_value = 0;
|
|
/* register the C keywords */
|
|
register_keywords(&state);
|
|
/* register the keywords the macro preprocessor knows */
|
|
register_macro_keywords(&state);
|
|
/* Memorize where some special keywords are. */
|
|
state.i_continue = lookup(&state, "continue", 8);
|
|
state.i_break = lookup(&state, "break", 5);
|
|
/* Enter the globl definition scope */
|
|
start_scope(&state);
|
|
register_builtins(&state);
|
|
compile_file(&state, filename, 1);
|
|
#if 0
|
|
print_tokens(&state);
|
|
#endif
|
|
decls(&state);
|
|
/* Exit the global definition scope */
|
|
end_scope(&state);
|
|
|
|
/* Now that basic compilation has happened
|
|
* optimize the intermediate code
|
|
*/
|
|
optimize(&state);
|
|
|
|
generate_code(&state);
|
|
if (state.debug) {
|
|
fprintf(stderr, "done\n");
|
|
}
|
|
}
|
|
|
|
static void version(void)
|
|
{
|
|
printf("romcc " VERSION " released " RELEASE_DATE "\n");
|
|
}
|
|
|
|
static void usage(void)
|
|
{
|
|
version();
|
|
printf(
|
|
"Usage: romcc <source>.c\n"
|
|
"Compile a C source file without using ram\n"
|
|
);
|
|
}
|
|
|
|
static void arg_error(char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
vfprintf(stderr, fmt, args);
|
|
va_end(args);
|
|
usage();
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
const char *filename;
|
|
const char *ofilename;
|
|
const char *label_prefix;
|
|
int cpu;
|
|
int last_argc;
|
|
int debug;
|
|
int optimize;
|
|
cpu = CPU_DEFAULT;
|
|
label_prefix = "";
|
|
ofilename = "auto.inc";
|
|
optimize = 0;
|
|
debug = 0;
|
|
last_argc = -1;
|
|
while((argc > 1) && (argc != last_argc)) {
|
|
last_argc = argc;
|
|
if (strncmp(argv[1], "--debug=", 8) == 0) {
|
|
debug = atoi(argv[1] + 8);
|
|
argv++;
|
|
argc--;
|
|
}
|
|
else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
|
|
label_prefix= argv[1] + 15;
|
|
argv++;
|
|
argc--;
|
|
}
|
|
else if ((strcmp(argv[1],"-O") == 0) ||
|
|
(strcmp(argv[1], "-O1") == 0)) {
|
|
optimize = 1;
|
|
argv++;
|
|
argc--;
|
|
}
|
|
else if (strcmp(argv[1],"-O2") == 0) {
|
|
optimize = 2;
|
|
argv++;
|
|
argc--;
|
|
}
|
|
else if ((strcmp(argv[1], "-o") == 0) && (argc > 2)) {
|
|
ofilename = argv[2];
|
|
argv += 2;
|
|
argc -= 2;
|
|
}
|
|
else if (strncmp(argv[1], "-mcpu=", 6) == 0) {
|
|
cpu = arch_encode_cpu(argv[1] + 6);
|
|
if (cpu == BAD_CPU) {
|
|
arg_error("Invalid cpu specified: %s\n",
|
|
argv[1] + 6);
|
|
}
|
|
argv++;
|
|
argc--;
|
|
}
|
|
}
|
|
if (argc != 2) {
|
|
arg_error("Wrong argument count %d\n", argc);
|
|
}
|
|
filename = argv[1];
|
|
compile(filename, ofilename, cpu, debug, optimize, label_prefix);
|
|
|
|
return 0;
|
|
}
|