coreboot-kgpe-d16/src/cpu/x86/mp_init.c
Aaron Durbin cd3f8ad235 x86: Add SMM helper functions to MP infrastructure
In order for the cpu code to start SMM relocation 2 new
functions are added to be shared:
- void smm_initiate_relocation_parallel()
- void smm_initiate_relocation()
The both initiate an SMI on the currently running cpu.
The 2 variants allow for parallel relocation or serialized
relocation.

BUG=chrome-os-partner:22862
BRANCH=None
TEST=Built and booted rambi using these functions.

Change-Id: I325777bac27e9a0efc3f54f7223c38310604c5a2
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/173982
Reviewed-on: http://review.coreboot.org/4891
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
2014-01-30 06:05:38 +01:00

617 lines
16 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <console/console.h>
#include <stdint.h>
#include <rmodule.h>
#include <arch/cpu.h>
#include <cpu/cpu.h>
#include <cpu/intel/microcode.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/name.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <cpu/x86/mp.h>
#include <delay.h>
#include <device/device.h>
#include <device/path.h>
#include <lib.h>
#include <smp/atomic.h>
#include <smp/spinlock.h>
#include <thread.h>
#define MAX_APIC_IDS 256
/* This needs to match the layout in the .module_parametrs section. */
struct sipi_params {
uint16_t gdtlimit;
uint32_t gdt;
uint16_t unused;
uint32_t idt_ptr;
uint32_t stack_top;
uint32_t stack_size;
uint32_t microcode_lock; /* 0xffffffff means parallel loading. */
uint32_t microcode_ptr;
uint32_t msr_table_ptr;
uint32_t msr_count;
uint32_t c_handler;
atomic_t ap_count;
} __attribute__((packed));
/* This also needs to match the assembly code for saved MSR encoding. */
struct saved_msr {
uint32_t index;
uint32_t lo;
uint32_t hi;
} __attribute__((packed));
/* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */
extern char _binary_sipi_vector_start[];
/* These symbols are defined in c_start.S. */
extern char gdt[];
extern char gdt_end[];
extern char idtarg[];
/* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is at the
* memory range is already reserved so the OS cannot use it. That region is
* free to use for AP bringup before SMM is initialized. */
static const uint32_t sipi_vector_location = SMM_DEFAULT_BASE;
static const int sipi_vector_location_size = SMM_DEFAULT_SIZE;
struct mp_flight_plan {
int num_records;
struct mp_flight_record *records;
};
static struct mp_flight_plan mp_info;
struct cpu_map {
device_t dev;
int apic_id;
};
/* Keep track of apic and device structure for each cpu. */
static struct cpu_map cpus[CONFIG_MAX_CPUS];
static inline void barrier_wait(atomic_t *b)
{
while (atomic_read(b) == 0) {
asm ("pause");
}
mfence();
}
static inline void release_barrier(atomic_t *b)
{
mfence();
atomic_set(b, 1);
}
/* Returns 1 if timeout waiting for APs. 0 if target aps found. */
static int wait_for_aps(atomic_t *val, int target, int total_delay,
int delay_step)
{
int timeout = 0;
int delayed = 0;
while (atomic_read(val) != target) {
udelay(delay_step);
delayed += delay_step;
if (delayed >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static void ap_do_flight_plan(void)
{
int i;
for (i = 0; i < mp_info.num_records; i++) {
struct mp_flight_record *rec = &mp_info.records[i];
atomic_inc(&rec->cpus_entered);
barrier_wait(&rec->barrier);
if (rec->ap_call != NULL) {
rec->ap_call(rec->ap_arg);
}
}
}
/* By the time APs call ap_init() caching has been setup, and microcode has
* been loaded. */
static void asmlinkage ap_init(unsigned int cpu)
{
struct cpu_info *info;
int apic_id;
/* Ensure the local apic is enabled */
enable_lapic();
info = cpu_info();
info->index = cpu;
info->cpu = cpus[cpu].dev;
thread_init_cpu_info_non_bsp(info);
apic_id = lapicid();
info->cpu->path.apic.apic_id = apic_id;
cpus[cpu].apic_id = apic_id;
printk(BIOS_INFO, "AP: slot %d apic_id %x.\n", cpu, apic_id);
/* Walk the flight plan */
ap_do_flight_plan();
/* Park the AP. */
stop_this_cpu();
}
static void setup_default_sipi_vector_params(struct sipi_params *sp)
{
sp->gdt = (uint32_t)&gdt;
sp->gdtlimit = (uint32_t)&gdt_end - (u32)&gdt - 1;
sp->idt_ptr = (uint32_t)&idtarg;
sp->stack_size = CONFIG_STACK_SIZE;
sp->stack_top = (uint32_t)&_estack;
/* Adjust the stack top to take into account cpu_info. */
sp->stack_top -= sizeof(struct cpu_info);
}
#define NUM_FIXED_MTRRS 11
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
MTRRfix64K_00000_MSR, MTRRfix16K_80000_MSR, MTRRfix16K_A0000_MSR,
MTRRfix4K_C0000_MSR, MTRRfix4K_C8000_MSR, MTRRfix4K_D0000_MSR,
MTRRfix4K_D8000_MSR, MTRRfix4K_E0000_MSR, MTRRfix4K_E8000_MSR,
MTRRfix4K_F0000_MSR, MTRRfix4K_F8000_MSR,
};
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
{
msr_t msr;
msr = rdmsr(index);
entry->index = index;
entry->lo = msr.lo;
entry->hi = msr.hi;
/* Return the next entry. */
entry++;
return entry;
}
static int save_bsp_msrs(char *start, int size)
{
int msr_count;
int num_var_mtrrs;
struct saved_msr *msr_entry;
int i;
msr_t msr;
/* Determine number of MTRRs need to be saved. */
msr = rdmsr(MTRRcap_MSR);
num_var_mtrrs = msr.lo & 0xff;
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
if ((msr_count * sizeof(struct saved_msr)) > size) {
printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count);
return -1;
}
msr_entry = (void *)start;
for (i = 0; i < NUM_FIXED_MTRRS; i++) {
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
}
for (i = 0; i < num_var_mtrrs; i++) {
msr_entry = save_msr(MTRRphysBase_MSR(i), msr_entry);
msr_entry = save_msr(MTRRphysMask_MSR(i), msr_entry);
}
msr_entry = save_msr(MTRRdefType_MSR, msr_entry);
return msr_count;
}
static atomic_t *load_sipi_vector(struct mp_params *mp_params)
{
struct rmodule sipi_mod;
int module_size;
int num_msrs;
struct sipi_params *sp;
char *mod_loc = (void *)sipi_vector_location;
const int loc_size = sipi_vector_location_size;
atomic_t *ap_count = NULL;
if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to parse sipi module.\n");
return ap_count;
}
if (rmodule_entry_offset(&sipi_mod) != 0) {
printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n");
return ap_count;
}
if (rmodule_load_alignment(&sipi_mod) != 4096) {
printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n",
rmodule_load_alignment(&sipi_mod));
return ap_count;
}
module_size = rmodule_memory_size(&sipi_mod);
/* Align to 4 bytes. */
module_size = ALIGN(module_size, 4);
if (module_size > loc_size) {
printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n",
module_size, loc_size);
return ap_count;
}
num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size);
if (num_msrs < 0) {
printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n");
return ap_count;
}
if (rmodule_load(mod_loc, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to load SIPI module.\n");
return ap_count;
}
sp = rmodule_parameters(&sipi_mod);
if (sp == NULL) {
printk(BIOS_CRIT, "SIPI module has no parameters.\n");
return ap_count;
}
setup_default_sipi_vector_params(sp);
/* Setup MSR table. */
sp->msr_table_ptr = (uint32_t)&mod_loc[module_size];
sp->msr_count = num_msrs;
/* Provide pointer to microcode patch. */
sp->microcode_ptr = (uint32_t)mp_params->microcode_pointer;
/* Pass on abiility to load microcode in parallel. */
if (mp_params->parallel_microcode_load) {
sp->microcode_lock = 0;
} else {
sp->microcode_lock = ~0;
}
sp->c_handler = (uint32_t)&ap_init;
ap_count = &sp->ap_count;
atomic_set(ap_count, 0);
return ap_count;
}
static int allocate_cpu_devices(struct bus *cpu_bus, struct mp_params *p)
{
int i;
int max_cpus;
struct cpu_info *info;
max_cpus = p->num_cpus;
if (max_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n",
max_cpus, CONFIG_MAX_CPUS);
max_cpus = CONFIG_MAX_CPUS;
}
info = cpu_info();
for (i = 1; i < max_cpus; i++) {
struct device_path cpu_path;
device_t new;
int apic_id;
/* Build the cpu device path */
cpu_path.type = DEVICE_PATH_APIC;
/* Assuming linear APIC space allocation. */
apic_id = info->cpu->path.apic.apic_id + i;
if (p->adjust_apic_id != NULL) {
apic_id = p->adjust_apic_id(i, apic_id);
}
cpu_path.apic.apic_id = apic_id;
/* Allocate the new cpu device structure */
new = alloc_find_dev(cpu_bus, &cpu_path);
if (new == NULL) {
printk(BIOS_CRIT, "Could not allocte cpu device\n");
max_cpus--;
}
cpus[i].dev = new;
}
return max_cpus;
}
/* Returns 1 for timeout. 0 on success. */
static int apic_wait_timeout(int total_delay, int delay_step)
{
int total = 0;
int timeout = 0;
while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
udelay(delay_step);
total += delay_step;
if (total >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static int start_aps(struct bus *cpu_bus, int ap_count, atomic_t *num_aps)
{
int sipi_vector;
/* Max location is 4KiB below 1MiB */
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
if (ap_count == 0)
return 0;
/* The vector is sent as a 4k aligned address in one byte. */
sipi_vector = sipi_vector_location >> 12;
if (sipi_vector > max_vector_loc) {
printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n",
sipi_vector);
return -1;
}
printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count);
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
} else
printk(BIOS_DEBUG, "done.\n");
}
/* Send INIT IPI to all but self. */
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_INIT);
printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n");
mdelay(10);
/* Send 1st SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
} else
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
printk(BIOS_DEBUG, "Waiting for 1st SIPI to complete...");
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "timed out.\n");
return -1;
} else {
printk(BIOS_DEBUG, "done.\n");
}
/* Wait for CPUs to check in up to 200 us. */
wait_for_aps(num_aps, ap_count, 200 /* us */, 15 /* us */);
/* Send 2nd SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
} else
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
printk(BIOS_DEBUG, "Waiting for 2nd SIPI to complete...");
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "timed out.\n");
return -1;
} else {
printk(BIOS_DEBUG, "done.\n");
}
/* Wait for CPUs to check in. */
if (wait_for_aps(num_aps, ap_count, 10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "Not all APs checked in: %d/%d.\n",
atomic_read(num_aps), ap_count);
return -1;
}
return 0;
}
static int bsp_do_flight_plan(struct mp_params *mp_params)
{
int i;
int ret = 0;
const int timeout_us = 100000;
const int step_us = 100;
int num_aps = mp_params->num_cpus - 1;
for (i = 0; i < mp_params->num_records; i++) {
struct mp_flight_record *rec = &mp_params->flight_plan[i];
/* Wait for APs if the record is not released. */
if (atomic_read(&rec->barrier) == 0) {
/* Wait for the APs to check in. */
if (wait_for_aps(&rec->cpus_entered, num_aps,
timeout_us, step_us)) {
printk(BIOS_ERR, "MP record %d timeout.\n", i);
ret = -1;
}
}
if (rec->bsp_call != NULL) {
rec->bsp_call(rec->bsp_arg);
}
release_barrier(&rec->barrier);
}
return ret;
}
static void init_bsp(struct bus *cpu_bus)
{
struct device_path cpu_path;
struct cpu_info *info;
char processor_name[49];
/* Print processor name */
fill_processor_name(processor_name);
printk(BIOS_INFO, "CPU: %s.\n", processor_name);
/* Ensure the local apic is enabled */
enable_lapic();
/* Set the device path of the boot cpu. */
cpu_path.type = DEVICE_PATH_APIC;
cpu_path.apic.apic_id = lapicid();
/* Find the device structure for the boot cpu. */
info = cpu_info();
info->cpu = alloc_find_dev(cpu_bus, &cpu_path);
if (info->index != 0)
printk(BIOS_CRIT, "BSP index(%d) != 0!\n", info->index);
/* Track BSP in cpu_map structures. */
cpus[info->index].dev = info->cpu;
cpus[info->index].apic_id = cpu_path.apic.apic_id;
}
int mp_init(struct bus *cpu_bus, struct mp_params *p)
{
int num_cpus;
int num_aps;
atomic_t *ap_count;
init_bsp(cpu_bus);
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
printk(BIOS_CRIT, "Invalid MP parameters\n");
return -1;
}
/* Default to currently running CPU. */
num_cpus = allocate_cpu_devices(cpu_bus, p);
if (num_cpus < p->num_cpus) {
printk(BIOS_CRIT,
"ERROR: More cpus requested (%d) than supported (%d).\n",
p->num_cpus, num_cpus);
return -1;
}
/* Copy needed parameters so that APs have a reference to the plan. */
mp_info.num_records = p->num_records;
mp_info.records = p->flight_plan;
/* Load the SIPI vector. */
ap_count = load_sipi_vector(p);
if (ap_count == NULL)
return -1;
/* Make sure SIPI data hits RAM so the APs that come up will see
* the startup code even if the caches are disabled. */
wbinvd();
/* Start the APs providing number of APs and the cpus_entered field. */
num_aps = p->num_cpus - 1;
if (start_aps(cpu_bus, num_aps, ap_count) < 0) {
mdelay(1000);
printk(BIOS_DEBUG, "%d/%d eventually checked in?\n",
atomic_read(ap_count), num_aps);
return -1;
}
/* Walk the flight plan for the BSP. */
return bsp_do_flight_plan(p);
}
void mp_initialize_cpu(void *unused)
{
/* Call back into driver infrastructure for the AP initialization. */
struct cpu_info *info = cpu_info();
cpu_initialize(info->index);
}
int mp_get_apic_id(int cpu_slot)
{
if (cpu_slot >= CONFIG_MAX_CPUS || cpu_slot < 0)
return -1;
return cpus[cpu_slot].apic_id;
}
void smm_initiate_relocation_parallel(void)
{
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return;
} else
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(lapicid()));
lapic_write_around(LAPIC_ICR, LAPIC_INT_ASSERT | LAPIC_DM_SMI);
if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */)) {
printk(BIOS_DEBUG, "SMI Relocation timed out.\n");
} else
printk(BIOS_DEBUG, "Relocation complete.\n");
}
DECLARE_SPIN_LOCK(smm_relocation_lock);
/* Send SMI to self with single user serialization. */
void smm_initiate_relocation(void)
{
spin_lock(&smm_relocation_lock);
smm_initiate_relocation_parallel();
spin_unlock(&smm_relocation_lock);
}