coreboot-kgpe-d16/util/flashrom/ichspi.c
Dominik Geyer fac0afb87d Add support for SPI chips on ICH9. This is done by using the generic SPI
interface.

Signed-off-by: Dominik Geyer <dominik.geyer@kontron.com>
Acked-by: Carl-Daniel Hailfinger <c-d.hailfinger.devel.2006@gmx.net>


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@3325 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2008-05-16 12:55:55 +00:00

468 lines
12 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
* Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
* Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/*
* This module is designed for supporting the devices
* ST M25P40
* ST M25P80
* ST M25P16
* ST M25P32 already tested
* ST M25P64
* AT 25DF321 already tested
*
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <sys/mman.h>
#include <pci/pci.h>
#include "flash.h"
#include "spi.h"
#define MAXDATABYTES 0x40
/*ICH9 controller register definition*/
#define REG_FADDR 0x08 /* 32 Bits */
#define REG_FDATA0 0x10 /* 64 Bytes */
#define REG_SSFS 0x90 /* 08 Bits */
#define SSFS_SCIP 0x00000001
#define SSFS_CDS 0x00000004
#define SSFS_FCERR 0x00000008
#define SSFS_AEL 0x00000010
#define REG_SSFC 0x91 /* 24 Bits */
#define SSFC_SCGO 0x00000200
#define SSFC_ACS 0x00000400
#define SSFC_SPOP 0x00000800
#define SSFC_COP 0x00001000
#define SSFC_DBC 0x00010000
#define SSFC_DS 0x00400000
#define SSFC_SME 0x00800000
#define SSFC_SCF 0x01000000
#define SSFC_SCF_20MHZ 0x00000000
#define SSFC_SCF_33MHZ 0x01000000
#define REG_PREOP 0x94 /* 16 Bits */
#define REG_OPTYPE 0x96 /* 16 Bits */
#define REG_OPMENU 0x98 /* 64 BITS */
// ICH9R SPI commands
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3
typedef struct _OPCODE {
uint8_t opcode; //This commands spi opcode
uint8_t spi_type; //This commands spi type
uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1
} OPCODE;
/* Opcode definition:
* Preop 1: Write Enable
* Preop 2: Write Status register enable
*
* OP 0: Write address
* OP 1: Read Address
* OP 2: ERASE block
* OP 3: Read Status register
* OP 4: Read ID
* OP 5: Write Status register
* OP 6: chip private (read JDEC id)
* OP 7: Chip erase
*/
typedef struct _OPCODES {
uint8_t preop[2];
OPCODE opcode[8];
} OPCODES;
static OPCODES *curopcodes=NULL;
/* HW access functions */
static inline uint32_t REGREAD32(int X)
{
volatile uint32_t regval;
regval = *(volatile uint32_t *)((uint8_t *)ich_spibar + X);
return regval;
}
#define REGWRITE32(X,Y) (*(uint32_t *)((uint8_t *)ich_spibar+X)=Y)
#define REGWRITE16(X,Y) (*(uint16_t *)((uint8_t *)ich_spibar+X)=Y)
#define REGWRITE8(X,Y) (*(uint8_t *)((uint8_t *)ich_spibar+X)=Y)
/* Common SPI functions */
static int program_opcodes(OPCODES * op);
static int run_opcode(uint8_t nr, OPCODE op, uint32_t offset, uint8_t datalength, uint8_t * data);
static int ich_spi_read_page(struct flashchip *flash, uint8_t * buf, int Offset);
static int ich_spi_write_page(struct flashchip *flash, uint8_t * bytes, int Offset);
static int ich_spi_erase_block(struct flashchip *flash, int offset);
OPCODES O_ST_M25P = {
{
JEDEC_WREN,
0
},
{
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 1}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 1}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_RES, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Resume Deep Power-Down
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 1}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 1}, // Bulk erase
}
};
int program_opcodes(OPCODES * op)
{
uint8_t a;
uint16_t temp16;
uint32_t temp32;
/* Program Prefix Opcodes */
temp16 = 0;
/* 0:7 Prefix Opcode 1 */
temp16 = (op->preop[0]);
/* 8:16 Prefix Opcode 2 */
temp16 |= ((uint16_t) op->preop[1]) << 8;
REGWRITE16(REG_PREOP, temp16);
/*Program Opcode Types 0 - 7 */
temp16 = 0;
for (a = 0; a < 8; a++) {
temp16 |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
}
REGWRITE16(REG_OPTYPE, temp16);
/*Program Allowable Opcodes 0 - 3 */
temp32 = 0;
for (a = 0; a < 4; a++) {
temp32 |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
}
REGWRITE32(REG_OPMENU, temp32);
/*Program Allowable Opcodes 4 - 7 */
temp32 = 0;
for (a = 4; a < 8; a++) {
temp32 |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
}
REGWRITE32(REG_OPMENU + 4, temp32);
return 0;
}
int run_opcode(uint8_t nr, OPCODE op, uint32_t offset, uint8_t datalength,
uint8_t * data)
{
int write_cmd = 0;
uint32_t temp32;
uint32_t a;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
/* Programm Offset in Flash into FADDR */
REGWRITE32(REG_FADDR, (offset & 0x00FFFFFF)); /*SPI addresses are 24 BIT only */
/* Program data into FDATA0 to N */
if (write_cmd && (datalength != 0)) {
temp32 = 0;
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = 0;
}
temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8);
if ((a % 4) == 3) {
REGWRITE32(REG_FDATA0 + (a - (a % 4)), temp32);
}
}
if (((a - 1) % 4) != 3) {
REGWRITE32(REG_FDATA0 + ((a - 1) - ((a - 1) % 4)),
temp32);
}
}
/* Assemble SSFS + SSFC */
temp32 = 0;
/* clear error status registers */
temp32 |= (SSFS_CDS + SSFS_FCERR);
/* USE 20 MhZ */
temp32 |= SSFC_SCF_20MHZ;
if (datalength != 0) {
uint32_t datatemp;
temp32 |= SSFC_DS;
datatemp = ((uint32_t) ((datalength - 1) & 0x3f)) << (8 + 8);
temp32 |= datatemp;
}
/* Select opcode */
temp32 |= ((uint32_t) (nr & 0x07)) << (8 + 4);
/* Handle Atomic */
if (op.atomic != 0) {
/* Select atomic command */
temp32 |= SSFC_ACS;
/* Selct prefix opcode */
if ((op.atomic - 1) == 1) {
/*Select prefix opcode 2 */
temp32 |= SSFC_SPOP;
}
}
/* Start */
temp32 |= SSFC_SCGO;
/* write it */
REGWRITE32(REG_SSFS, temp32);
/*wait for cycle complete */
while ((REGREAD32(REG_SSFS) & SSFS_CDS) == 0) {
/*TODO; Do something that this can't lead into an endless loop. but some
* commands may cause this to be last more than 30 seconds */
}
if ((REGREAD32(REG_SSFS) & SSFS_FCERR) != 0) {
printf_debug("Transaction error!\n");
return 1;
}
if ((!write_cmd) && (datalength != 0)) {
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = REGREAD32(REG_FDATA0 + (a));
}
data[a] =
(temp32 & (((uint32_t) 0xff) << ((a % 4) * 8))) >>
((a % 4) * 8);
}
}
return 0;
}
static int ich_spi_erase_block(struct flashchip *flash, int offset)
{
printf_debug("Spi_Erase,Offset=%d,sectors=%d\n", offset, 1);
if (run_opcode(2, curopcodes->opcode[2], offset, 0, NULL) != 0) {
printf_debug("Error erasing sector at 0x%x", offset);
return -1;
}
printf("DONE BLOCK 0x%x\n", offset);
return 0;
}
static int ich_spi_read_page(struct flashchip *flash, uint8_t * buf, int Offset)
{
int page_size = flash->page_size;
uint32_t remaining = flash->page_size;
int a;
printf_debug("Spi_Read,Offset=%d,number=%d,buf=%p\n", Offset, page_size, buf);
for (a = 0; a < page_size; a += MAXDATABYTES) {
if (remaining < MAXDATABYTES) {
if (run_opcode
(1, curopcodes->opcode[1],
Offset + (page_size - remaining), remaining,
&buf[page_size - remaining]) != 0) {
printf_debug("Error reading");
return 1;
}
remaining = 0;
} else {
if (run_opcode
(1, curopcodes->opcode[1],
Offset + (page_size - remaining), MAXDATABYTES,
&buf[page_size - remaining]) != 0) {
printf_debug("Error reading");
return 1;
}
remaining -= MAXDATABYTES;
}
}
return 0;
}
static int ich_spi_write_page(struct flashchip *flash, uint8_t * bytes,
int Offset)
{
int page_size = flash->page_size;
uint32_t remaining = page_size;
int a;
printf_debug("write_page_ichspi,Offset=%d,number=%d,buf=%p\n", Offset, page_size,
bytes);
for (a = 0; a < page_size; a += MAXDATABYTES) {
if (remaining < MAXDATABYTES) {
if (run_opcode
(0, curopcodes->opcode[0],
Offset + (page_size - remaining), remaining,
&bytes[page_size - remaining]) != 0) {
printf_debug("Error writing");
return 1;
}
remaining = 0;
} else {
if (run_opcode
(0, curopcodes->opcode[0],
Offset + (page_size - remaining), MAXDATABYTES,
&bytes[page_size - remaining]) != 0) {
printf_debug("Error writing");
return 1;
}
remaining -= MAXDATABYTES;
}
}
return 0;
}
int ich_spi_read(struct flashchip *flash, uint8_t * buf)
{
int i, rc = 0;
int total_size = flash->total_size * 1024;
int page_size = flash->page_size;
for (i = 0; (i < total_size / page_size) && (rc == 0); i++) {
rc = ich_spi_read_page(flash, (void *)(buf + i * page_size),
i * page_size);
}
return rc;
}
int ich_spi_write(struct flashchip *flash, uint8_t * buf)
{
int i, j, rc = 0;
int total_size = flash->total_size * 1024;
int page_size = flash->page_size;
int erase_size = 64 * 1024;
spi_disable_blockprotect();
printf("Programming page: \n");
for (i = 0; i < total_size / erase_size; i++) {
rc = ich_spi_erase_block(flash, i * erase_size);
if (rc) {
printf("Error erasing block at 0x%x\n", i);
break;
}
for (j = 0; j < erase_size / page_size; j++) {
ich_spi_write_page(flash, (void *)(buf + (i * erase_size) + (j * page_size)),
(i * erase_size) + (j * page_size));
}
}
printf("\n");
return rc;
}
int ich_spi_command(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr)
{
int a;
int opcode_index = -1;
const unsigned char cmd = *writearr;
OPCODE *opcode;
uint32_t addr = 0;
uint8_t *data;
int count;
/* program opcodes if not already done */
if (curopcodes == NULL) {
printf_debug("Programming OPCODES\n");
curopcodes=&O_ST_M25P;
program_opcodes(curopcodes);
}
/* find cmd in opcodes-table */
for (a = 0; a < 8; a++) {
if ((curopcodes->opcode[a]).opcode == cmd) {
opcode_index = a;
break;
}
}
/* unknown / not programmed command */
if (opcode_index == -1) {
printf_debug("Invalid OPCODE 0x%02x\n", cmd);
return 1;
}
opcode = &(curopcodes->opcode[opcode_index]);
/* if opcode-type requires an address */
if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
addr = (writearr[1]<<16) |
(writearr[2]<<8) |
(writearr[3]<<0);
}
/* translate read/write array/count */
if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
data = (uint8_t*)(writearr+1);
count = writecnt-1;
}
else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
data = (uint8_t*)(writearr+4);
count = writecnt-4;
}
else {
data = (uint8_t*)readarr;
count = readcnt;
}
if (run_opcode(opcode_index, *opcode, addr, count, data) != 0) {
printf_debug("run OPCODE 0x%02x failed\n", opcode->opcode);
return 1;
}
return 0;
}