coreboot-kgpe-d16/src/lib/imd_cbmem.c

346 lines
7.9 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <bootstate.h>
#include <bootmem.h>
#include <console/console.h>
#include <cbmem.h>
#include <imd.h>
#include <rules.h>
#include <string.h>
#include <stdlib.h>
#include <arch/early_variables.h>
#if IS_ENABLED(CONFIG_ARCH_X86) && !IS_ENABLED(CONFIG_EARLY_CBMEM_INIT)
#include <arch/acpi.h>
#endif
/*
* We need special handling on x86 before ramstage because we cannot use global
* variables (we're executing in-place from flash so we don't have a writable
* data segment, and we cannot use CAR_GLOBAL here since that mechanism itself
* is dependent on CBMEM). Therefore, we have to always try to partially recover
* CBMEM from cbmem_top() whenever we try to access it. In other environments
* we're not so constrained and just keep the backing imd struct in a global.
* This also means that we can easily tell whether CBMEM has explicitly been
* initialized or recovered yet on those platforms, and don't need to put the
* burden on board or chipset code to tell us by returning NULL from cbmem_top()
* before that point.
*/
#define CAN_USE_GLOBALS \
(!IS_ENABLED(CONFIG_ARCH_X86) || ENV_RAMSTAGE || ENV_POSTCAR)
static inline struct imd *cbmem_get_imd(void)
{
if (CAN_USE_GLOBALS) {
static struct imd imd_cbmem;
return &imd_cbmem;
}
return NULL;
}
static inline const struct cbmem_entry *imd_to_cbmem(const struct imd_entry *e)
{
return (const struct cbmem_entry *)e;
}
static inline const struct imd_entry *cbmem_to_imd(const struct cbmem_entry *e)
{
return (const struct imd_entry *)e;
}
/* These are the different situations to handle:
* CONFIG_EARLY_CBMEM_INIT:
* In ramstage cbmem_initialize() attempts a recovery of the
* cbmem region set up by romstage. It uses cbmem_top() as the
* starting point of recovery.
*
* In romstage, similar to ramstage, cbmem_initialize() needs to
* attempt recovery of the cbmem area using cbmem_top() as the limit.
* cbmem_initialize_empty() initializes an empty cbmem area from
* cbmem_top();
*
*/
static struct imd *imd_init_backing(struct imd *backing)
{
struct imd *imd;
imd = cbmem_get_imd();
if (imd != NULL)
return imd;
imd = backing;
return imd;
}
static struct imd *imd_init_backing_with_recover(struct imd *backing)
{
struct imd *imd;
imd = imd_init_backing(backing);
if (!CAN_USE_GLOBALS) {
/* Always partially recover if we can't keep track of whether
* we have already initialized CBMEM in this stage. */
imd_handle_init(imd, cbmem_top());
imd_handle_init_partial_recovery(imd);
}
return imd;
}
void cbmem_initialize_empty(void)
{
cbmem_initialize_empty_id_size(0, 0);
}
void cbmem_initialize_empty_id_size(u32 id, u64 size)
{
struct imd *imd;
struct imd imd_backing;
const int no_recovery = 0;
imd = imd_init_backing(&imd_backing);
imd_handle_init(imd, cbmem_top());
printk(BIOS_DEBUG, "CBMEM:\n");
if (imd_create_tiered_empty(imd, CBMEM_ROOT_MIN_SIZE, CBMEM_LG_ALIGN,
CBMEM_SM_ROOT_SIZE, CBMEM_SM_ALIGN)) {
printk(BIOS_DEBUG, "failed.\n");
return;
}
/* Add the specified range first */
if (size)
cbmem_add(id, size);
/* Complete migration to CBMEM. */
cbmem_run_init_hooks(no_recovery);
}
static inline int cbmem_fail_recovery(void)
{
cbmem_initialize_empty();
cbmem_fail_resume();
return 1;
}
int cbmem_initialize(void)
{
return cbmem_initialize_id_size(0, 0);
}
int cbmem_initialize_id_size(u32 id, u64 size)
{
struct imd *imd;
struct imd imd_backing;
const int recovery = 1;
imd = imd_init_backing(&imd_backing);
imd_handle_init(imd, cbmem_top());
if (imd_recover(imd))
return 1;
#if defined(__PRE_RAM__)
/*
* Lock the imd in romstage on a recovery. The assumption is that
* if the imd area was recovered in romstage then S3 resume path
* is being taken.
*/
imd_lockdown(imd);
#endif
/* Add the specified range first */
if (size)
cbmem_add(id, size);
/* Complete migration to CBMEM. */
cbmem_run_init_hooks(recovery);
/* Recovery successful. */
return 0;
}
int cbmem_recovery(int is_wakeup)
{
int rv = 0;
if (!is_wakeup)
cbmem_initialize_empty();
else
rv = cbmem_initialize();
return rv;
}
const struct cbmem_entry *cbmem_entry_add(u32 id, u64 size64)
{
struct imd *imd;
struct imd imd_backing;
const struct imd_entry *e;
imd = imd_init_backing_with_recover(&imd_backing);
e = imd_entry_find_or_add(imd, id, size64);
return imd_to_cbmem(e);
}
void *cbmem_add(u32 id, u64 size)
{
struct imd *imd;
struct imd imd_backing;
const struct imd_entry *e;
imd = imd_init_backing_with_recover(&imd_backing);
e = imd_entry_find_or_add(imd, id, size);
if (e == NULL)
return NULL;
return imd_entry_at(imd, e);
}
/* Retrieve a region provided a given id. */
const struct cbmem_entry *cbmem_entry_find(u32 id)
{
struct imd *imd;
struct imd imd_backing;
const struct imd_entry *e;
imd = imd_init_backing_with_recover(&imd_backing);
e = imd_entry_find(imd, id);
return imd_to_cbmem(e);
}
void *cbmem_find(u32 id)
{
struct imd *imd;
struct imd imd_backing;
const struct imd_entry *e;
imd = imd_init_backing_with_recover(&imd_backing);
e = imd_entry_find(imd, id);
if (e == NULL)
return NULL;
return imd_entry_at(imd, e);
}
/* Remove a reserved region. Returns 0 on success, < 0 on error. Note: A region
* cannot be removed unless it was the last one added. */
int cbmem_entry_remove(const struct cbmem_entry *entry)
{
struct imd *imd;
struct imd imd_backing;
imd = imd_init_backing_with_recover(&imd_backing);
return imd_entry_remove(imd, cbmem_to_imd(entry));
}
u64 cbmem_entry_size(const struct cbmem_entry *entry)
{
struct imd *imd;
struct imd imd_backing;
imd = imd_init_backing_with_recover(&imd_backing);
return imd_entry_size(imd, cbmem_to_imd(entry));
}
void *cbmem_entry_start(const struct cbmem_entry *entry)
{
struct imd *imd;
struct imd imd_backing;
imd = imd_init_backing_with_recover(&imd_backing);
return imd_entry_at(imd, cbmem_to_imd(entry));
}
void cbmem_region_used(uintptr_t *base, size_t *size)
{
void *baseptr;
imd_region_used(cbmem_get_imd(), &baseptr, size);
*base = (uintptr_t)baseptr;
}
void cbmem_add_bootmem(void)
{
uintptr_t base = 0;
size_t size = 0;
cbmem_region_used(&base, &size);
bootmem_add_range(base, size, LB_MEM_TABLE);
}
#if ENV_RAMSTAGE || (IS_ENABLED(CONFIG_EARLY_CBMEM_LIST) \
&& (ENV_POSTCAR || ENV_ROMSTAGE))
/*
* -fdata-sections doesn't work so well on read only strings. They all
* get put in the same section even though those strings may never be
* referenced in the final binary.
*/
void cbmem_list(void)
{
static const struct imd_lookup lookup[] = { CBMEM_ID_TO_NAME_TABLE };
struct imd *imd;
struct imd imd_backing;
imd = imd_init_backing_with_recover(&imd_backing);
imd_print_entries(imd, lookup, ARRAY_SIZE(lookup));
}
#endif
void cbmem_add_records_to_cbtable(struct lb_header *header)
{
struct imd_cursor cursor;
struct imd *imd;
imd = cbmem_get_imd();
if (imd_cursor_init(imd, &cursor))
return;
while (1) {
const struct imd_entry *e;
struct lb_cbmem_entry *lbe;
uint32_t id;
e = imd_cursor_next(&cursor);
if (e == NULL)
break;
id = imd_entry_id(imd, e);
/* Don't add these metadata entries. */
if (id == CBMEM_ID_IMD_ROOT || id == CBMEM_ID_IMD_SMALL)
continue;
lbe = (struct lb_cbmem_entry *)lb_new_record(header);
lbe->tag = LB_TAG_CBMEM_ENTRY;
lbe->size = sizeof(*lbe);
lbe->address = (uintptr_t)imd_entry_at(imd, e);
lbe->entry_size = imd_entry_size(imd, e);
lbe->id = id;
}
}