4356e09235
These codes are written by me based on the privileged instruction set. I tested it by qemu/riscv-probe. Change-Id: I2e9e0c94e6518f63ade7680a3ce68bacfae219d4 Signed-off-by: Xiang Wang <wxjstz@126.com> Reviewed-on: https://review.coreboot.org/28569 Reviewed-by: Philipp Hug <philipp@hug.cx> Reviewed-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
321 lines
7 KiB
C
321 lines
7 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2018 HardenedLinux
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <arch/encoding.h>
|
|
#include <stdint.h>
|
|
#include <arch/pmp.h>
|
|
#include <console/console.h>
|
|
#include <commonlib/helpers.h>
|
|
|
|
#define GRANULE (1 << PMP_SHIFT)
|
|
|
|
/*
|
|
* This structure is used to temporarily record PMP
|
|
* configuration information.
|
|
*/
|
|
typedef struct {
|
|
/* used to record the value of pmpcfg[i] */
|
|
uintptr_t cfg;
|
|
/*
|
|
* When generating a TOR type configuration,
|
|
* the previous entry needs to record the starting address.
|
|
* used to record the value of pmpaddr[i - 1]
|
|
*/
|
|
uintptr_t previous_address;
|
|
/* used to record the value of pmpaddr[i] */
|
|
uintptr_t address;
|
|
} pmpcfg_t;
|
|
|
|
/* This variable is used to record which entries have been used. */
|
|
static uintptr_t pmp_entry_used_mask;
|
|
|
|
/* helper function used to read pmpcfg[idx] */
|
|
static uintptr_t read_pmpcfg(int idx)
|
|
{
|
|
#if __riscv_xlen == 32
|
|
int shift = 8 * (idx & 3);
|
|
switch (idx >> 2) {
|
|
case 0:
|
|
return (read_csr(pmpcfg0) >> shift) & 0xff;
|
|
case 1:
|
|
return (read_csr(pmpcfg1) >> shift) & 0xff;
|
|
case 2:
|
|
return (read_csr(pmpcfg2) >> shift) & 0xff;
|
|
case 3:
|
|
return (read_csr(pmpcfg3) >> shift) & 0xff;
|
|
}
|
|
#elif __riscv_xlen == 64
|
|
int shift = 8 * (idx & 7);
|
|
switch (idx >> 3) {
|
|
case 0:
|
|
return (read_csr(pmpcfg0) >> shift) & 0xff;
|
|
case 1:
|
|
return (read_csr(pmpcfg2) >> shift) & 0xff;
|
|
}
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
/* helper function used to write pmpcfg[idx] */
|
|
static void write_pmpcfg(int idx, uintptr_t cfg)
|
|
{
|
|
uintptr_t old;
|
|
uintptr_t new;
|
|
#if __riscv_xlen == 32
|
|
int shift = 8 * (idx & 3);
|
|
switch (idx >> 2) {
|
|
case 0:
|
|
old = read_csr(pmpcfg0);
|
|
new = (old & ~((uintptr_t)0xff << shift))
|
|
| ((cfg & 0xff) << shift);
|
|
write_csr(pmpcfg0, new);
|
|
break;
|
|
case 1:
|
|
old = read_csr(pmpcfg1);
|
|
new = (old & ~((uintptr_t)0xff << shift))
|
|
| ((cfg & 0xff) << shift);
|
|
write_csr(pmpcfg1, new);
|
|
break;
|
|
case 2:
|
|
old = read_csr(pmpcfg2);
|
|
new = (old & ~((uintptr_t)0xff << shift))
|
|
| ((cfg & 0xff) << shift);
|
|
write_csr(pmpcfg2, new);
|
|
break;
|
|
case 3:
|
|
old = read_csr(pmpcfg3);
|
|
new = (old & ~((uintptr_t)0xff << shift))
|
|
| ((cfg & 0xff) << shift);
|
|
write_csr(pmpcfg3, new);
|
|
break;
|
|
}
|
|
#elif __riscv_xlen == 64
|
|
int shift = 8 * (idx & 7);
|
|
switch (idx >> 3) {
|
|
case 0:
|
|
old = read_csr(pmpcfg0);
|
|
new = (old & ~((uintptr_t)0xff << shift))
|
|
| ((cfg & 0xff) << shift);
|
|
write_csr(pmpcfg0, new);
|
|
break;
|
|
case 1:
|
|
old = read_csr(pmpcfg2);
|
|
new = (old & ~((uintptr_t)0xff << shift))
|
|
| ((cfg & 0xff) << shift);
|
|
write_csr(pmpcfg2, new);
|
|
break;
|
|
}
|
|
#endif
|
|
if (read_pmpcfg(idx) != cfg)
|
|
die("write pmpcfg failure!");
|
|
}
|
|
|
|
/* helper function used to read pmpaddr[idx] */
|
|
static uintptr_t read_pmpaddr(int idx)
|
|
{
|
|
switch (idx) {
|
|
case 0:
|
|
return read_csr(pmpaddr0);
|
|
case 1:
|
|
return read_csr(pmpaddr1);
|
|
case 2:
|
|
return read_csr(pmpaddr2);
|
|
case 3:
|
|
return read_csr(pmpaddr3);
|
|
case 4:
|
|
return read_csr(pmpaddr4);
|
|
case 5:
|
|
return read_csr(pmpaddr5);
|
|
case 6:
|
|
return read_csr(pmpaddr6);
|
|
case 7:
|
|
return read_csr(pmpaddr7);
|
|
case 8:
|
|
return read_csr(pmpaddr8);
|
|
case 9:
|
|
return read_csr(pmpaddr9);
|
|
case 10:
|
|
return read_csr(pmpaddr10);
|
|
case 11:
|
|
return read_csr(pmpaddr11);
|
|
case 12:
|
|
return read_csr(pmpaddr12);
|
|
case 13:
|
|
return read_csr(pmpaddr13);
|
|
case 14:
|
|
return read_csr(pmpaddr14);
|
|
case 15:
|
|
return read_csr(pmpaddr15);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* helper function used to write pmpaddr[idx] */
|
|
static void write_pmpaddr(int idx, uintptr_t val)
|
|
{
|
|
switch (idx) {
|
|
case 0:
|
|
write_csr(pmpaddr0, val);
|
|
break;
|
|
case 1:
|
|
write_csr(pmpaddr1, val);
|
|
break;
|
|
case 2:
|
|
write_csr(pmpaddr2, val);
|
|
break;
|
|
case 3:
|
|
write_csr(pmpaddr3, val);
|
|
break;
|
|
case 4:
|
|
write_csr(pmpaddr4, val);
|
|
break;
|
|
case 5:
|
|
write_csr(pmpaddr5, val);
|
|
break;
|
|
case 6:
|
|
write_csr(pmpaddr6, val);
|
|
break;
|
|
case 7:
|
|
write_csr(pmpaddr7, val);
|
|
break;
|
|
case 8:
|
|
write_csr(pmpaddr8, val);
|
|
break;
|
|
case 9:
|
|
write_csr(pmpaddr9, val);
|
|
break;
|
|
case 10:
|
|
write_csr(pmpaddr10, val);
|
|
break;
|
|
case 11:
|
|
write_csr(pmpaddr11, val);
|
|
break;
|
|
case 12:
|
|
write_csr(pmpaddr12, val);
|
|
break;
|
|
case 13:
|
|
write_csr(pmpaddr13, val);
|
|
break;
|
|
case 14:
|
|
write_csr(pmpaddr14, val);
|
|
break;
|
|
case 15:
|
|
write_csr(pmpaddr15, val);
|
|
break;
|
|
}
|
|
if (read_pmpaddr(idx) != val)
|
|
die("write pmpaddr failure");
|
|
}
|
|
|
|
/* Generate a PMP configuration of type NA4/NAPOT */
|
|
static pmpcfg_t generate_pmp_napot(
|
|
uintptr_t base, uintptr_t size, uintptr_t flags)
|
|
{
|
|
pmpcfg_t p;
|
|
flags = flags & (PMP_R | PMP_W | PMP_X | PMP_L);
|
|
p.cfg = flags | (size > GRANULE ? PMP_NAPOT : PMP_NA4);
|
|
p.previous_address = 0;
|
|
p.address = (base + (size / 2 - 1)) >> PMP_SHIFT;
|
|
return p;
|
|
}
|
|
|
|
/* Generate a PMP configuration of type TOR */
|
|
static pmpcfg_t generate_pmp_range(
|
|
uintptr_t base, uintptr_t size, uintptr_t flags)
|
|
{
|
|
pmpcfg_t p;
|
|
flags = flags & (PMP_R | PMP_W | PMP_X | PMP_L);
|
|
p.cfg = flags | PMP_TOR;
|
|
p.previous_address = base >> PMP_SHIFT;
|
|
p.address = (base + size) >> PMP_SHIFT;
|
|
return p;
|
|
}
|
|
|
|
/* Generate a PMP configuration */
|
|
static pmpcfg_t generate_pmp(uintptr_t base, uintptr_t size, uintptr_t flags)
|
|
{
|
|
if (IS_POWER_OF_2(size) && (size >= 4) && ((base & (size - 1)) == 0))
|
|
return generate_pmp_napot(base, size, flags);
|
|
else
|
|
return generate_pmp_range(base, size, flags);
|
|
}
|
|
|
|
/*
|
|
* find empty PMP entry by type
|
|
* TOR type configuration requires two consecutive PMP entries,
|
|
* others requires one.
|
|
*/
|
|
static int find_empty_pmp_entry(int is_range)
|
|
{
|
|
int free_entries = 0;
|
|
for (int i = 0; i < pmp_entries_num(); i++) {
|
|
if (pmp_entry_used_mask & (1 << i))
|
|
free_entries = 0;
|
|
else
|
|
free_entries++;
|
|
if (is_range && (free_entries == 2))
|
|
return i;
|
|
if (!is_range && (free_entries == 1))
|
|
return i;
|
|
}
|
|
die("Too many PMP configurations, no free entries can be used!");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* mark PMP entry has be used
|
|
* this function need be used with find_entry_pmp_entry
|
|
*
|
|
* n = find_empty_pmp_entry(is_range)
|
|
* ... // PMP set operate
|
|
* mask_pmp_entry_used(n);
|
|
*/
|
|
static void mask_pmp_entry_used(int idx)
|
|
{
|
|
pmp_entry_used_mask |= 1 << idx;
|
|
}
|
|
|
|
/* reset PMP setting */
|
|
void reset_pmp(void)
|
|
{
|
|
for (int i = 0; i < pmp_entries_num(); i++) {
|
|
if (read_pmpcfg(i) & PMP_L)
|
|
die("Some PMP configurations are locked "
|
|
"and cannot be reset!");
|
|
write_pmpcfg(i, 0);
|
|
write_pmpaddr(i, 0);
|
|
}
|
|
}
|
|
|
|
/* set up PMP record */
|
|
void setup_pmp(uintptr_t base, uintptr_t size, uintptr_t flags)
|
|
{
|
|
pmpcfg_t p;
|
|
int is_range, n;
|
|
|
|
p = generate_pmp(base, size, flags);
|
|
is_range = ((p.cfg & PMP_A) == PMP_TOR);
|
|
|
|
n = find_empty_pmp_entry(is_range);
|
|
|
|
write_pmpaddr(n, p.address);
|
|
if (is_range)
|
|
write_pmpaddr(n - 1, p.previous_address);
|
|
write_pmpcfg(n, p.cfg);
|
|
|
|
mask_pmp_entry_used(n);
|
|
if (is_range)
|
|
mask_pmp_entry_used(n - 1);
|
|
}
|