9b76f0b27b
In case something goes wrong on one of the cpus, add the ability to use a barrier with timeout so that other cpus don't wait forever. Remove static from barrier wait and release. BUG=chrome-os-partner:59875 BRANCH=reef TEST=None Change-Id: Iab6bd30ddf7632c7a5785b338798960c26016b24 Signed-off-by: Bora Guvendik <bora.guvendik@intel.com> Reviewed-on: https://review.coreboot.org/18107 Tested-by: build bot (Jenkins) Reviewed-by: Martin Roth <martinroth@google.com>
1030 lines
27 KiB
C
1030 lines
27 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2013 Google Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; version 2 of
|
|
* the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <console/console.h>
|
|
#include <stdint.h>
|
|
#include <rmodule.h>
|
|
#include <arch/cpu.h>
|
|
#include <cpu/cpu.h>
|
|
#include <cpu/intel/microcode.h>
|
|
#include <cpu/x86/cache.h>
|
|
#include <cpu/x86/gdt.h>
|
|
#include <cpu/x86/lapic.h>
|
|
#include <cpu/x86/name.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/x86/smm.h>
|
|
#include <cpu/x86/mp.h>
|
|
#include <delay.h>
|
|
#include <device/device.h>
|
|
#include <device/path.h>
|
|
#include <lib.h>
|
|
#include <smp/atomic.h>
|
|
#include <smp/spinlock.h>
|
|
#include <symbols.h>
|
|
#include <thread.h>
|
|
|
|
#define MAX_APIC_IDS 256
|
|
|
|
typedef void (*mp_callback_t)(void);
|
|
|
|
/*
|
|
* A mp_flight_record details a sequence of calls for the APs to perform
|
|
* along with the BSP to coordinate sequencing. Each flight record either
|
|
* provides a barrier for each AP before calling the callback or the APs
|
|
* are allowed to perform the callback without waiting. Regardless, each
|
|
* record has the cpus_entered field incremented for each record. When
|
|
* the BSP observes that the cpus_entered matches the number of APs
|
|
* the bsp_call is called with bsp_arg and upon returning releases the
|
|
* barrier allowing the APs to make further progress.
|
|
*
|
|
* Note that ap_call() and bsp_call() can be NULL. In the NULL case the
|
|
* callback will just not be called.
|
|
*/
|
|
struct mp_flight_record {
|
|
atomic_t barrier;
|
|
atomic_t cpus_entered;
|
|
mp_callback_t ap_call;
|
|
mp_callback_t bsp_call;
|
|
} __attribute__((aligned(CACHELINE_SIZE)));
|
|
|
|
#define _MP_FLIGHT_RECORD(barrier_, ap_func_, bsp_func_) \
|
|
{ \
|
|
.barrier = ATOMIC_INIT(barrier_), \
|
|
.cpus_entered = ATOMIC_INIT(0), \
|
|
.ap_call = ap_func_, \
|
|
.bsp_call = bsp_func_, \
|
|
}
|
|
|
|
#define MP_FR_BLOCK_APS(ap_func_, bsp_func_) \
|
|
_MP_FLIGHT_RECORD(0, ap_func_, bsp_func_)
|
|
|
|
#define MP_FR_NOBLOCK_APS(ap_func_, bsp_func_) \
|
|
_MP_FLIGHT_RECORD(1, ap_func_, bsp_func_)
|
|
|
|
/* The mp_params structure provides the arguments to the mp subsystem
|
|
* for bringing up APs. */
|
|
struct mp_params {
|
|
int num_cpus; /* Total cpus include BSP */
|
|
int parallel_microcode_load;
|
|
const void *microcode_pointer;
|
|
/* adjust_apic_id() is called for every potential APIC id in the
|
|
* system up from 0 to CONFIG_MAX_CPUS. Return adjusted apic_id. */
|
|
int (*adjust_apic_id)(int index, int apic_id);
|
|
/* Flight plan for APs and BSP. */
|
|
struct mp_flight_record *flight_plan;
|
|
int num_records;
|
|
};
|
|
|
|
/* This needs to match the layout in the .module_parametrs section. */
|
|
struct sipi_params {
|
|
uint16_t gdtlimit;
|
|
uint32_t gdt;
|
|
uint16_t unused;
|
|
uint32_t idt_ptr;
|
|
uint32_t stack_top;
|
|
uint32_t stack_size;
|
|
uint32_t microcode_lock; /* 0xffffffff means parallel loading. */
|
|
uint32_t microcode_ptr;
|
|
uint32_t msr_table_ptr;
|
|
uint32_t msr_count;
|
|
uint32_t c_handler;
|
|
atomic_t ap_count;
|
|
} __attribute__((packed));
|
|
|
|
/* This also needs to match the assembly code for saved MSR encoding. */
|
|
struct saved_msr {
|
|
uint32_t index;
|
|
uint32_t lo;
|
|
uint32_t hi;
|
|
} __attribute__((packed));
|
|
|
|
|
|
/* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */
|
|
extern char _binary_sipi_vector_start[];
|
|
|
|
/* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is at the
|
|
* memory range is already reserved so the OS cannot use it. That region is
|
|
* free to use for AP bringup before SMM is initialized. */
|
|
static const uint32_t sipi_vector_location = SMM_DEFAULT_BASE;
|
|
static const int sipi_vector_location_size = SMM_DEFAULT_SIZE;
|
|
|
|
struct mp_flight_plan {
|
|
int num_records;
|
|
struct mp_flight_record *records;
|
|
};
|
|
|
|
static int global_num_aps;
|
|
static struct mp_flight_plan mp_info;
|
|
|
|
struct cpu_map {
|
|
struct device *dev;
|
|
int apic_id;
|
|
};
|
|
|
|
/* Keep track of APIC and device structure for each CPU. */
|
|
static struct cpu_map cpus[CONFIG_MAX_CPUS];
|
|
|
|
inline void barrier_wait(atomic_t *b)
|
|
{
|
|
while (atomic_read(b) == 0)
|
|
asm ("pause");
|
|
mfence();
|
|
}
|
|
|
|
/* Returns 1 if timeout occurs before barier is released.
|
|
* returns 0 if barrier is released before timeout. */
|
|
int barrier_wait_timeout(atomic_t *b, uint32_t timeout_ms)
|
|
{
|
|
int timeout = 0;
|
|
struct mono_time current, end;
|
|
|
|
timer_monotonic_get(¤t);
|
|
end = current;
|
|
mono_time_add_msecs(&end, timeout_ms);
|
|
|
|
while ((atomic_read(b) == 0) && (!mono_time_after(¤t, &end))) {
|
|
timer_monotonic_get(¤t);
|
|
asm ("pause");
|
|
}
|
|
mfence();
|
|
|
|
if (mono_time_after(¤t, &end))
|
|
timeout = 1;
|
|
|
|
return timeout;
|
|
}
|
|
|
|
inline void release_barrier(atomic_t *b)
|
|
{
|
|
mfence();
|
|
atomic_set(b, 1);
|
|
}
|
|
|
|
/* Returns 1 if timeout waiting for APs. 0 if target aps found. */
|
|
static int wait_for_aps(atomic_t *val, int target, int total_delay,
|
|
int delay_step)
|
|
{
|
|
int timeout = 0;
|
|
int delayed = 0;
|
|
while (atomic_read(val) != target) {
|
|
udelay(delay_step);
|
|
delayed += delay_step;
|
|
if (delayed >= total_delay) {
|
|
timeout = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return timeout;
|
|
}
|
|
|
|
static void ap_do_flight_plan(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mp_info.num_records; i++) {
|
|
struct mp_flight_record *rec = &mp_info.records[i];
|
|
|
|
atomic_inc(&rec->cpus_entered);
|
|
barrier_wait(&rec->barrier);
|
|
|
|
if (rec->ap_call != NULL)
|
|
rec->ap_call();
|
|
}
|
|
}
|
|
|
|
static void park_this_cpu(void)
|
|
{
|
|
stop_this_cpu();
|
|
}
|
|
|
|
/* By the time APs call ap_init() caching has been setup, and microcode has
|
|
* been loaded. */
|
|
static void asmlinkage ap_init(unsigned int cpu)
|
|
{
|
|
struct cpu_info *info;
|
|
int apic_id;
|
|
|
|
/* Ensure the local APIC is enabled */
|
|
enable_lapic();
|
|
|
|
info = cpu_info();
|
|
info->index = cpu;
|
|
info->cpu = cpus[cpu].dev;
|
|
thread_init_cpu_info_non_bsp(info);
|
|
|
|
apic_id = lapicid();
|
|
info->cpu->path.apic.apic_id = apic_id;
|
|
cpus[cpu].apic_id = apic_id;
|
|
|
|
printk(BIOS_INFO, "AP: slot %d apic_id %x.\n", cpu, apic_id);
|
|
|
|
/* Walk the flight plan */
|
|
ap_do_flight_plan();
|
|
|
|
/* Park the AP. */
|
|
park_this_cpu();
|
|
}
|
|
|
|
static void setup_default_sipi_vector_params(struct sipi_params *sp)
|
|
{
|
|
sp->gdt = (uint32_t)&gdt;
|
|
sp->gdtlimit = (uint32_t)&gdt_end - (u32)&gdt - 1;
|
|
sp->idt_ptr = (uint32_t)&idtarg;
|
|
sp->stack_size = CONFIG_STACK_SIZE;
|
|
sp->stack_top = (uint32_t)&_estack;
|
|
/* Adjust the stack top to take into account cpu_info. */
|
|
sp->stack_top -= sizeof(struct cpu_info);
|
|
}
|
|
|
|
#define NUM_FIXED_MTRRS 11
|
|
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
|
|
MTRR_FIX_64K_00000, MTRR_FIX_16K_80000, MTRR_FIX_16K_A0000,
|
|
MTRR_FIX_4K_C0000, MTRR_FIX_4K_C8000, MTRR_FIX_4K_D0000,
|
|
MTRR_FIX_4K_D8000, MTRR_FIX_4K_E0000, MTRR_FIX_4K_E8000,
|
|
MTRR_FIX_4K_F0000, MTRR_FIX_4K_F8000,
|
|
};
|
|
|
|
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(index);
|
|
entry->index = index;
|
|
entry->lo = msr.lo;
|
|
entry->hi = msr.hi;
|
|
|
|
/* Return the next entry. */
|
|
entry++;
|
|
return entry;
|
|
}
|
|
|
|
static int save_bsp_msrs(char *start, int size)
|
|
{
|
|
int msr_count;
|
|
int num_var_mtrrs;
|
|
struct saved_msr *msr_entry;
|
|
int i;
|
|
msr_t msr;
|
|
|
|
/* Determine number of MTRRs need to be saved. */
|
|
msr = rdmsr(MTRR_CAP_MSR);
|
|
num_var_mtrrs = msr.lo & 0xff;
|
|
|
|
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */
|
|
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
|
|
|
|
if ((msr_count * sizeof(struct saved_msr)) > size) {
|
|
printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count);
|
|
return -1;
|
|
}
|
|
|
|
msr_entry = (void *)start;
|
|
for (i = 0; i < NUM_FIXED_MTRRS; i++)
|
|
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
|
|
|
|
for (i = 0; i < num_var_mtrrs; i++) {
|
|
msr_entry = save_msr(MTRR_PHYS_BASE(i), msr_entry);
|
|
msr_entry = save_msr(MTRR_PHYS_MASK(i), msr_entry);
|
|
}
|
|
|
|
msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
|
|
|
|
return msr_count;
|
|
}
|
|
|
|
static atomic_t *load_sipi_vector(struct mp_params *mp_params)
|
|
{
|
|
struct rmodule sipi_mod;
|
|
int module_size;
|
|
int num_msrs;
|
|
struct sipi_params *sp;
|
|
char *mod_loc = (void *)sipi_vector_location;
|
|
const int loc_size = sipi_vector_location_size;
|
|
atomic_t *ap_count = NULL;
|
|
|
|
if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) {
|
|
printk(BIOS_CRIT, "Unable to parse sipi module.\n");
|
|
return ap_count;
|
|
}
|
|
|
|
if (rmodule_entry_offset(&sipi_mod) != 0) {
|
|
printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n");
|
|
return ap_count;
|
|
}
|
|
|
|
if (rmodule_load_alignment(&sipi_mod) != 4096) {
|
|
printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n",
|
|
rmodule_load_alignment(&sipi_mod));
|
|
return ap_count;
|
|
}
|
|
|
|
module_size = rmodule_memory_size(&sipi_mod);
|
|
|
|
/* Align to 4 bytes. */
|
|
module_size = ALIGN(module_size, 4);
|
|
|
|
if (module_size > loc_size) {
|
|
printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n",
|
|
module_size, loc_size);
|
|
return ap_count;
|
|
}
|
|
|
|
num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size);
|
|
|
|
if (num_msrs < 0) {
|
|
printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n");
|
|
return ap_count;
|
|
}
|
|
|
|
if (rmodule_load(mod_loc, &sipi_mod)) {
|
|
printk(BIOS_CRIT, "Unable to load SIPI module.\n");
|
|
return ap_count;
|
|
}
|
|
|
|
sp = rmodule_parameters(&sipi_mod);
|
|
|
|
if (sp == NULL) {
|
|
printk(BIOS_CRIT, "SIPI module has no parameters.\n");
|
|
return ap_count;
|
|
}
|
|
|
|
setup_default_sipi_vector_params(sp);
|
|
/* Setup MSR table. */
|
|
sp->msr_table_ptr = (uint32_t)&mod_loc[module_size];
|
|
sp->msr_count = num_msrs;
|
|
/* Provide pointer to microcode patch. */
|
|
sp->microcode_ptr = (uint32_t)mp_params->microcode_pointer;
|
|
/* Pass on abiility to load microcode in parallel. */
|
|
if (mp_params->parallel_microcode_load)
|
|
sp->microcode_lock = 0;
|
|
else
|
|
sp->microcode_lock = ~0;
|
|
sp->c_handler = (uint32_t)&ap_init;
|
|
ap_count = &sp->ap_count;
|
|
atomic_set(ap_count, 0);
|
|
|
|
return ap_count;
|
|
}
|
|
|
|
static int allocate_cpu_devices(struct bus *cpu_bus, struct mp_params *p)
|
|
{
|
|
int i;
|
|
int max_cpus;
|
|
struct cpu_info *info;
|
|
|
|
max_cpus = p->num_cpus;
|
|
if (max_cpus > CONFIG_MAX_CPUS) {
|
|
printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n",
|
|
max_cpus, CONFIG_MAX_CPUS);
|
|
max_cpus = CONFIG_MAX_CPUS;
|
|
}
|
|
|
|
info = cpu_info();
|
|
for (i = 1; i < max_cpus; i++) {
|
|
struct device_path cpu_path;
|
|
struct device *new;
|
|
int apic_id;
|
|
|
|
/* Build the CPU device path */
|
|
cpu_path.type = DEVICE_PATH_APIC;
|
|
|
|
/* Assuming linear APIC space allocation. */
|
|
apic_id = info->cpu->path.apic.apic_id + i;
|
|
if (p->adjust_apic_id != NULL)
|
|
apic_id = p->adjust_apic_id(i, apic_id);
|
|
cpu_path.apic.apic_id = apic_id;
|
|
|
|
/* Allocate the new CPU device structure */
|
|
new = alloc_find_dev(cpu_bus, &cpu_path);
|
|
if (new == NULL) {
|
|
printk(BIOS_CRIT, "Could not allocate CPU device\n");
|
|
max_cpus--;
|
|
}
|
|
cpus[i].dev = new;
|
|
}
|
|
|
|
return max_cpus;
|
|
}
|
|
|
|
/* Returns 1 for timeout. 0 on success. */
|
|
static int apic_wait_timeout(int total_delay, int delay_step)
|
|
{
|
|
int total = 0;
|
|
int timeout = 0;
|
|
|
|
while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
|
|
udelay(delay_step);
|
|
total += delay_step;
|
|
if (total >= total_delay) {
|
|
timeout = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return timeout;
|
|
}
|
|
|
|
static int start_aps(struct bus *cpu_bus, int ap_count, atomic_t *num_aps)
|
|
{
|
|
int sipi_vector;
|
|
/* Max location is 4KiB below 1MiB */
|
|
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
|
|
|
|
if (ap_count == 0)
|
|
return 0;
|
|
|
|
/* The vector is sent as a 4k aligned address in one byte. */
|
|
sipi_vector = sipi_vector_location >> 12;
|
|
|
|
if (sipi_vector > max_vector_loc) {
|
|
printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n",
|
|
sipi_vector);
|
|
return -1;
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count);
|
|
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
return -1;
|
|
}
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
}
|
|
|
|
/* Send INIT IPI to all but self. */
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
|
|
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
|
|
LAPIC_DM_INIT);
|
|
printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n");
|
|
mdelay(10);
|
|
|
|
/* Send 1st SIPI */
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
return -1;
|
|
}
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
}
|
|
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
|
|
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
|
|
LAPIC_DM_STARTUP | sipi_vector);
|
|
printk(BIOS_DEBUG, "Waiting for 1st SIPI to complete...");
|
|
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
|
|
printk(BIOS_DEBUG, "timed out.\n");
|
|
return -1;
|
|
}
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
/* Wait for CPUs to check in up to 200 us. */
|
|
wait_for_aps(num_aps, ap_count, 200 /* us */, 15 /* us */);
|
|
|
|
/* Send 2nd SIPI */
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
return -1;
|
|
}
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
}
|
|
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
|
|
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
|
|
LAPIC_DM_STARTUP | sipi_vector);
|
|
printk(BIOS_DEBUG, "Waiting for 2nd SIPI to complete...");
|
|
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
|
|
printk(BIOS_DEBUG, "timed out.\n");
|
|
return -1;
|
|
}
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
/* Wait for CPUs to check in. */
|
|
if (wait_for_aps(num_aps, ap_count, 10000 /* 10 ms */, 50 /* us */)) {
|
|
printk(BIOS_DEBUG, "Not all APs checked in: %d/%d.\n",
|
|
atomic_read(num_aps), ap_count);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bsp_do_flight_plan(struct mp_params *mp_params)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
const int timeout_us = 100000;
|
|
const int step_us = 100;
|
|
int num_aps = mp_params->num_cpus - 1;
|
|
|
|
for (i = 0; i < mp_params->num_records; i++) {
|
|
struct mp_flight_record *rec = &mp_params->flight_plan[i];
|
|
|
|
/* Wait for APs if the record is not released. */
|
|
if (atomic_read(&rec->barrier) == 0) {
|
|
/* Wait for the APs to check in. */
|
|
if (wait_for_aps(&rec->cpus_entered, num_aps,
|
|
timeout_us, step_us)) {
|
|
printk(BIOS_ERR, "MP record %d timeout.\n", i);
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
if (rec->bsp_call != NULL)
|
|
rec->bsp_call();
|
|
|
|
release_barrier(&rec->barrier);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void init_bsp(struct bus *cpu_bus)
|
|
{
|
|
struct device_path cpu_path;
|
|
struct cpu_info *info;
|
|
char processor_name[49];
|
|
|
|
/* Print processor name */
|
|
fill_processor_name(processor_name);
|
|
printk(BIOS_INFO, "CPU: %s.\n", processor_name);
|
|
|
|
/* Ensure the local APIC is enabled */
|
|
enable_lapic();
|
|
|
|
/* Set the device path of the boot CPU. */
|
|
cpu_path.type = DEVICE_PATH_APIC;
|
|
cpu_path.apic.apic_id = lapicid();
|
|
|
|
/* Find the device structure for the boot CPU. */
|
|
info = cpu_info();
|
|
info->cpu = alloc_find_dev(cpu_bus, &cpu_path);
|
|
|
|
if (info->index != 0)
|
|
printk(BIOS_CRIT, "BSP index(%d) != 0!\n", info->index);
|
|
|
|
/* Track BSP in cpu_map structures. */
|
|
cpus[info->index].dev = info->cpu;
|
|
cpus[info->index].apic_id = cpu_path.apic.apic_id;
|
|
}
|
|
|
|
/*
|
|
* mp_init() will set up the SIPI vector and bring up the APs according to
|
|
* mp_params. Each flight record will be executed according to the plan. Note
|
|
* that the MP infrastructure uses SMM default area without saving it. It's
|
|
* up to the chipset or mainboard to either e820 reserve this area or save this
|
|
* region prior to calling mp_init() and restoring it after mp_init returns.
|
|
*
|
|
* At the time mp_init() is called the MTRR MSRs are mirrored into APs then
|
|
* caching is enabled before running the flight plan.
|
|
*
|
|
* The MP initialization has the following properties:
|
|
* 1. APs are brought up in parallel.
|
|
* 2. The ordering of coreboot CPU number and APIC ids is not deterministic.
|
|
* Therefore, one cannot rely on this property or the order of devices in
|
|
* the device tree unless the chipset or mainboard know the APIC ids
|
|
* a priori.
|
|
*
|
|
* mp_init() returns < 0 on error, 0 on success.
|
|
*/
|
|
static int mp_init(struct bus *cpu_bus, struct mp_params *p)
|
|
{
|
|
int num_cpus;
|
|
atomic_t *ap_count;
|
|
|
|
init_bsp(cpu_bus);
|
|
|
|
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
|
|
printk(BIOS_CRIT, "Invalid MP parameters\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Default to currently running CPU. */
|
|
num_cpus = allocate_cpu_devices(cpu_bus, p);
|
|
|
|
if (num_cpus < p->num_cpus) {
|
|
printk(BIOS_CRIT,
|
|
"ERROR: More cpus requested (%d) than supported (%d).\n",
|
|
p->num_cpus, num_cpus);
|
|
return -1;
|
|
}
|
|
|
|
/* Copy needed parameters so that APs have a reference to the plan. */
|
|
mp_info.num_records = p->num_records;
|
|
mp_info.records = p->flight_plan;
|
|
|
|
/* Load the SIPI vector. */
|
|
ap_count = load_sipi_vector(p);
|
|
if (ap_count == NULL)
|
|
return -1;
|
|
|
|
/* Make sure SIPI data hits RAM so the APs that come up will see
|
|
* the startup code even if the caches are disabled. */
|
|
wbinvd();
|
|
|
|
/* Start the APs providing number of APs and the cpus_entered field. */
|
|
global_num_aps = p->num_cpus - 1;
|
|
if (start_aps(cpu_bus, global_num_aps, ap_count) < 0) {
|
|
mdelay(1000);
|
|
printk(BIOS_DEBUG, "%d/%d eventually checked in?\n",
|
|
atomic_read(ap_count), global_num_aps);
|
|
return -1;
|
|
}
|
|
|
|
/* Walk the flight plan for the BSP. */
|
|
return bsp_do_flight_plan(p);
|
|
}
|
|
|
|
/* Calls cpu_initialize(info->index) which calls the coreboot CPU drivers. */
|
|
static void mp_initialize_cpu(void)
|
|
{
|
|
/* Call back into driver infrastructure for the AP initialization. */
|
|
struct cpu_info *info = cpu_info();
|
|
cpu_initialize(info->index);
|
|
}
|
|
|
|
/* Returns APIC id for coreboot CPU number or < 0 on failure. */
|
|
static int mp_get_apic_id(int cpu_slot)
|
|
{
|
|
if (cpu_slot >= CONFIG_MAX_CPUS || cpu_slot < 0)
|
|
return -1;
|
|
|
|
return cpus[cpu_slot].apic_id;
|
|
}
|
|
|
|
void smm_initiate_relocation_parallel(void)
|
|
{
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
return;
|
|
}
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
}
|
|
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(lapicid()));
|
|
lapic_write_around(LAPIC_ICR, LAPIC_INT_ASSERT | LAPIC_DM_SMI);
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */))
|
|
printk(BIOS_DEBUG, "SMI Relocation timed out.\n");
|
|
else
|
|
printk(BIOS_DEBUG, "Relocation complete.\n");
|
|
}
|
|
|
|
DECLARE_SPIN_LOCK(smm_relocation_lock);
|
|
|
|
/* Send SMI to self with single user serialization. */
|
|
void smm_initiate_relocation(void)
|
|
{
|
|
spin_lock(&smm_relocation_lock);
|
|
smm_initiate_relocation_parallel();
|
|
spin_unlock(&smm_relocation_lock);
|
|
}
|
|
|
|
struct mp_state {
|
|
struct mp_ops ops;
|
|
int cpu_count;
|
|
uintptr_t perm_smbase;
|
|
size_t perm_smsize;
|
|
size_t smm_save_state_size;
|
|
int do_smm;
|
|
} mp_state;
|
|
|
|
static int is_smm_enabled(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_HAVE_SMI_HANDLER) && mp_state.do_smm;
|
|
}
|
|
|
|
static void smm_disable(void)
|
|
{
|
|
mp_state.do_smm = 0;
|
|
}
|
|
|
|
static void smm_enable(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_HAVE_SMI_HANDLER))
|
|
mp_state.do_smm = 1;
|
|
}
|
|
|
|
static void asmlinkage smm_do_relocation(void *arg)
|
|
{
|
|
const struct smm_module_params *p;
|
|
const struct smm_runtime *runtime;
|
|
int cpu;
|
|
uintptr_t curr_smbase;
|
|
uintptr_t perm_smbase;
|
|
|
|
p = arg;
|
|
runtime = p->runtime;
|
|
cpu = p->cpu;
|
|
curr_smbase = runtime->smbase;
|
|
|
|
if (cpu >= CONFIG_MAX_CPUS) {
|
|
printk(BIOS_CRIT,
|
|
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The permanent handler runs with all cpus concurrently. Precalculate
|
|
* the location of the new SMBASE. If using SMM modules then this
|
|
* calculation needs to match that of the module loader.
|
|
*/
|
|
perm_smbase = mp_state.perm_smbase;
|
|
perm_smbase -= cpu * runtime->save_state_size;
|
|
|
|
printk(BIOS_DEBUG, "New SMBASE 0x%08lx\n", perm_smbase);
|
|
|
|
/* Setup code checks this callback for validity. */
|
|
mp_state.ops.relocation_handler(cpu, curr_smbase, perm_smbase);
|
|
}
|
|
|
|
static void adjust_smm_apic_id_map(struct smm_loader_params *smm_params)
|
|
{
|
|
int i;
|
|
struct smm_runtime *runtime = smm_params->runtime;
|
|
|
|
for (i = 0; i < CONFIG_MAX_CPUS; i++)
|
|
runtime->apic_id_to_cpu[i] = mp_get_apic_id(i);
|
|
}
|
|
|
|
static int install_relocation_handler(int num_cpus, size_t save_state_size)
|
|
{
|
|
struct smm_loader_params smm_params = {
|
|
.per_cpu_stack_size = save_state_size,
|
|
.num_concurrent_stacks = num_cpus,
|
|
.per_cpu_save_state_size = save_state_size,
|
|
.num_concurrent_save_states = 1,
|
|
.handler = smm_do_relocation,
|
|
};
|
|
|
|
/* Allow callback to override parameters. */
|
|
if (mp_state.ops.adjust_smm_params != NULL)
|
|
mp_state.ops.adjust_smm_params(&smm_params, 0);
|
|
|
|
if (smm_setup_relocation_handler(&smm_params))
|
|
return -1;
|
|
|
|
adjust_smm_apic_id_map(&smm_params);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int install_permanent_handler(int num_cpus, uintptr_t smbase,
|
|
size_t smsize, size_t save_state_size)
|
|
{
|
|
/* There are num_cpus concurrent stacks and num_cpus concurrent save
|
|
* state areas. Lastly, set the stack size to the save state size. */
|
|
struct smm_loader_params smm_params = {
|
|
.per_cpu_stack_size = save_state_size,
|
|
.num_concurrent_stacks = num_cpus,
|
|
.per_cpu_save_state_size = save_state_size,
|
|
.num_concurrent_save_states = num_cpus,
|
|
};
|
|
|
|
/* Allow callback to override parameters. */
|
|
if (mp_state.ops.adjust_smm_params != NULL)
|
|
mp_state.ops.adjust_smm_params(&smm_params, 1);
|
|
|
|
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08lx\n", smbase);
|
|
|
|
if (smm_load_module((void *)smbase, smsize, &smm_params))
|
|
return -1;
|
|
|
|
adjust_smm_apic_id_map(&smm_params);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Load SMM handlers as part of MP flight record. */
|
|
static void load_smm_handlers(void)
|
|
{
|
|
size_t smm_save_state_size = mp_state.smm_save_state_size;
|
|
|
|
/* Do nothing if SMM is disabled.*/
|
|
if (!is_smm_enabled())
|
|
return;
|
|
|
|
/* Install handlers. */
|
|
if (install_relocation_handler(mp_state.cpu_count,
|
|
smm_save_state_size) < 0) {
|
|
printk(BIOS_ERR, "Unable to install SMM relocation handler.\n");
|
|
smm_disable();
|
|
}
|
|
|
|
if (install_permanent_handler(mp_state.cpu_count, mp_state.perm_smbase,
|
|
mp_state.perm_smsize, smm_save_state_size) < 0) {
|
|
printk(BIOS_ERR, "Unable to install SMM permanent handler.\n");
|
|
smm_disable();
|
|
}
|
|
|
|
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
|
|
wbinvd();
|
|
|
|
/*
|
|
* Indicate that the SMM handlers have been loaded and MP
|
|
* initialization is about to start.
|
|
*/
|
|
if (is_smm_enabled() && mp_state.ops.pre_mp_smm_init != NULL)
|
|
mp_state.ops.pre_mp_smm_init();
|
|
}
|
|
|
|
/* Trigger SMM as part of MP flight record. */
|
|
static void trigger_smm_relocation(void)
|
|
{
|
|
/* Do nothing if SMM is disabled.*/
|
|
if (!is_smm_enabled() || mp_state.ops.per_cpu_smm_trigger == NULL)
|
|
return;
|
|
/* Trigger SMM mode for the currently running processor. */
|
|
mp_state.ops.per_cpu_smm_trigger();
|
|
}
|
|
|
|
static mp_callback_t ap_callbacks[CONFIG_MAX_CPUS];
|
|
|
|
static mp_callback_t read_callback(mp_callback_t *slot)
|
|
{
|
|
return *(volatile mp_callback_t *)slot;
|
|
}
|
|
|
|
static void store_callback(mp_callback_t *slot, mp_callback_t value)
|
|
{
|
|
*(volatile mp_callback_t *)slot = value;
|
|
}
|
|
|
|
static int run_ap_work(mp_callback_t func, long expire_us)
|
|
{
|
|
int i;
|
|
int cpus_accepted;
|
|
struct stopwatch sw;
|
|
int cur_cpu = cpu_index();
|
|
|
|
if (!IS_ENABLED(CONFIG_PARALLEL_MP_AP_WORK)) {
|
|
printk(BIOS_ERR, "APs already parked. PARALLEL_MP_AP_WORK not selected.\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Signal to all the APs to run the func. */
|
|
for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) {
|
|
if (cur_cpu == i)
|
|
continue;
|
|
store_callback(&ap_callbacks[i], func);
|
|
}
|
|
mfence();
|
|
|
|
/* Wait for all the APs to signal back that call has been accepted. */
|
|
stopwatch_init_usecs_expire(&sw, expire_us);
|
|
for (cpus_accepted = 0; !stopwatch_expired(&sw); cpus_accepted = 0) {
|
|
for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) {
|
|
if (cur_cpu == i)
|
|
continue;
|
|
if (read_callback(&ap_callbacks[i]) == NULL)
|
|
cpus_accepted++;
|
|
}
|
|
if (cpus_accepted == global_num_aps)
|
|
return 0;
|
|
}
|
|
|
|
printk(BIOS_ERR, "AP call expired. %d/%d CPUs accepted.\n",
|
|
cpus_accepted, global_num_aps);
|
|
return -1;
|
|
}
|
|
|
|
static void ap_wait_for_instruction(void)
|
|
{
|
|
int cur_cpu = cpu_index();
|
|
|
|
if (!IS_ENABLED(CONFIG_PARALLEL_MP_AP_WORK))
|
|
return;
|
|
|
|
while (1) {
|
|
mp_callback_t func = read_callback(&ap_callbacks[cur_cpu]);
|
|
|
|
if (func == NULL) {
|
|
asm ("pause");
|
|
continue;
|
|
}
|
|
|
|
store_callback(&ap_callbacks[cur_cpu], NULL);
|
|
mfence();
|
|
func();
|
|
}
|
|
}
|
|
|
|
int mp_run_on_aps(void (*func)(void), long expire_us)
|
|
{
|
|
return run_ap_work(func, expire_us);
|
|
}
|
|
|
|
int mp_run_on_all_cpus(void (*func)(void), long expire_us)
|
|
{
|
|
/* Run on BSP first. */
|
|
func();
|
|
return mp_run_on_aps(func, expire_us);
|
|
}
|
|
|
|
int mp_park_aps(void)
|
|
{
|
|
return mp_run_on_aps(park_this_cpu, 10 * USECS_PER_MSEC);
|
|
}
|
|
|
|
static struct mp_flight_record mp_steps[] = {
|
|
/* Once the APs are up load the SMM handlers. */
|
|
MP_FR_BLOCK_APS(NULL, load_smm_handlers),
|
|
/* Perform SMM relocation. */
|
|
MP_FR_NOBLOCK_APS(trigger_smm_relocation, trigger_smm_relocation),
|
|
/* Initialize each CPU through the driver framework. */
|
|
MP_FR_BLOCK_APS(mp_initialize_cpu, mp_initialize_cpu),
|
|
/* Wait for APs to finish then optionally start looking for work. */
|
|
MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL),
|
|
};
|
|
|
|
static void fill_mp_state(struct mp_state *state, const struct mp_ops *ops)
|
|
{
|
|
/*
|
|
* Make copy of the ops so that defaults can be set in the non-const
|
|
* structure if needed.
|
|
*/
|
|
memcpy(&state->ops, ops, sizeof(*ops));
|
|
|
|
if (ops->get_cpu_count != NULL)
|
|
state->cpu_count = ops->get_cpu_count();
|
|
|
|
if (ops->get_smm_info != NULL)
|
|
ops->get_smm_info(&state->perm_smbase, &state->perm_smsize,
|
|
&state->smm_save_state_size);
|
|
|
|
/*
|
|
* Default to smm_initiate_relocation() if trigger callback isn't
|
|
* provided.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_HAVE_SMI_HANDLER) &&
|
|
ops->per_cpu_smm_trigger == NULL)
|
|
mp_state.ops.per_cpu_smm_trigger = smm_initiate_relocation;
|
|
}
|
|
|
|
int mp_init_with_smm(struct bus *cpu_bus, const struct mp_ops *mp_ops)
|
|
{
|
|
int ret;
|
|
void *default_smm_area;
|
|
struct mp_params mp_params;
|
|
|
|
if (mp_ops->pre_mp_init != NULL)
|
|
mp_ops->pre_mp_init();
|
|
|
|
fill_mp_state(&mp_state, mp_ops);
|
|
|
|
memset(&mp_params, 0, sizeof(mp_params));
|
|
|
|
if (mp_state.cpu_count <= 0) {
|
|
printk(BIOS_ERR, "Invalid cpu_count: %d\n", mp_state.cpu_count);
|
|
return -1;
|
|
}
|
|
|
|
/* Sanity check SMM state. */
|
|
if (mp_state.perm_smsize != 0 && mp_state.smm_save_state_size != 0 &&
|
|
mp_state.ops.relocation_handler != NULL)
|
|
smm_enable();
|
|
|
|
if (is_smm_enabled())
|
|
printk(BIOS_INFO, "Will perform SMM setup.\n");
|
|
|
|
mp_params.num_cpus = mp_state.cpu_count;
|
|
/* Gather microcode information. */
|
|
if (mp_state.ops.get_microcode_info != NULL)
|
|
mp_state.ops.get_microcode_info(&mp_params.microcode_pointer,
|
|
&mp_params.parallel_microcode_load);
|
|
mp_params.adjust_apic_id = mp_state.ops.adjust_cpu_apic_entry;
|
|
mp_params.flight_plan = &mp_steps[0];
|
|
mp_params.num_records = ARRAY_SIZE(mp_steps);
|
|
|
|
/* Perform backup of default SMM area. */
|
|
default_smm_area = backup_default_smm_area();
|
|
|
|
ret = mp_init(cpu_bus, &mp_params);
|
|
|
|
restore_default_smm_area(default_smm_area);
|
|
|
|
/* Signal callback on success if it's provided. */
|
|
if (ret == 0 && mp_state.ops.post_mp_init != NULL)
|
|
mp_state.ops.post_mp_init();
|
|
|
|
return ret;
|
|
}
|