6a00113de8
Also unify __attribute__ ((..)) to __attribute__((..)) and handle ((__packed__)) like ((packed)) Change-Id: Ie60a51c3fa92b5009724a5b7c2932e361bf3490c Signed-off-by: Stefan Reinauer <stefan.reinauer@coreboot.org> Reviewed-on: https://review.coreboot.org/15921 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
746 lines
16 KiB
C
746 lines
16 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright 2015 Google, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <compiler.h>
|
|
#include <assert.h>
|
|
#include <cbmem.h>
|
|
#include <console/console.h>
|
|
#include <imd.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* For more details on implementation and usage please see the imd.h header. */
|
|
|
|
static const uint32_t IMD_ROOT_PTR_MAGIC = 0xc0389481;
|
|
static const uint32_t IMD_ENTRY_MAGIC = ~0xc0389481;
|
|
static const uint32_t SMALL_REGION_ID = CBMEM_ID_IMD_SMALL;
|
|
static const size_t LIMIT_ALIGN = 4096;
|
|
|
|
/* In-memory data structures. */
|
|
struct imd_root_pointer {
|
|
uint32_t magic;
|
|
/* Relative to upper limit/offset. */
|
|
int32_t root_offset;
|
|
} __packed;
|
|
|
|
struct imd_entry {
|
|
uint32_t magic;
|
|
/* start is located relative to imd_root */
|
|
int32_t start_offset;
|
|
uint32_t size;
|
|
uint32_t id;
|
|
} __packed;
|
|
|
|
struct imd_root {
|
|
uint32_t max_entries;
|
|
uint32_t num_entries;
|
|
uint32_t flags;
|
|
uint32_t entry_align;
|
|
/* Used for fixing the size of an imd. Relative to the root. */
|
|
int32_t max_offset;
|
|
struct imd_entry entries[0];
|
|
} __packed;
|
|
|
|
#define IMD_FLAG_LOCKED 1
|
|
|
|
static void *relative_pointer(void *base, ssize_t offset)
|
|
{
|
|
intptr_t b = (intptr_t)base;
|
|
b += offset;
|
|
return (void *)b;
|
|
}
|
|
|
|
static bool imd_root_pointer_valid(const struct imd_root_pointer *rp)
|
|
{
|
|
return !!(rp->magic == IMD_ROOT_PTR_MAGIC);
|
|
}
|
|
|
|
static struct imd_root *imdr_root(const struct imdr *imdr)
|
|
{
|
|
return imdr->r;
|
|
}
|
|
|
|
/*
|
|
* The root pointer is relative to the upper limit of the imd. i.e. It sits
|
|
* just below the upper limit.
|
|
*/
|
|
static struct imd_root_pointer *imdr_get_root_pointer(const struct imdr *imdr)
|
|
{
|
|
struct imd_root_pointer *rp;
|
|
|
|
rp = relative_pointer((void *)imdr->limit, -sizeof(*rp));
|
|
|
|
return rp;
|
|
}
|
|
|
|
static void imd_link_root(struct imd_root_pointer *rp, struct imd_root *r)
|
|
{
|
|
rp->magic = IMD_ROOT_PTR_MAGIC;
|
|
rp->root_offset = (int32_t)((intptr_t)r - (intptr_t)rp);
|
|
}
|
|
|
|
static struct imd_entry *root_last_entry(struct imd_root *r)
|
|
{
|
|
return &r->entries[r->num_entries - 1];
|
|
}
|
|
|
|
static size_t root_num_entries(size_t root_size)
|
|
{
|
|
size_t entries_size;
|
|
|
|
entries_size = root_size;
|
|
entries_size -= sizeof(struct imd_root_pointer);
|
|
entries_size -= sizeof(struct imd_root);
|
|
|
|
return entries_size / sizeof(struct imd_entry);
|
|
}
|
|
|
|
static size_t imd_root_data_left(struct imd_root *r)
|
|
{
|
|
struct imd_entry *last_entry;
|
|
|
|
last_entry = root_last_entry(r);
|
|
|
|
if (r->max_offset != 0)
|
|
return last_entry->start_offset - r->max_offset;
|
|
|
|
return ~(size_t)0;
|
|
}
|
|
|
|
static bool root_is_locked(const struct imd_root *r)
|
|
{
|
|
return !!(r->flags & IMD_FLAG_LOCKED);
|
|
}
|
|
|
|
static void imd_entry_assign(struct imd_entry *e, uint32_t id,
|
|
ssize_t offset, size_t size)
|
|
{
|
|
e->magic = IMD_ENTRY_MAGIC;
|
|
e->start_offset = offset;
|
|
e->size = size;
|
|
e->id = id;
|
|
}
|
|
|
|
static void imdr_init(struct imdr *ir, void *upper_limit)
|
|
{
|
|
uintptr_t limit = (uintptr_t)upper_limit;
|
|
/* Upper limit is aligned down to 4KiB */
|
|
ir->limit = ALIGN_DOWN(limit, LIMIT_ALIGN);
|
|
ir->r = NULL;
|
|
}
|
|
|
|
static int imdr_create_empty(struct imdr *imdr, size_t root_size,
|
|
size_t entry_align)
|
|
{
|
|
struct imd_root_pointer *rp;
|
|
struct imd_root *r;
|
|
struct imd_entry *e;
|
|
ssize_t root_offset;
|
|
|
|
if (!imdr->limit)
|
|
return -1;
|
|
|
|
/* root_size and entry_align should be a power of 2. */
|
|
assert(IS_POWER_OF_2(root_size));
|
|
assert(IS_POWER_OF_2(entry_align));
|
|
|
|
if (!imdr->limit)
|
|
return -1;
|
|
|
|
/*
|
|
* root_size needs to be large enough to accommodate root pointer and
|
|
* root book keeping structure. The caller needs to ensure there's
|
|
* enough room for tracking individual allocations.
|
|
*/
|
|
if (root_size < (sizeof(*rp) + sizeof(*r)))
|
|
return -1;
|
|
|
|
/* For simplicity don't allow sizes or alignments to exceed LIMIT_ALIGN.
|
|
*/
|
|
if (root_size > LIMIT_ALIGN || entry_align > LIMIT_ALIGN)
|
|
return -1;
|
|
|
|
/* Additionally, don't handle an entry alignment > root_size. */
|
|
if (entry_align > root_size)
|
|
return -1;
|
|
|
|
rp = imdr_get_root_pointer(imdr);
|
|
|
|
root_offset = -(ssize_t)root_size;
|
|
/* Set root pointer. */
|
|
imdr->r = relative_pointer((void *)imdr->limit, root_offset);
|
|
r = imdr_root(imdr);
|
|
imd_link_root(rp, r);
|
|
|
|
memset(r, 0, sizeof(*r));
|
|
r->entry_align = entry_align;
|
|
|
|
/* Calculate size left for entries. */
|
|
r->max_entries = root_num_entries(root_size);
|
|
|
|
/* Fill in first entry covering the root region. */
|
|
r->num_entries = 1;
|
|
e = &r->entries[0];
|
|
imd_entry_assign(e, CBMEM_ID_IMD_ROOT, 0, root_size);
|
|
|
|
printk(BIOS_DEBUG, "IMD: root @ %p %u entries.\n", r, r->max_entries);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int imdr_recover(struct imdr *imdr)
|
|
{
|
|
struct imd_root_pointer *rp;
|
|
struct imd_root *r;
|
|
uintptr_t low_limit;
|
|
size_t i;
|
|
|
|
if (!imdr->limit)
|
|
return -1;
|
|
|
|
rp = imdr_get_root_pointer(imdr);
|
|
|
|
if (!imd_root_pointer_valid(rp))
|
|
return -1;
|
|
|
|
r = relative_pointer(rp, rp->root_offset);
|
|
|
|
/* Confirm the root and root pointer are just under the limit. */
|
|
if (ALIGN_UP((uintptr_t)&r->entries[r->max_entries], LIMIT_ALIGN) !=
|
|
imdr->limit)
|
|
return -1;
|
|
|
|
if (r->num_entries > r->max_entries)
|
|
return -1;
|
|
|
|
/* Entry alignment should be power of 2. */
|
|
if (!IS_POWER_OF_2(r->entry_align))
|
|
return -1;
|
|
|
|
low_limit = (uintptr_t)relative_pointer(r, r->max_offset);
|
|
|
|
/* If no max_offset then lowest limit is 0. */
|
|
if (low_limit == (uintptr_t)r)
|
|
low_limit = 0;
|
|
|
|
for (i = 0; i < r->num_entries; i++) {
|
|
uintptr_t start_addr;
|
|
const struct imd_entry *e = &r->entries[i];
|
|
|
|
if (e->magic != IMD_ENTRY_MAGIC)
|
|
return -1;
|
|
|
|
start_addr = (uintptr_t)relative_pointer(r, e->start_offset);
|
|
if (start_addr < low_limit)
|
|
return -1;
|
|
if (start_addr >= imdr->limit ||
|
|
(start_addr + e->size) > imdr->limit)
|
|
return -1;
|
|
}
|
|
|
|
/* Set root pointer. */
|
|
imdr->r = r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct imd_entry *imdr_entry_find(const struct imdr *imdr,
|
|
uint32_t id)
|
|
{
|
|
struct imd_root *r;
|
|
struct imd_entry *e;
|
|
size_t i;
|
|
|
|
r = imdr_root(imdr);
|
|
|
|
if (r == NULL)
|
|
return NULL;
|
|
|
|
e = NULL;
|
|
/* Skip first entry covering the root. */
|
|
for (i = 1; i < r->num_entries; i++) {
|
|
if (id != r->entries[i].id)
|
|
continue;
|
|
e = &r->entries[i];
|
|
break;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
static int imdr_limit_size(struct imdr *imdr, size_t max_size)
|
|
{
|
|
struct imd_root *r;
|
|
ssize_t smax_size;
|
|
size_t root_size;
|
|
|
|
r = imdr_root(imdr);
|
|
if (r == NULL)
|
|
return -1;
|
|
|
|
root_size = imdr->limit - (uintptr_t)r;
|
|
|
|
if (max_size < root_size)
|
|
return -1;
|
|
|
|
/* Take into account the root size. */
|
|
smax_size = max_size - root_size;
|
|
smax_size = -smax_size;
|
|
|
|
r->max_offset = smax_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t imdr_entry_size(const struct imdr *imdr,
|
|
const struct imd_entry *e)
|
|
{
|
|
return e->size;
|
|
}
|
|
|
|
static void *imdr_entry_at(const struct imdr *imdr, const struct imd_entry *e)
|
|
{
|
|
return relative_pointer(imdr_root(imdr), e->start_offset);
|
|
}
|
|
|
|
static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id,
|
|
size_t size)
|
|
{
|
|
struct imd_entry *entry;
|
|
struct imd_entry *last_entry;
|
|
ssize_t e_offset;
|
|
size_t used_size;
|
|
|
|
if (r->num_entries == r->max_entries)
|
|
return NULL;
|
|
|
|
/* Determine total size taken up by entry. */
|
|
used_size = ALIGN_UP(size, r->entry_align);
|
|
|
|
/* See if size overflows imd total size. */
|
|
if (used_size > imd_root_data_left(r))
|
|
return NULL;
|
|
|
|
/*
|
|
* Determine if offset field overflows. All offsets should be lower
|
|
* than the previous one.
|
|
*/
|
|
last_entry = root_last_entry(r);
|
|
e_offset = last_entry->start_offset;
|
|
e_offset -= (ssize_t)used_size;
|
|
if (e_offset > last_entry->start_offset)
|
|
return NULL;
|
|
|
|
entry = root_last_entry(r) + 1;
|
|
r->num_entries++;
|
|
|
|
imd_entry_assign(entry, id, e_offset, size);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static const struct imd_entry *imdr_entry_add(const struct imdr *imdr,
|
|
uint32_t id, size_t size)
|
|
{
|
|
struct imd_root *r;
|
|
|
|
r = imdr_root(imdr);
|
|
|
|
if (r == NULL)
|
|
return NULL;
|
|
|
|
if (root_is_locked(r))
|
|
return NULL;
|
|
|
|
return imd_entry_add_to_root(r, id, size);
|
|
}
|
|
|
|
static bool imdr_has_entry(const struct imdr *imdr, const struct imd_entry *e)
|
|
{
|
|
struct imd_root *r;
|
|
size_t idx;
|
|
|
|
r = imdr_root(imdr);
|
|
if (r == NULL)
|
|
return false;
|
|
|
|
/* Determine if the entry is within this root structure. */
|
|
idx = e - &r->entries[0];
|
|
if (idx >= r->num_entries)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static const struct imdr *imd_entry_to_imdr(const struct imd *imd,
|
|
const struct imd_entry *entry)
|
|
{
|
|
if (imdr_has_entry(&imd->lg, entry))
|
|
return &imd->lg;
|
|
|
|
if (imdr_has_entry(&imd->sm, entry))
|
|
return &imd->sm;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize imd handle. */
|
|
void imd_handle_init(struct imd *imd, void *upper_limit)
|
|
{
|
|
imdr_init(&imd->lg, upper_limit);
|
|
imdr_init(&imd->sm, NULL);
|
|
}
|
|
|
|
void imd_handle_init_partial_recovery(struct imd *imd)
|
|
{
|
|
const struct imd_entry *e;
|
|
struct imd_root_pointer *rp;
|
|
struct imdr *imdr;
|
|
|
|
if (imd->lg.limit == 0)
|
|
return;
|
|
|
|
imd_handle_init(imd, (void *)imd->lg.limit);
|
|
|
|
/* Initialize root pointer for the large regions. */
|
|
imdr = &imd->lg;
|
|
rp = imdr_get_root_pointer(imdr);
|
|
imdr->r = relative_pointer(rp, rp->root_offset);
|
|
|
|
e = imdr_entry_find(imdr, SMALL_REGION_ID);
|
|
|
|
if (e == NULL)
|
|
return;
|
|
|
|
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
|
|
imd->sm.limit += imdr_entry_size(imdr, e);
|
|
imdr = &imd->sm;
|
|
rp = imdr_get_root_pointer(imdr);
|
|
imdr->r = relative_pointer(rp, rp->root_offset);
|
|
}
|
|
|
|
int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align)
|
|
{
|
|
return imdr_create_empty(&imd->lg, root_size, entry_align);
|
|
}
|
|
|
|
int imd_create_tiered_empty(struct imd *imd,
|
|
size_t lg_root_size, size_t lg_entry_align,
|
|
size_t sm_root_size, size_t sm_entry_align)
|
|
{
|
|
size_t sm_region_size;
|
|
const struct imd_entry *e;
|
|
struct imdr *imdr;
|
|
|
|
imdr = &imd->lg;
|
|
|
|
if (imdr_create_empty(imdr, lg_root_size, lg_entry_align) != 0)
|
|
return -1;
|
|
|
|
/* Calculate the size of the small region to request. */
|
|
sm_region_size = root_num_entries(sm_root_size) * sm_entry_align;
|
|
sm_region_size += sm_root_size;
|
|
sm_region_size = ALIGN_UP(sm_region_size, lg_entry_align);
|
|
|
|
/* Add a new entry to the large region to cover the root and entries. */
|
|
e = imdr_entry_add(imdr, SMALL_REGION_ID, sm_region_size);
|
|
|
|
if (e == NULL)
|
|
goto fail;
|
|
|
|
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
|
|
imd->sm.limit += sm_region_size;
|
|
|
|
if (imdr_create_empty(&imd->sm, sm_root_size, sm_entry_align) != 0 ||
|
|
imdr_limit_size(&imd->sm, sm_region_size))
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
imd_handle_init(imd, (void *)imdr->limit);
|
|
return -1;
|
|
}
|
|
|
|
int imd_recover(struct imd *imd)
|
|
{
|
|
const struct imd_entry *e;
|
|
uintptr_t small_upper_limit;
|
|
struct imdr *imdr;
|
|
|
|
imdr = &imd->lg;
|
|
if (imdr_recover(imdr) != 0)
|
|
return -1;
|
|
|
|
/* Determine if small region is region is present. */
|
|
e = imdr_entry_find(imdr, SMALL_REGION_ID);
|
|
|
|
if (e == NULL)
|
|
return 0;
|
|
|
|
small_upper_limit = (uintptr_t)imdr_entry_at(imdr, e);
|
|
small_upper_limit += imdr_entry_size(imdr, e);
|
|
|
|
imd->sm.limit = small_upper_limit;
|
|
|
|
/* Tear down any changes on failure. */
|
|
if (imdr_recover(&imd->sm) != 0) {
|
|
imd_handle_init(imd, (void *)imd->lg.limit);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int imd_limit_size(struct imd *imd, size_t max_size)
|
|
{
|
|
return imdr_limit_size(&imd->lg, max_size);
|
|
}
|
|
|
|
int imd_lockdown(struct imd *imd)
|
|
{
|
|
struct imd_root *r;
|
|
|
|
r = imdr_root(&imd->lg);
|
|
if (r == NULL)
|
|
return -1;
|
|
|
|
r->flags |= IMD_FLAG_LOCKED;
|
|
|
|
r = imdr_root(&imd->sm);
|
|
if (r != NULL)
|
|
r->flags |= IMD_FLAG_LOCKED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int imd_region_used(struct imd *imd, void **base, size_t *size)
|
|
{
|
|
struct imd_root *r;
|
|
struct imd_entry *e;
|
|
void *low_addr;
|
|
size_t sz_used;
|
|
|
|
if (!imd->lg.limit)
|
|
return -1;
|
|
|
|
r = imdr_root(&imd->lg);
|
|
|
|
if (r == NULL)
|
|
return -1;
|
|
|
|
/* Use last entry to obtain lowest address. */
|
|
e = root_last_entry(r);
|
|
|
|
low_addr = relative_pointer(r, e->start_offset);
|
|
|
|
/* Total size used is the last entry's base up to the limit. */
|
|
sz_used = imd->lg.limit - (uintptr_t)low_addr;
|
|
|
|
*base = low_addr;
|
|
*size = sz_used;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id,
|
|
size_t size)
|
|
{
|
|
struct imd_root *r;
|
|
const struct imdr *imdr;
|
|
const struct imd_entry *e = NULL;
|
|
|
|
/*
|
|
* Determine if requested size is less than 1/4 of small data
|
|
* region is left.
|
|
*/
|
|
imdr = &imd->sm;
|
|
r = imdr_root(imdr);
|
|
|
|
/* No small region. Use the large region. */
|
|
if (r == NULL)
|
|
return imdr_entry_add(&imd->lg, id, size);
|
|
else if (size <= r->entry_align || size <= imd_root_data_left(r) / 4)
|
|
e = imdr_entry_add(imdr, id, size);
|
|
|
|
/* Fall back on large region allocation. */
|
|
if (e == NULL)
|
|
e = imdr_entry_add(&imd->lg, id, size);
|
|
|
|
return e;
|
|
}
|
|
|
|
const struct imd_entry *imd_entry_find(const struct imd *imd, uint32_t id)
|
|
{
|
|
const struct imd_entry *e;
|
|
|
|
/* Many of the smaller allocations are used a lot. Therefore, try
|
|
* the small region first. */
|
|
e = imdr_entry_find(&imd->sm, id);
|
|
|
|
if (e == NULL)
|
|
e = imdr_entry_find(&imd->lg, id);
|
|
|
|
return e;
|
|
}
|
|
|
|
const struct imd_entry *imd_entry_find_or_add(const struct imd *imd,
|
|
uint32_t id, size_t size)
|
|
{
|
|
const struct imd_entry *e;
|
|
|
|
e = imd_entry_find(imd, id);
|
|
|
|
if (e != NULL)
|
|
return e;
|
|
|
|
return imd_entry_add(imd, id, size);
|
|
}
|
|
|
|
size_t imd_entry_size(const struct imd *imd, const struct imd_entry *entry)
|
|
{
|
|
return imdr_entry_size(NULL, entry);
|
|
}
|
|
|
|
void *imd_entry_at(const struct imd *imd, const struct imd_entry *entry)
|
|
{
|
|
const struct imdr *imdr;
|
|
|
|
imdr = imd_entry_to_imdr(imd, entry);
|
|
|
|
if (imdr == NULL)
|
|
return NULL;
|
|
|
|
return imdr_entry_at(imdr, entry);
|
|
}
|
|
|
|
uint32_t imd_entry_id(const struct imd *imd, const struct imd_entry *entry)
|
|
{
|
|
return entry->id;
|
|
}
|
|
|
|
int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry)
|
|
{
|
|
struct imd_root *r;
|
|
const struct imdr *imdr;
|
|
|
|
imdr = imd_entry_to_imdr(imd, entry);
|
|
|
|
if (imdr == NULL)
|
|
return -1;
|
|
|
|
r = imdr_root(imdr);
|
|
|
|
if (r == NULL)
|
|
return -1;
|
|
|
|
if (root_is_locked(r))
|
|
return -1;
|
|
|
|
if (entry != root_last_entry(r))
|
|
return -1;
|
|
|
|
r->num_entries--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void imdr_print_entries(const struct imdr *imdr, const char *indent,
|
|
const struct imd_lookup *lookup, size_t size)
|
|
{
|
|
struct imd_root *r;
|
|
size_t i;
|
|
size_t j;
|
|
|
|
if (imdr == NULL)
|
|
return;
|
|
|
|
r = imdr_root(imdr);
|
|
|
|
for (i = 0; i < r->num_entries; i++) {
|
|
const char *name = NULL;
|
|
const struct imd_entry *e = &r->entries[i];
|
|
|
|
for (j = 0; j < size; j++) {
|
|
if (lookup[j].id == e->id) {
|
|
name = lookup[j].name;
|
|
break;
|
|
}
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "%s", indent);
|
|
|
|
if (name == NULL)
|
|
printk(BIOS_DEBUG, "%08x ", e->id);
|
|
else
|
|
printk(BIOS_DEBUG, "%s", name);
|
|
printk(BIOS_DEBUG, "%2zu. ", i);
|
|
printk(BIOS_DEBUG, "%p ", imdr_entry_at(imdr, e));
|
|
printk(BIOS_DEBUG, "%08zx\n", imdr_entry_size(imdr, e));
|
|
}
|
|
}
|
|
|
|
int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup,
|
|
size_t size)
|
|
{
|
|
if (imdr_root(&imd->lg) == NULL)
|
|
return -1;
|
|
|
|
imdr_print_entries(&imd->lg, "", lookup, size);
|
|
if (imdr_root(&imd->sm) != NULL) {
|
|
printk(BIOS_DEBUG, "IMD small region:\n");
|
|
imdr_print_entries(&imd->sm, " ", lookup, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int imd_cursor_init(const struct imd *imd, struct imd_cursor *cursor)
|
|
{
|
|
if (imd == NULL || cursor == NULL)
|
|
return -1;
|
|
|
|
memset(cursor, 0, sizeof(*cursor));
|
|
|
|
cursor->imdr[0] = &imd->lg;
|
|
cursor->imdr[1] = &imd->sm;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct imd_entry *imd_cursor_next(struct imd_cursor *cursor)
|
|
{
|
|
struct imd_root *r;
|
|
const struct imd_entry *e;
|
|
|
|
if (cursor->current_imdr >= ARRAY_SIZE(cursor->imdr))
|
|
return NULL;
|
|
|
|
r = imdr_root(cursor->imdr[cursor->current_imdr]);
|
|
|
|
if (r == NULL)
|
|
return NULL;
|
|
|
|
if (cursor->current_entry >= r->num_entries) {
|
|
/* Try next imdr. */
|
|
cursor->current_imdr++;
|
|
cursor->current_entry = 0;
|
|
return imd_cursor_next(cursor);
|
|
}
|
|
|
|
e = &r->entries[cursor->current_entry];
|
|
cursor->current_entry++;
|
|
|
|
return e;
|
|
}
|