d36ed272b2
This was a dummy implementation until now which returned -1 always. Add support for reading SPI flash status register (srp0). BUG=chrome-os-partner:59267 BRANCH=None TEST=Verified by enabling and disabling write-protect on reef that the value of SRP0 changes accordingly in status register read. Change-Id: Ib1349605dd87c4a087e416f52a8256b1eaac4f4c Signed-off-by: Furquan Shaikh <furquan@chromium.org> Reviewed-on: https://review.coreboot.org/17205 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@chromium.org>
417 lines
11 KiB
C
417 lines
11 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2016 Intel Corp.
|
|
* (Written by Alexandru Gagniuc <alexandrux.gagniuc@intel.com> for Intel Corp.)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#define __SIMPLE_DEVICE__
|
|
|
|
#include <arch/early_variables.h>
|
|
#include <arch/io.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <soc/intel/common/spi.h>
|
|
#include <soc/pci_devs.h>
|
|
#include <soc/spi.h>
|
|
#include <spi_flash.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Helper to create a SPI context on API entry. */
|
|
#define BOILERPLATE_CREATE_CTX(ctx) \
|
|
struct spi_ctx real_ctx; \
|
|
struct spi_ctx *ctx = &real_ctx; \
|
|
_spi_get_ctx(ctx)
|
|
|
|
/*
|
|
* Anything that's not success is <0. Provided solely for readability, as these
|
|
* constants are not used outside this file.
|
|
*/
|
|
enum errors {
|
|
SUCCESS = 0,
|
|
E_NOT_IMPLEMENTED = -1,
|
|
E_TIMEOUT = -2,
|
|
E_HW_ERROR = -3,
|
|
E_ARGUMENT = -4,
|
|
};
|
|
|
|
/* Reduce data-passing burden by grouping transaction data in a context. */
|
|
struct spi_ctx {
|
|
uintptr_t mmio_base;
|
|
device_t pci_dev;
|
|
uint32_t hsfsts_on_last_error;
|
|
};
|
|
|
|
static void _spi_get_ctx(struct spi_ctx *ctx)
|
|
{
|
|
uint32_t bar;
|
|
|
|
/* FIXME: use device definition */
|
|
ctx->pci_dev = SPI_DEV;
|
|
|
|
bar = pci_read_config32(ctx->pci_dev, PCI_BASE_ADDRESS_0);
|
|
ctx->mmio_base = bar & ~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
|
|
ctx->hsfsts_on_last_error = 0;
|
|
}
|
|
|
|
/* Read register from the SPI controller. 'reg' is the register offset. */
|
|
static uint32_t _spi_ctrlr_reg_read(struct spi_ctx *ctx, uint16_t reg)
|
|
{
|
|
uintptr_t addr = ALIGN_DOWN(ctx->mmio_base + reg, 4);
|
|
return read32((void *)addr);
|
|
}
|
|
|
|
uint32_t spi_ctrlr_reg_read(uint16_t reg)
|
|
{
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
return _spi_ctrlr_reg_read(ctx, reg);
|
|
}
|
|
|
|
/* Write to register in the SPI controller. 'reg' is the register offset. */
|
|
static void _spi_ctrlr_reg_write(struct spi_ctx *ctx, uint16_t reg,
|
|
uint32_t val)
|
|
{
|
|
uintptr_t addr = ALIGN_DOWN(ctx->mmio_base + reg, 4);
|
|
write32((void *)addr, val);
|
|
|
|
}
|
|
|
|
/*
|
|
* The hardware datasheet is not clear on what HORD values actually do. It
|
|
* seems that HORD_SFDP provides access to the first 8 bytes of the SFDP, which
|
|
* is the signature and revision fields. HORD_JEDEC provides access to the
|
|
* actual flash parameters, and is most likely what you want to use when
|
|
* probing the flash from software.
|
|
* It's okay to rely on SFPD, since the SPI controller requires an SFDP 1.5 or
|
|
* newer compliant SPI chip.
|
|
* NOTE: Due to the register layout of the hardware, all accesses will be
|
|
* aligned to a 4 byte boundary.
|
|
*/
|
|
static uint32_t read_spi_sfdp_param(struct spi_ctx *ctx, uint16_t sfdp_reg)
|
|
{
|
|
uint32_t ptinx_index = sfdp_reg & SPIBAR_PTINX_IDX_MASK;
|
|
_spi_ctrlr_reg_write(ctx, SPIBAR_PTINX,
|
|
ptinx_index | SPIBAR_PTINX_HORD_JEDEC);
|
|
return _spi_ctrlr_reg_read(ctx, SPIBAR_PTDATA);
|
|
}
|
|
|
|
/* Fill FDATAn FIFO in preparation for a write transaction. */
|
|
static void fill_xfer_fifo(struct spi_ctx *ctx, const void *data, size_t len)
|
|
{
|
|
len = min(len, SPIBAR_FDATA_FIFO_SIZE);
|
|
|
|
/* YES! memcpy() works. FDATAn does not require 32-bit accesses. */
|
|
memcpy((void*)(ctx->mmio_base + SPIBAR_FDATA(0)), data, len);
|
|
}
|
|
|
|
/* Drain FDATAn FIFO after a read transaction populates data. */
|
|
static void drain_xfer_fifo(struct spi_ctx *ctx, void *dest, size_t len)
|
|
{
|
|
len = min(len, SPIBAR_FDATA_FIFO_SIZE);
|
|
|
|
/* YES! memcpy() works. FDATAn does not require 32-bit accesses. */
|
|
memcpy(dest, (void*)(ctx->mmio_base + SPIBAR_FDATA(0)), len);
|
|
}
|
|
|
|
/* Fire up a transfer using the hardware sequencer. */
|
|
static void start_hwseq_xfer(struct spi_ctx *ctx, uint32_t hsfsts_cycle,
|
|
uint32_t flash_addr, size_t len)
|
|
{
|
|
/* Make sure all W1C status bits get cleared. */
|
|
uint32_t hsfsts = SPIBAR_HSFSTS_W1C_BITS;
|
|
/* Set up transaction parameters. */
|
|
hsfsts |= hsfsts_cycle & SPIBAR_HSFSTS_FCYCLE_MASK;
|
|
hsfsts |= SPIBAR_HSFSTS_FBDC(len - 1);
|
|
|
|
_spi_ctrlr_reg_write(ctx, SPIBAR_FADDR, flash_addr);
|
|
_spi_ctrlr_reg_write(ctx, SPIBAR_HSFSTS_CTL,
|
|
hsfsts | SPIBAR_HSFSTS_FGO);
|
|
}
|
|
|
|
static void print_xfer_error(struct spi_ctx *ctx, const char *failure_reason,
|
|
uint32_t flash_addr)
|
|
{
|
|
printk(BIOS_ERR, "SPI Transaction %s at flash offset %x.\n"
|
|
"\tHSFSTS = 0x%08x\n",
|
|
failure_reason, flash_addr, ctx->hsfsts_on_last_error);
|
|
}
|
|
|
|
static int wait_for_hwseq_xfer(struct spi_ctx *ctx)
|
|
{
|
|
uint32_t hsfsts;
|
|
do {
|
|
hsfsts = _spi_ctrlr_reg_read(ctx, SPIBAR_HSFSTS_CTL);
|
|
|
|
if (hsfsts & SPIBAR_HSFSTS_FCERR) {
|
|
ctx->hsfsts_on_last_error = hsfsts;
|
|
return E_HW_ERROR;
|
|
}
|
|
/* TODO: set up timer and abort on timeout */
|
|
} while (!(hsfsts & SPIBAR_HSFSTS_FDONE));
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Execute SPI transfer. This is a blocking call. */
|
|
static int exec_sync_hwseq_xfer(struct spi_ctx *ctx, uint32_t hsfsts_cycle,
|
|
uint32_t flash_addr, size_t len)
|
|
{
|
|
int ret;
|
|
start_hwseq_xfer(ctx, hsfsts_cycle, flash_addr, len);
|
|
ret = wait_for_hwseq_xfer(ctx);
|
|
if (ret != SUCCESS) {
|
|
const char *reason = (ret == E_TIMEOUT) ? "timeout" : "error";
|
|
print_xfer_error(ctx, reason, flash_addr);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len)
|
|
{
|
|
return MIN(buf_len, SPIBAR_FDATA_FIFO_SIZE);
|
|
}
|
|
|
|
int spi_xfer(struct spi_slave *slave, const void *dout,
|
|
unsigned int bytesout, void *din, unsigned int bytesin)
|
|
{
|
|
printk(BIOS_DEBUG, "NOT IMPLEMENTED: %s() !!!\n", __func__);
|
|
return E_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
/*
|
|
* Write-protection status for BIOS region (BIOS_CONTROL register):
|
|
* EISS/WPD bits 00 01 10 11
|
|
* -- -- -- --
|
|
* normal mode RO RW RO RO
|
|
* SMM mode RO RW RO RW
|
|
*/
|
|
void spi_init(void)
|
|
{
|
|
uint32_t bios_ctl;
|
|
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
bios_ctl = pci_read_config32(ctx->pci_dev, SPIBAR_BIOS_CONTROL);
|
|
bios_ctl |= SPIBAR_BIOS_CONTROL_WPD;
|
|
bios_ctl &= ~SPIBAR_BIOS_CONTROL_EISS;
|
|
|
|
/* Enable Prefetching and caching. */
|
|
bios_ctl |= SPIBAR_BIOS_CONTROL_PREFETCH_ENABLE;
|
|
bios_ctl &= ~SPIBAR_BIOS_CONTROL_CACHE_DISABLE;
|
|
|
|
pci_write_config32(ctx->pci_dev, SPIBAR_BIOS_CONTROL, bios_ctl);
|
|
}
|
|
|
|
int spi_claim_bus(struct spi_slave *slave)
|
|
{
|
|
/* There's nothing we need to to here. */
|
|
return 0;
|
|
}
|
|
|
|
void spi_release_bus(struct spi_slave *slave)
|
|
{
|
|
/* No magic needed here. */
|
|
}
|
|
|
|
static int nuclear_spi_erase(struct spi_flash *flash, uint32_t offset, size_t len)
|
|
{
|
|
int ret;
|
|
size_t erase_size;
|
|
uint32_t erase_cycle;
|
|
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
if (!IS_ALIGNED(offset, 4 * KiB) || !IS_ALIGNED(len, 4 * KiB)) {
|
|
printk(BIOS_ERR, "BUG! SPI erase region not sector aligned.\n");
|
|
return E_ARGUMENT;
|
|
}
|
|
|
|
while (len) {
|
|
if (IS_ALIGNED(offset, 64 * KiB) && (len >= 64 * KiB)) {
|
|
erase_size = 64 * KiB;
|
|
erase_cycle = SPIBAR_HSFSTS_CYCLE_64K_ERASE;
|
|
} else {
|
|
erase_size = 4 * KiB;
|
|
erase_cycle = SPIBAR_HSFSTS_CYCLE_4K_ERASE;
|
|
}
|
|
printk(BIOS_SPEW, "Erasing flash addr %x + %zu KiB\n",
|
|
offset, erase_size / KiB);
|
|
|
|
ret = exec_sync_hwseq_xfer(ctx, erase_cycle, offset, 0);
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
|
|
offset += erase_size;
|
|
len -= erase_size;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int nuclear_spi_read(struct spi_flash *flash, uint32_t addr, size_t len, void *buf)
|
|
{
|
|
int ret;
|
|
size_t xfer_len;
|
|
uint8_t *data = buf;
|
|
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
while (len) {
|
|
xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
|
|
|
|
ret = exec_sync_hwseq_xfer(ctx, SPIBAR_HSFSTS_CYCLE_READ,
|
|
addr, xfer_len);
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
|
|
drain_xfer_fifo(ctx, data, xfer_len);
|
|
|
|
addr += xfer_len;
|
|
data += xfer_len;
|
|
len -= xfer_len;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int nuclear_spi_write(struct spi_flash *flash,
|
|
uint32_t addr, size_t len, const void *buf)
|
|
{
|
|
int ret;
|
|
size_t xfer_len;
|
|
const uint8_t *data = buf;
|
|
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
while (len) {
|
|
xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
|
|
fill_xfer_fifo(ctx, data, xfer_len);
|
|
|
|
ret = exec_sync_hwseq_xfer(ctx, SPIBAR_HSFSTS_CYCLE_WRITE,
|
|
addr, xfer_len);
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
|
|
addr += xfer_len;
|
|
data += xfer_len;
|
|
len -= xfer_len;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int nuclear_spi_status(struct spi_flash *flash, uint8_t *reg)
|
|
{
|
|
int ret;
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
ret = exec_sync_hwseq_xfer(ctx, SPIBAR_HSFSTS_CYCLE_RD_STATUS, 0,
|
|
sizeof(*reg));
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
|
|
drain_xfer_fifo(ctx, reg, sizeof(*reg));
|
|
return ret;
|
|
}
|
|
|
|
static struct spi_slave boot_spi CAR_GLOBAL;
|
|
static struct spi_flash boot_flash CAR_GLOBAL;
|
|
|
|
/*
|
|
* We can't use FDOC and FDOD to read FLCOMP, as previous platforms did.
|
|
* For details see:
|
|
* Ch 31, SPI: p. 194
|
|
* The size of the flash component is always taken from density field in the
|
|
* SFDP table. FLCOMP.C0DEN is no longer used by the Flash Controller.
|
|
*/
|
|
static struct spi_flash *nuclear_flash_probe(struct spi_slave *spi)
|
|
{
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
struct spi_flash *flash;
|
|
uint32_t flash_bits;
|
|
|
|
flash = car_get_var_ptr(&boot_flash);
|
|
|
|
/*
|
|
* bytes = (bits + 1) / 8;
|
|
* But we need to do the addition in a way which doesn't overflow for
|
|
* 4 Gbit devices (flash_bits == 0xffffffff).
|
|
*/
|
|
/* FIXME: Don't hardcode 0x04 ? */
|
|
flash_bits = read_spi_sfdp_param(ctx, 0x04);
|
|
flash->size = (flash_bits >> 3) + 1;
|
|
|
|
flash->spi = spi;
|
|
flash->name = "Apollolake hardware sequencer";
|
|
|
|
/* Can erase both 4 KiB and 64 KiB chunks. Declare the smaller size. */
|
|
flash->sector_size = 4 * KiB;
|
|
/*
|
|
* FIXME: Get erase+cmd, and status_cmd from SFDP.
|
|
*
|
|
* flash->erase_cmd = ???
|
|
* flash->status_cmd = ???
|
|
*/
|
|
|
|
flash->write = nuclear_spi_write;
|
|
flash->erase = nuclear_spi_erase;
|
|
flash->read = nuclear_spi_read;
|
|
flash->status = nuclear_spi_status;
|
|
|
|
return flash;
|
|
}
|
|
|
|
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs)
|
|
{
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
/* This is special hardware. We expect bus 0 and CS line 0 here. */
|
|
if ((bus != 0) || (cs != 0))
|
|
return NULL;
|
|
|
|
struct spi_slave *slave = car_get_var_ptr(&boot_spi);
|
|
|
|
slave->bus = bus;
|
|
slave->cs = cs;
|
|
slave->programmer_specific_probe = nuclear_flash_probe;
|
|
slave->force_programmer_specific = 1;
|
|
|
|
return slave;
|
|
}
|
|
|
|
int spi_read_status(uint8_t *status)
|
|
{
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
if (exec_sync_hwseq_xfer(ctx, SPIBAR_HSFSTS_CYCLE_RD_STATUS, 0,
|
|
sizeof(*status)) != SUCCESS)
|
|
return -1;
|
|
|
|
drain_xfer_fifo(ctx, status, sizeof(*status));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int spi_get_fpr_info(struct fpr_info *info)
|
|
{
|
|
BOILERPLATE_CREATE_CTX(ctx);
|
|
|
|
if (!ctx->mmio_base)
|
|
return -1;
|
|
|
|
info->base = ctx->mmio_base + SPIBAR_FPR_BASE;
|
|
info->max = SPIBAR_FPR_MAX;
|
|
|
|
return 0;
|
|
}
|