Go to file
Aaron Durbin df3a109b72 cbmem: dynamic cbmem support
This patch adds a parallel implementation of cbmem that supports
dynamic sizing. The original implementation relied on reserving
a fixed-size block of memory for adding cbmem entries. In order to
allow for more flexibility for adding cbmem allocations the dynamic
cbmem infrastructure was developed as an alternative to the fixed block
approach. Also, the amount of memory to reserve for cbmem allocations
does not need to be known prior to the first allocation.

The dynamic cbmem code implements the same API as the existing cbmem
code except for cbmem_init() and cbmem_reinit(). The add and find
routines behave the same way. The dynamic cbmem infrastructure
uses a top down allocator that starts allocating from a board/chipset
defined function cbmem_top(). A root pointer lives just below
cbmem_top(). In turn that pointer points to the root block which
contains the entries for all the large alloctations. The corresponding
block for each large allocation falls just below the previous entry.

It should be noted that this implementation rounds all allocations
up to a 4096 byte granularity. Though a packing allocator could
be written for small allocations it was deemed OK to just fragment
the memory as there shouldn't be that many small allocations. The
result is less code with a tradeoff of some wasted memory.

           +----------------------+ <- cbmem_top()
  |   +----|   root pointer       |
  |   |    +----------------------+
  |   |    |                      |--------+
  |   +--->|   root block         |-----+  |
  |        +----------------------+     |  |
  |        |                      |     |  |
  |        |                      |     |  |
  |        |   alloc N            |<----+  |
  |        +----------------------+        |
  |        |                      |        |
  |        |                      |        |
 \|/       |   alloc N + 1        |<-------+
  v        +----------------------+

In addition to preserving the previous cbmem API, the dynamic
cbmem API allows for removing blocks from cbmem. This allows for
the boot process to allocate memory that can be discarded after
it's been used for performing more complex boot tasks in romstage.

In order to plumb this support in there were some issues to work
around regarding writing of coreboot tables. There were a few
assumptions to how cbmem was layed out which dictated some ifdef
guarding and other runtime checks so as not to incorrectly
tag the e820 and coreboot memory tables.

The example shown below is using dynamic cbmem infrastructure.
The reserved memory for cbmem is less than 512KiB.

coreboot memory table:
 0. 0000000000000000-0000000000000fff: CONFIGURATION TABLES
 1. 0000000000001000-000000000002ffff: RAM
 2. 0000000000030000-000000000003ffff: RESERVED
 3. 0000000000040000-000000000009ffff: RAM
 4. 00000000000a0000-00000000000fffff: RESERVED
 5. 0000000000100000-0000000000efffff: RAM
 6. 0000000000f00000-0000000000ffffff: RESERVED
 7. 0000000001000000-000000007bf80fff: RAM
 8. 000000007bf81000-000000007bffffff: CONFIGURATION TABLES
 9. 000000007c000000-000000007e9fffff: RESERVED
10. 00000000f0000000-00000000f3ffffff: RESERVED
11. 00000000fed10000-00000000fed19fff: RESERVED
12. 00000000fed84000-00000000fed84fff: RESERVED
13. 0000000100000000-00000001005fffff: RAM
Wrote coreboot table at: 7bf81000, 0x39c bytes, checksum f5bf
coreboot table: 948 bytes.
CBMEM ROOT  0. 7bfff000 00001000
MRC DATA    1. 7bffe000 00001000
ROMSTAGE    2. 7bffd000 00001000
TIME STAMP  3. 7bffc000 00001000
ROMSTG STCK 4. 7bff7000 00005000
CONSOLE     5. 7bfe7000 00010000
VBOOT       6. 7bfe6000 00001000
RAMSTAGE    7. 7bf98000 0004e000
GDT         8. 7bf97000 00001000
ACPI        9. 7bf8b000 0000c000
ACPI GNVS  10. 7bf8a000 00001000
SMBIOS     11. 7bf89000 00001000
COREBOOT   12. 7bf81000 00008000

And the corresponding e820 entries:
BIOS-e820: [mem 0x0000000000000000-0x0000000000000fff] type 16
BIOS-e820: [mem 0x0000000000001000-0x000000000002ffff] usable
BIOS-e820: [mem 0x0000000000030000-0x000000000003ffff] reserved
BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable
BIOS-e820: [mem 0x00000000000a0000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x0000000000efffff] usable
BIOS-e820: [mem 0x0000000000f00000-0x0000000000ffffff] reserved
BIOS-e820: [mem 0x0000000001000000-0x000000007bf80fff] usable
BIOS-e820: [mem 0x000000007bf81000-0x000000007bffffff] type 16
BIOS-e820: [mem 0x000000007c000000-0x000000007e9fffff] reserved
BIOS-e820: [mem 0x00000000f0000000-0x00000000f3ffffff] reserved
BIOS-e820: [mem 0x00000000fed10000-0x00000000fed19fff] reserved
BIOS-e820: [mem 0x00000000fed84000-0x00000000fed84fff] reserved
BIOS-e820: [mem 0x0000000100000000-0x00000001005fffff] usable

Change-Id: Ie3bca52211800a8652a77ca684140cfc9b3b9a6b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2848
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 23:24:19 +01:00
3rdparty@ba8caa30bd Update 3rdparty mark to latest repository 2013-03-15 19:09:08 +01:00
documentation sconfig: rename lapic_cluster -> cpu_cluster 2013-02-14 07:07:20 +01:00
payloads cbfs: Change false ERROR print to a WARNING. 2013-03-21 23:23:31 +01:00
src cbmem: dynamic cbmem support 2013-03-21 23:24:19 +01:00
util cbfstool locate: Implement alignment switch --align/-a 2013-03-20 05:47:32 +01:00
.gitignore add a few entries to .gitignore 2013-01-10 22:51:20 +01:00
.gitmodules gitmodules: Ignore 3rdparty in "diff family" 2013-03-16 04:07:14 +01:00
.gitreview add .gitreview 2012-11-01 23:13:39 +01:00
COPYING
Makefile build system: Retire REQUIRES_BLOB 2013-02-19 11:00:41 +01:00
Makefile.inc rmodule: add rmodules class and new type 2013-03-18 20:46:40 +01:00
README Update README with newer version of the text from the web page 2011-06-15 10:16:33 +02:00

README

-------------------------------------------------------------------------------
coreboot README
-------------------------------------------------------------------------------

coreboot is a Free Software project aimed at replacing the proprietary BIOS
(firmware) found in most computers.  coreboot performs a little bit of
hardware initialization and then executes additional boot logic, called a
payload.

With the separation of hardware initialization and later boot logic,
coreboot can scale from specialized applications that run directly
firmware, run operating systems in flash, load custom
bootloaders, or implement firmware standards, like PC BIOS services or
UEFI. This allows for systems to only include the features necessary
in the target application, reducing the amount of code and flash space
required.

coreboot was formerly known as LinuxBIOS.


Payloads
--------

After the basic initialization of the hardware has been performed, any
desired "payload" can be started by coreboot.

See http://www.coreboot.org/Payloads for a list of supported payloads.


Supported Hardware
------------------

coreboot supports a wide range of chipsets, devices, and mainboards.

For details please consult:

 * http://www.coreboot.org/Supported_Motherboards
 * http://www.coreboot.org/Supported_Chipsets_and_Devices


Build Requirements
------------------

 * gcc / g++
 * make

Optional:

 * doxygen (for generating/viewing documentation)
 * iasl (for targets with ACPI support)
 * gdb (for better debugging facilities on some targets)
 * ncurses (for 'make menuconfig')
 * flex and bison (for regenerating parsers)


Building coreboot
-----------------

Please consult http://www.coreboot.org/Build_HOWTO for details.


Testing coreboot Without Modifying Your Hardware
------------------------------------------------

If you want to test coreboot without any risks before you really decide
to use it on your hardware, you can use the QEMU system emulator to run
coreboot virtually in QEMU.

Please see http://www.coreboot.org/QEMU for details.


Website and Mailing List
------------------------

Further details on the project, a FAQ, many HOWTOs, news, development
guidelines and more can be found on the coreboot website:

  http://www.coreboot.org

You can contact us directly on the coreboot mailing list:

  http://www.coreboot.org/Mailinglist


Copyright and License
---------------------

The copyright on coreboot is owned by quite a large number of individual
developers and companies. Please check the individual source files for details.

coreboot is licensed under the terms of the GNU General Public License (GPL).
Some files are licensed under the "GPL (version 2, or any later version)",
and some files are licensed under the "GPL, version 2". For some parts, which
were derived from other projects, other (GPL-compatible) licenses may apply.
Please check the individual source files for details.

This makes the resulting coreboot images licensed under the GPL, version 2.