eef40eb2a9
The SD/MMC support is broken into several pieces. There are three main data structures: * sdhci_ctrlr - This is SDHCI controller specific and defined in include/device/sdhci.h * sd_mmc_ctrlr - This contains generic controller management data and defined in include/device/sd_mmc_ctrlr.h * storage_media - This contains the flash storage device management data and is defined in include/device/storage.h The SD/MMC driver consists of several components: * SDHCI controller code * bouncebuf.c * bouncebuf.h * pci_sdhci.c * sdhci.c * sdhci.h * sdhci_adma.c * sdhci_display.c * Flash storage device support * mmc.c * mmc.h * sd.c * sd_mmc.c * sd_mmc.h * storage.c * storage.h * storage_erase.c * storage_write.c Kconfig values enable various portions of the controller and storage drivers to be built to reduce the overall size of what is included in the final image. Full read/write/erase operations are provided for those platforms which want to take advantage. It is also possible to build the driver to perform initialization only. By default, this driver is not included in any platform, platforms must specifically select DRIVERS_STORAGE to add the SD/MMC support. After this patch is reviewed and merged, there are some additional patches: * Common CAR storage area - Use a predefined region of CAR to pass data structures between bootblock through to romstage. This allows early stages to preform the SD/MMC device initialization and later stages to use the SD/MMC device without further initialization. The example code initializes the SD/MMC device in bootblock and uses the SD/MMC device in romstage without further initialization. * CBMEM ID - Add a CBMEM ID value for the data structures so that they may be passed from romstage to ramstage and eventually the payload. The example uses the SD/MMC device in ramstage without further initialization. * Move the SD/MMC driver into commonlib * Have libpayload build the SD/MMC driver from commonlib. The intent is to pass the controller state to libpayload so that the SD/MMC device can be used without further initialization. * On some platforms, have depthcharge use the commonlib SD/MMC driver History: Copy the SD/MMC driver from depthcharge revision eb583fa8 into coreboot and make the following changes: * Removed #include "config.h" from mmc.c, allow the lint tests to pass. * Move include files from drivers/storage into include/device. * Rename mmc.h to storage.h. * Add the Kconfig and Makefile and make edits to get the code to build. * Add support to initialize a PCI controller. * Fix formatting issues detected by checkpatch. * Fix data flow issues detected by checkpatch. * Add the missing voltage (MMC_VDD_35_36) into the voltage mask. * Rename the macros mmc_debug, mmc_trace and mmc_error to sd_mmc_*. * Replace printf with sd_mmc_error. * Add sdhc_debug, sdhc_trace and sd_error macros. * Add Kconfig values to enable storage device debugging and tracing. * Add tracing and debug support to the SDHCI driver. * Allow SOC to override more controller features. * Split out ADMA support. * Move 1V8 support into SOC routine. * Move HS400 support into SOC routine. * Rework clock handling. * Change all controller references to use ctrlr. * Update the voltage handling. * Update modes of operation. * Move DMA fields into MmcCtrlr. * Update bus width support. * Change MMC_TIMING_* to BUS_TIMING_*. * Rename MMC_MODE_ to DRVR_CAP. * Move quirks into ctrlr->caps. * Associate removeable with the controller. * Statically allocate MmcMedia. * Replace the SdhciHost structure with the MmcCtrlr structure. * Split the code to support other SD/MMC controllers. * Split out erase and write support. * Update the code to be more consistent with the coreboot coding style. * Only expose calling APIs. * Divide up mmc.c into 4 modules: MMC, SD, storage card, common code. * Update debug and error messages. * Add partition support. * Display clock frequencies once in MHz. * Remove mmc_send_cmd, use ctrlr->send_cmd instead. * Handle error from sd_send_op_cond. * Allow mainboard to control delays around CMD 0. * Support command logging. * Mainboard may set delay after SD/MMC command. * Display serial number with sd_mmc_trace. * Remove cmd set parameter from mmc_switch. * Display errors for timeout and comm errors. * Add LED support. * Move 64bit DMA flag into ctrlr->caps. * Rework PIO transfer routine. * Add HS200 bus tuning. * Add support for HS400. * Use same format for HS400, HS200 and HS52. * Reduce storage_media structure size * Add routine to update code pointers * Add display of storage setup * Display controller setup TEST=Build and run on Reef and Galileo Gen2 Change-Id: I9b5f9db1e27833e4ce4a97ad4f5ef3a46f64f2a2 Signed-off-by: Lee Leahy <leroy.p.leahy@intel.com> Reviewed-on: https://review.coreboot.org/19208 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org> |
||
---|---|---|
3rdparty | ||
Documentation | ||
configs | ||
payloads | ||
src | ||
util | ||
.checkpatch.conf | ||
.clang-format | ||
.gitignore | ||
.gitmodules | ||
.gitreview | ||
COPYING | ||
MAINTAINERS | ||
Makefile | ||
Makefile.inc | ||
README | ||
gnat.adc | ||
toolchain.inc |
README
------------------------------------------------------------------------------- coreboot README ------------------------------------------------------------------------------- coreboot is a Free Software project aimed at replacing the proprietary BIOS (firmware) found in most computers. coreboot performs a little bit of hardware initialization and then executes additional boot logic, called a payload. With the separation of hardware initialization and later boot logic, coreboot can scale from specialized applications that run directly firmware, run operating systems in flash, load custom bootloaders, or implement firmware standards, like PC BIOS services or UEFI. This allows for systems to only include the features necessary in the target application, reducing the amount of code and flash space required. coreboot was formerly known as LinuxBIOS. Payloads -------- After the basic initialization of the hardware has been performed, any desired "payload" can be started by coreboot. See http://www.coreboot.org/Payloads for a list of supported payloads. Supported Hardware ------------------ coreboot supports a wide range of chipsets, devices, and mainboards. For details please consult: * http://www.coreboot.org/Supported_Motherboards * http://www.coreboot.org/Supported_Chipsets_and_Devices Build Requirements ------------------ * make * gcc / g++ Because Linux distribution compilers tend to use lots of patches. coreboot does lots of "unusual" things in its build system, some of which break due to those patches, sometimes by gcc aborting, sometimes - and that's worse - by generating broken object code. Two options: use our toolchain (eg. make crosstools-i386) or enable the ANY_TOOLCHAIN Kconfig option if you're feeling lucky (no support in this case). * iasl (for targets with ACPI support) Optional: * doxygen (for generating/viewing documentation) * gdb (for better debugging facilities on some targets) * ncurses (for 'make menuconfig' and 'make nconfig') * flex and bison (for regenerating parsers) Building coreboot ----------------- Please consult http://www.coreboot.org/Build_HOWTO for details. Testing coreboot Without Modifying Your Hardware ------------------------------------------------ If you want to test coreboot without any risks before you really decide to use it on your hardware, you can use the QEMU system emulator to run coreboot virtually in QEMU. Please see http://www.coreboot.org/QEMU for details. Website and Mailing List ------------------------ Further details on the project, a FAQ, many HOWTOs, news, development guidelines and more can be found on the coreboot website: http://www.coreboot.org You can contact us directly on the coreboot mailing list: http://www.coreboot.org/Mailinglist Copyright and License --------------------- The copyright on coreboot is owned by quite a large number of individual developers and companies. Please check the individual source files for details. coreboot is licensed under the terms of the GNU General Public License (GPL). Some files are licensed under the "GPL (version 2, or any later version)", and some files are licensed under the "GPL, version 2". For some parts, which were derived from other projects, other (GPL-compatible) licenses may apply. Please check the individual source files for details. This makes the resulting coreboot images licensed under the GPL, version 2.