coreboot-kgpe-d16/payloads/libpayload/drivers/video/graphics.c
Daisuke Nojiri f86515244a cbgfx: use bilinear interpolation to scale bitmap
This change replaces the current scaling algorithm (nearest neighbor) used
for bitmap rendering with the bilinear interpolation, which has much better
reproduction.

BUG=none
BRANCH=tot
TEST=Tested on Samus

Change-Id: I02520883debb7db40ffc19d4480244e0acabc818
Signed-off-by: Patrick Georgi <pgeorgi@google.com>
Original-Commit-Id: 764b383c1763a022728f2b2d9fb90e27c9e32e94
Original-Change-Id: I0ddd184343428904d04d8a76fe18a885529c7d3d
Original-Signed-off-by: Daisuke Nojiri <dnojiri@chromium.org>
Original-Reviewed-on: https://chromium-review.googlesource.com/302195
Original-Reviewed-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: http://review.coreboot.org/11926
Tested-by: build bot (Jenkins)
2015-10-27 15:22:16 +01:00

498 lines
14 KiB
C

/*
* This file is part of the libpayload project.
*
* Copyright (C) 2015 Google, Inc.
*/
#include <libpayload.h>
#include <cbfs.h>
#include <sysinfo.h>
#include "bitmap.h"
/*
* 'canvas' is the drawing area located in the center of the screen. It's a
* square area, stretching vertically to the edges of the screen, leaving
* non-drawing areas on the left and right. The screen is assumed to be
* landscape.
*/
static struct rect canvas;
static struct rect screen;
/*
* Framebuffer is assumed to assign a higher coordinate (larger x, y) to
* a higher address
*/
static struct cb_framebuffer *fbinfo;
static uint8_t *fbaddr;
static char initialized = 0;
#define LOG(x...) printf("CBGFX: " x)
/*
* This is the range used internally to scale bitmap images. (e.g. 128 = 50%,
* 512 = 200%). We choose 256 so that division and multiplication become bit
* shift operation.
*/
#define BITMAP_SCALE_BASE 256
#define ROUNDUP(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#define ABS(x) ((x) < 0 ? -(x) : (x))
static const struct vector vzero = {
.x = 0,
.y = 0,
};
static void add_vectors(struct vector *out,
const struct vector *v1, const struct vector *v2)
{
out->x = v1->x + v2->x;
out->y = v1->y + v2->y;
}
/*
* Transform a vector:
* x' = x * a_x + offset_x
* y' = y * a_y + offset_y
*/
static void transform_vector(struct vector *out,
const struct vector *in,
const struct scale *a,
const struct vector *offset)
{
out->x = a->x.nume * in->x / a->x.deno + offset->x;
out->y = a->y.nume * in->y / a->y.deno + offset->y;
}
/*
* Returns 1 if v is exclusively within box, 0 if v is inclusively within box,
* or -1 otherwise. Note that only the left and bottom edges are considered.
*/
static int within_box(const struct vector *v, const struct rect *bound)
{
if (v->x < bound->offset.x + bound->size.width &&
v->y < bound->offset.y + bound->size.height)
return 1;
else if (v->x <= bound->offset.x + bound->size.width &&
v->y <= bound->offset.y + bound->size.height)
return 0;
else
return -1;
}
static inline uint32_t calculate_color(const struct rgb_color *rgb)
{
uint32_t color = 0;
color |= (rgb->red >> (8 - fbinfo->red_mask_size))
<< fbinfo->red_mask_pos;
color |= (rgb->green >> (8 - fbinfo->green_mask_size))
<< fbinfo->green_mask_pos;
color |= (rgb->blue >> (8 - fbinfo->blue_mask_size))
<< fbinfo->blue_mask_pos;
return color;
}
/*
* Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim
* and do the validation at callers' site.
*/
static inline void set_pixel(struct vector *coord, uint32_t color)
{
const int bpp = fbinfo->bits_per_pixel;
int i;
uint8_t * const pixel = fbaddr + (coord->x +
coord->y * fbinfo->x_resolution) * bpp / 8;
for (i = 0; i < bpp / 8; i++)
pixel[i] = (color >> (i * 8));
}
/*
* Initializes the library. Automatically called by APIs. It sets up
* the canvas and the framebuffer.
*/
static int cbgfx_init(void)
{
if (initialized)
return 0;
fbinfo = lib_sysinfo.framebuffer;
if (!fbinfo)
return -1;
fbaddr = phys_to_virt((uint8_t *)(uintptr_t)(fbinfo->physical_address));
if (!fbaddr)
return -1;
screen.size.width = fbinfo->x_resolution;
screen.size.height = fbinfo->y_resolution;
screen.offset.x = 0;
screen.offset.y = 0;
/* Calculate canvas size & offset, assuming the screen is landscape */
if (screen.size.height > screen.size.width) {
LOG("Portrait screen not supported\n");
return -1;
}
canvas.size.height = screen.size.height;
canvas.size.width = canvas.size.height;
canvas.offset.x = (screen.size.width - canvas.size.width) / 2;
canvas.offset.y = 0;
initialized = 1;
LOG("cbgfx initialized: screen:width=%d, height=%d, offset=%d canvas:width=%d, height=%d, offset=%d\n",
screen.size.width, screen.size.height, screen.offset.x,
canvas.size.width, canvas.size.height, canvas.offset.x);
return 0;
}
void *load_bitmap(const char *name, size_t *size)
{
static struct cbfs_media media;
static int cbfs_media_initialized = 0;
if (!cbfs_media_initialized) {
if (init_default_cbfs_media(&media)) {
printf("Failed to initialize default media\n");
return NULL;
}
}
cbfs_media_initialized = 1;
return cbfs_get_file_content(&media, name, CBFS_TYPE_RAW, size);
}
int draw_box(const struct rect *box, const struct rgb_color *rgb)
{
struct vector top_left;
struct vector size;
struct vector p, t;
const uint32_t color = calculate_color(rgb);
const struct scale top_left_s = {
.x = { .nume = box->offset.x, .deno = CANVAS_SCALE, },
.y = { .nume = box->offset.y, .deno = CANVAS_SCALE, }
};
const struct scale size_s = {
.x = { .nume = box->size.x, .deno = CANVAS_SCALE, },
.y = { .nume = box->size.y, .deno = CANVAS_SCALE, }
};
if (cbgfx_init())
return CBGFX_ERROR_INIT;
transform_vector(&top_left, &canvas.size, &top_left_s, &canvas.offset);
transform_vector(&size, &canvas.size, &size_s, &vzero);
add_vectors(&t, &top_left, &size);
if (within_box(&t, &canvas) < 0) {
LOG("Box exceeds canvas boundary\n");
return CBGFX_ERROR_CANVAS_BOUNDARY;
}
for (p.y = top_left.y; p.y < t.y; p.y++)
for (p.x = top_left.x; p.x < t.x; p.x++)
set_pixel(&p, color);
return CBGFX_SUCCESS;
}
int clear_canvas(struct rgb_color *rgb)
{
const struct rect box = {
vzero,
.size = {
.width = CANVAS_SCALE,
.height = CANVAS_SCALE,
},
};
if (cbgfx_init())
return CBGFX_ERROR_INIT;
return draw_box(&box, rgb);
}
int clear_screen(struct rgb_color *rgb)
{
uint32_t color;
struct vector p;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
color = calculate_color(rgb);
for (p.y = 0; p.y < screen.size.height; p.y++)
for (p.x = 0; p.x < screen.size.width; p.x++)
set_pixel(&p, color);
return CBGFX_SUCCESS;
}
/*
* This check guarantees we will not try to read outside pixel data.
*/
static int check_bound(const struct vector *image,
const struct bitmap_header_v3 *header,
const struct scale *scale)
{
struct vector p = {
.x = (image->width - 1) * scale->x.deno / scale->x.nume,
.y = (image->height -1) * scale->y.deno / scale->y.nume,
};
struct rect bound = {
.offset = vzero,
.size = { .width = header->width, .height = header->height, },
};
return within_box(&p, &bound) < 0;
}
static uint32_t bli(uint32_t q00, uint32_t q10, uint32_t q01, uint32_t q11,
struct fraction *tx, struct fraction *ty)
{
uint32_t r0 = (tx->nume * q10 + (tx->deno - tx->nume) * q00) / tx->deno;
uint32_t r1 = (tx->nume * q11 + (tx->deno - tx->nume) * q01) / tx->deno;
uint32_t p = (ty->nume * r1 + (ty->deno - ty->nume) * r0) / ty->deno;
return p;
}
static int draw_bitmap_v3(const struct vector *top_left,
const struct scale *scale,
const struct vector *image,
const struct bitmap_header_v3 *header,
const struct bitmap_palette_element_v3 *pal,
const uint8_t *pixel_array)
{
const int bpp = header->bits_per_pixel;
int32_t dir;
struct vector p;
if (header->compression) {
LOG("Compressed bitmaps are not supported\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (bpp >= 16) {
LOG("Non-palette bitmaps are not supported\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (bpp != 8) {
LOG("Unsupported bits per pixel: %d\n", bpp);
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (scale->x.nume == 0 || scale->y.nume == 0) {
LOG("Scaling out of range\n");
return CBGFX_ERROR_SCALE_OUT_OF_RANGE;
}
if (check_bound(image, header, scale))
return CBGFX_ERROR_SCALE_OUT_OF_RANGE;
const int32_t y_stride = ROUNDUP(header->width * bpp / 8, 4);
/*
* header->height can be positive or negative.
*
* If it's negative, pixel data is stored from top to bottom. We render
* image from the lowest row to the highest row.
*
* If it's positive, pixel data is stored from bottom to top. We render
* image from the highest row to the lowest row.
*/
p.y = top_left->y;
if (header->height < 0) {
dir = 1;
} else {
p.y += image->height - 1;
dir = -1;
}
/*
* Plot pixels scaled by the bilinear interpolation. We scan
* over the image on canvas (using d) and find the corresponding pixel
* in the bitmap data (using s).
*/
struct vector s0, s1, d;
struct fraction tx, ty;
for (d.y = 0; d.y < image->height; d.y++, p.y += dir) {
s0.y = d.y * scale->y.deno / scale->y.nume;
s1.y = s0.y;
if (s0.y + 1 < ABS(header->height))
s1.y++;
ty.deno = scale->y.nume;
ty.nume = (d.y * scale->y.deno) % scale->y.nume;
const uint8_t *data0 = pixel_array + s0.y * y_stride;
const uint8_t *data1 = pixel_array + s1.y * y_stride;
p.x = top_left->x;
for (d.x = 0; d.x < image->width; d.x++, p.x++) {
s0.x = d.x * scale->x.deno / scale->x.nume;
s1.x = s0.x;
if (s1.x + 1 < header->width)
s1.x++;
tx.deno = scale->x.nume;
tx.nume = (d.x * scale->x.deno) % scale->x.nume;
uint8_t c00 = data0[s0.x];
uint8_t c10 = data0[s1.x];
uint8_t c01 = data1[s0.x];
uint8_t c11 = data1[s1.x];
if (c00 >= header->colors_used
|| c10 >= header->colors_used
|| c01 >= header->colors_used
|| c11 >= header->colors_used) {
LOG("Color index exceeds palette boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
const struct rgb_color rgb = {
.red = bli(pal[c00].red, pal[c10].red,
pal[c01].red, pal[c11].red,
&tx, &ty),
.green = bli(pal[c00].green, pal[c10].green,
pal[c01].green, pal[c11].green,
&tx, &ty),
.blue = bli(pal[c00].blue, pal[c10].blue,
pal[c01].blue, pal[c11].blue,
&tx, &ty),
};
set_pixel(&p, calculate_color(&rgb));
}
}
return CBGFX_SUCCESS;
}
static int get_bitmap_file_header(const void *bitmap, size_t size,
struct bitmap_file_header *file_header)
{
const struct bitmap_file_header *fh;
if (sizeof(*file_header) > size) {
LOG("Invalid bitmap data\n");
return CBGFX_ERROR_BITMAP_DATA;
}
fh = (struct bitmap_file_header *)bitmap;
if (fh->signature[0] != 'B' || fh->signature[1] != 'M') {
LOG("Bitmap signature mismatch\n");
return CBGFX_ERROR_BITMAP_SIGNATURE;
}
file_header->file_size = le32toh(fh->file_size);
if (file_header->file_size != size) {
LOG("Bitmap file size does not match cbfs file size\n");
return CBGFX_ERROR_BITMAP_DATA;
}
file_header->bitmap_offset = le32toh(fh->bitmap_offset);
return CBGFX_SUCCESS;
}
static int parse_bitmap_header_v3(const uint8_t *bitmap,
const struct bitmap_file_header *file_header,
/* ^--- IN / OUT ---v */
struct bitmap_header_v3 *header,
const struct bitmap_palette_element_v3 **palette,
const uint8_t **pixel_array)
{
struct bitmap_header_v3 *h;
size_t header_offset = sizeof(struct bitmap_file_header);
size_t header_size = sizeof(struct bitmap_header_v3);
size_t palette_offset = header_offset + header_size;
size_t file_size = file_header->file_size;
h = (struct bitmap_header_v3 *)(bitmap + header_offset);
header->header_size = le32toh(h->header_size);
if (header->header_size != header_size) {
LOG("Unsupported bitmap format\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
header->width = le32toh(h->width);
header->height = le32toh(h->height);
header->bits_per_pixel = le16toh(h->bits_per_pixel);
header->compression = le32toh(h->compression);
header->size = le32toh(h->size);
header->colors_used = le32toh(h->colors_used);
size_t palette_size = header->colors_used
* sizeof(struct bitmap_palette_element_v3);
size_t pixel_offset = file_header->bitmap_offset;
if (pixel_offset > file_size) {
LOG("Bitmap pixel data exceeds buffer boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
if (palette_offset + palette_size > pixel_offset) {
LOG("Bitmap palette data exceeds palette boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
*palette = (struct bitmap_palette_element_v3 *)(bitmap +
palette_offset);
size_t pixel_size = header->size;
if (pixel_size != header->height *
ROUNDUP(header->width * header->bits_per_pixel / 8, 4)) {
LOG("Bitmap pixel array size does not match expected size\n");
return CBGFX_ERROR_BITMAP_DATA;
}
if (pixel_offset + pixel_size > file_size) {
LOG("Bitmap pixel array exceeds buffer boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
*pixel_array = bitmap + pixel_offset;
return CBGFX_SUCCESS;
}
int draw_bitmap(const struct vector *top_left_rel,
size_t scale_rel, const void *bitmap, size_t size)
{
struct bitmap_file_header file_header;
struct bitmap_header_v3 header;
const struct bitmap_palette_element_v3 *palette;
const uint8_t *pixel_array;
struct vector top_left, image;
struct scale scale;
struct vector t;
int rv;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
rv = get_bitmap_file_header(bitmap, size, &file_header);
if (rv)
return rv;
/* only v3 is supported now */
rv = parse_bitmap_header_v3(bitmap, &file_header,
&header, &palette, &pixel_array);
if (rv)
return rv;
/*
* Calculate absolute coordinate and self-scale (scale relative to image
* size). If relative scale is zero, the image is displayed at the
* original scale and tol_left_rel is treated as absolute coordinate.
*/
if (scale_rel) {
const struct scale s = {
.x = { .nume = top_left_rel->x, .deno = CANVAS_SCALE, },
.y = { .nume = top_left_rel->y, .deno = CANVAS_SCALE, },
};
transform_vector(&top_left, &canvas.size, &s, &canvas.offset);
scale.x.nume = scale_rel * canvas.size.width;
scale.x.deno = header.width * CANVAS_SCALE;
} else {
add_vectors(&top_left, top_left_rel, &vzero);
scale.x.nume = 1;
scale.x.deno = 1;
}
scale.y.nume = scale.x.nume;
scale.y.deno = scale.x.deno;
/* Calculate height and width of the image on screen */
image.width = header.width;
image.height = ABS(header.height);
transform_vector(&image, &image, &scale, &vzero);
/* Check whether the right bottom corner is within screen and canvas */
add_vectors(&t, &image, &top_left);
if (scale_rel && within_box(&t, &canvas) < 0) {
LOG("Bitmap image exceeds canvas boundary\n");
return CBGFX_ERROR_CANVAS_BOUNDARY;
}
if (within_box(&t, &screen) < 0) {
LOG("Bitmap image exceeds screen boundary\n");
return CBGFX_ERROR_SCREEN_BOUNDARY;
}
return draw_bitmap_v3(&top_left, &scale, &image,
&header, palette, pixel_array);
}