coreboot-libre-fam15h-rdimm/3rdparty/chromeec/chip/ish/i2c.c

541 lines
14 KiB
C
Raw Permalink Normal View History

2024-03-04 11:14:53 +01:00
/* Copyright 2016 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* I2C port module for ISH */
#include "common.h"
#include "console.h"
#include "config_chip.h"
#include "gpio.h"
#include "hooks.h"
#include "i2c.h"
#include "registers.h"
#include "ish_i2c.h"
#include "task.h"
#include "timer.h"
#include "hwtimer.h"
#include "util.h"
#define CPUTS(outstr) cputs(CC_I2C, outstr)
#define CPRINTS(format, args...) cprints(CC_I2C, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_I2C, format, ## args)
/*25MHz, 50MHz, 100MHz, 120MHz, 40MHz, 20MHz, 37MHz*/
static uint16_t default_hcnt_scl_100[] = {
4000, 4420, 4920, 4400, 4000, 4000, 4300
};
static uint16_t default_lcnt_scl_100[] = {
4720, 5180, 4990, 5333, 4700, 5200, 4950
};
static uint16_t default_hcnt_scl_400[] = {
600, 820, 1120, 800, 600, 600, 450
};
static uint16_t default_lcnt_scl_400[] = {
1320, 1380, 1300, 1550, 1300, 1200, 1250
};
static uint16_t default_hcnt_scl_1000[] = {
260, 260, 260, 305, 260, 260, 260
};
static uint16_t default_lcnt_scl_1000[] = {
500, 500, 500, 525, 500, 500, 500
};
static uint16_t default_hcnt_scl_hs[] = { 160, 300, 160, 166, 175, 150, 162 };
static uint16_t default_lcnt_scl_hs[] = { 320, 340, 320, 325, 325, 300, 297 };
static uint8_t bus_freq[ISH_I2C_PORT_COUNT] = {
I2C_FREQ_120, I2C_FREQ_120, I2C_FREQ_120
};
static struct i2c_context i2c_ctxs[ISH_I2C_PORT_COUNT] = {
{
.bus = 0,
.base = (uint32_t *) ISH_I2C0_BASE,
.speed = I2C_SPEED_400KHZ,
.int_pin = ISH_I2C0_IRQ,
},
{
.bus = 1,
.base = (uint32_t *) ISH_I2C1_BASE,
.speed = I2C_SPEED_400KHZ,
.int_pin = ISH_I2C1_IRQ,
},
{
.bus = 2,
.base = (uint32_t *) ISH_I2C2_BASE,
.speed = I2C_SPEED_400KHZ,
.int_pin = ISH_I2C2_IRQ,
},
};
static struct i2c_bus_info board_config[ISH_I2C_PORT_COUNT] = {
{
.bus_id = 0,
.std_speed.sda_hold = DEFAULT_SDA_HOLD_STD,
.fast_speed.sda_hold = DEFAULT_SDA_HOLD_FAST,
.fast_plus_speed.sda_hold = DEFAULT_SDA_HOLD_FAST_PLUS,
.high_speed.sda_hold = DEFAULT_SDA_HOLD_HIGH,
},
{
.bus_id = 1,
.std_speed.sda_hold = DEFAULT_SDA_HOLD_STD,
.fast_speed.sda_hold = DEFAULT_SDA_HOLD_FAST,
.fast_plus_speed.sda_hold = DEFAULT_SDA_HOLD_FAST_PLUS,
.high_speed.sda_hold = DEFAULT_SDA_HOLD_HIGH,
},
{
.bus_id = 2,
.std_speed.sda_hold = DEFAULT_SDA_HOLD_STD,
.fast_speed.sda_hold = DEFAULT_SDA_HOLD_FAST,
.fast_plus_speed.sda_hold = DEFAULT_SDA_HOLD_FAST_PLUS,
.high_speed.sda_hold = DEFAULT_SDA_HOLD_HIGH,
},
};
static inline void i2c_mmio_write(uint32_t *base, uint8_t offset,
uint32_t data)
{
REG32((uint32_t) ((uint8_t *)base + offset)) = data;
}
static inline uint32_t i2c_mmio_read(uint32_t *base, uint8_t offset)
{
return REG32((uint32_t) ((uint8_t *)base + offset));
}
static inline uint8_t i2c_read_byte(uint32_t *addr, uint8_t reg,
uint8_t offset)
{
uint32_t ret = i2c_mmio_read(addr, reg) >> offset;
return ret & 0xff;
}
static void i2c_intr_switch(uint32_t *base, int mode)
{
switch (mode) {
case ENABLE_WRITE_INT:
i2c_mmio_write(base, IC_INTR_MASK, IC_INTR_WRITE_MASK_VAL);
break;
case ENABLE_READ_INT:
i2c_mmio_write(base, IC_INTR_MASK, IC_INTR_READ_MASK_VAL);
break;
case DISABLE_INT:
i2c_mmio_write(base, IC_INTR_MASK, 0);
/* clear interrupts: TX_ABORT
* Because the DW_apb_i2c's TX FIFO is forced into a
* flushed/reset state whenever a TX_ABRT event occurs, it
* is necessary for software to release the DW_apb_i2c from
* this state by reading the IC_CLR_TX_ABRT register before
* attempting to write into the TX FIFO
*/
i2c_mmio_read(base, IC_CLR_TX_ABRT);
/* STOP_DET */
i2c_mmio_read(base, IC_CLR_STOP_DET);
break;
default:
break;
}
}
static void i2c_init_transaction(struct i2c_context *ctx,
uint16_t slave_addr, uint8_t flags)
{
uint32_t con_value;
uint32_t *base = ctx->base;
struct i2c_bus_info *bus_info = &board_config[ctx->bus];
uint32_t clk_in_val = clk_in[bus_freq[ctx->bus]];
/* disable interrupts */
i2c_intr_switch(base, DISABLE_INT);
i2c_mmio_write(base, IC_ENABLE, IC_ENABLE_DISABLE);
i2c_mmio_write(base, IC_TAR, (slave_addr << IC_TAR_OFFSET) |
TAR_SPECIAL_VAL | IC_10BITADDR_MASTER_VAL);
/* set Clock SCL Count */
switch (ctx->speed) {
case I2C_SPEED_100KHZ:
i2c_mmio_write(base, IC_SS_SCL_HCNT,
NS_2_COUNTERS(bus_info->std_speed.hcnt,
clk_in_val));
i2c_mmio_write(base, IC_SS_SCL_LCNT,
NS_2_COUNTERS(bus_info->std_speed.lcnt,
clk_in_val));
i2c_mmio_write(base, IC_SDA_HOLD,
NS_2_COUNTERS(bus_info->std_speed.sda_hold,
clk_in_val));
break;
case I2C_SPEED_400KHZ:
i2c_mmio_write(base, IC_FS_SCL_HCNT,
NS_2_COUNTERS(bus_info->fast_speed.hcnt,
clk_in_val));
i2c_mmio_write(base, IC_FS_SCL_LCNT,
NS_2_COUNTERS(bus_info->fast_speed.lcnt,
clk_in_val));
i2c_mmio_write(base, IC_SDA_HOLD,
NS_2_COUNTERS(bus_info->fast_speed.sda_hold,
clk_in_val));
break;
case I2C_SPEED_1MHZ:
i2c_mmio_write(base, IC_FS_SCL_HCNT,
NS_2_COUNTERS(bus_info->fast_plus_speed.hcnt,
clk_in_val));
i2c_mmio_write(base, IC_FS_SCL_LCNT,
NS_2_COUNTERS(bus_info->fast_plus_speed.lcnt,
clk_in_val));
i2c_mmio_write(base, IC_SDA_HOLD,
NS_2_COUNTERS(bus_info->fast_plus_speed.sda_hold,
clk_in_val));
break;
case I2C_SPEED_3M4HZ:
i2c_mmio_write(base, IC_HS_SCL_HCNT,
NS_2_COUNTERS(bus_info->high_speed.hcnt,
clk_in_val));
i2c_mmio_write(base, IC_HS_SCL_LCNT,
NS_2_COUNTERS(bus_info->high_speed.lcnt,
clk_in_val));
i2c_mmio_write(base, IC_SDA_HOLD,
NS_2_COUNTERS(bus_info->high_speed.sda_hold,
clk_in_val));
i2c_mmio_write(base, IC_FS_SCL_HCNT,
NS_2_COUNTERS(bus_info->fast_speed.hcnt,
clk_in_val));
i2c_mmio_write(base, IC_FS_SCL_LCNT,
NS_2_COUNTERS(bus_info->fast_speed.lcnt,
clk_in_val));
break;
default:
break;
}
/* in SPT HW we need to sync between I2C clock and data signals */
con_value = i2c_mmio_read(base, IC_CON);
if (flags != 0)
con_value |= IC_RESTART_EN_VAL;
else
con_value &= ~IC_RESTART_EN_VAL;
i2c_mmio_write(base, IC_CON, con_value);
i2c_mmio_write(base, IC_FS_SPKLEN, spkln[bus_freq[ctx->bus]]);
i2c_mmio_write(base, IC_HS_SPKLEN, spkln[bus_freq[ctx->bus]]);
i2c_mmio_write(base, IC_ENABLE, IC_ENABLE_ENABLE);
}
static void i2c_write_buffer(uint32_t *base, uint8_t len,
const uint8_t *buffer, ssize_t *cur_index,
ssize_t total_len)
{
int i;
uint16_t out;
for (i = 0; i < len; i++) {
++(*cur_index);
out = (buffer[i] << DATA_CMD_DAT_OFFSET) | DATA_CMD_WRITE_VAL;
/* if Write ONLY and Last byte */
if (*cur_index == total_len) {
out |= DATA_CMD_STOP_VAL;
}
i2c_mmio_write(base, IC_DATA_CMD, out);
}
}
static void i2c_write_read_commands(uint32_t *base, uint8_t len, int more_data,
unsigned restart_flag)
{
/* this routine just set RX FIFO's control bit(s),
* READ command or RESTART */
int i;
uint32_t data_cmd;
for (i = 0; i < len; i++) {
data_cmd = DATA_CMD_READ_VAL;
if ((i == 0) && restart_flag)
/* if restart for first byte */
data_cmd |= DATA_CMD_RESTART_VAL;
/* if last byte & less than FIFO size
* or only one byte to read */
if (i == (len - 1) && !more_data)
data_cmd |= DATA_CMD_STOP_VAL;
i2c_mmio_write(base, IC_DATA_CMD, data_cmd);
}
}
int chip_i2c_xfer(const int port, const uint16_t slave_addr_flags,
const uint8_t *out, int out_size,
uint8_t *in, int in_size, int flags)
{
int i;
ssize_t total_len;
uint64_t expire_ts;
struct i2c_context *ctx;
ssize_t curr_index = 0;
uint16_t addr = I2C_GET_ADDR(slave_addr_flags);
int begin_indx;
uint8_t repeat_start = 0;
if (out_size == 0 && in_size == 0)
return EC_SUCCESS;
if (port < 0 || port >= ISH_I2C_PORT_COUNT)
return EC_ERROR_INVAL;
/* Check for reserved I2C addresses, pg. 74 in DW_apb_i2c.pdf
* Address cannot be any of the reserved address locations
*/
if (addr < I2C_FIRST_VALID_ADDR || addr > I2C_LAST_VALID_ADDR)
return EC_ERROR_INVAL;
/* assume that if both out_size and in_size are not zero,
* then, it is 'repeated Start' condition. */
if (in_size != 0 && out_size != 0)
repeat_start = 1;
ctx = &i2c_ctxs[port];
ctx->error_flag = 0;
ctx->wait_task_id = task_get_current();
total_len = in_size + out_size;
i2c_init_transaction(ctx, addr, repeat_start);
/* Write W data */
if (out_size)
i2c_write_buffer(ctx->base, out_size, out,
&curr_index, total_len);
/* Wait here until Tx is completed so that FIFO becomes empty.
* This is optimized for smaller Tx data size.
* If need to write big data ( > ISH_I2C_FIFO_SIZE ),
* it is better to use Tx FIFO threshold interrupt(as in Rx) for
* better CPU usuage.
* */
expire_ts = __hw_clock_source_read() + I2C_TX_FLUSH_TIMEOUT_USEC;
if (in_size > (ISH_I2C_FIFO_SIZE - out_size)) {
while ((i2c_mmio_read(ctx->base, IC_STATUS) &
BIT(IC_STATUS_TFE)) == 0) {
if (__hw_clock_source_read() >= expire_ts) {
ctx->error_flag = 1;
break;
}
CPU_RELAX();
}
}
begin_indx = 0;
while (in_size) {
int rd_size; /* read size for on i2c transaction */
/*
* check if in_size > ISH_I2C_FIFO_SIZE, then try to read
* FIFO_SIZE each time.
*/
if (in_size > ISH_I2C_FIFO_SIZE) {
rd_size = ISH_I2C_FIFO_SIZE;
in_size -= ISH_I2C_FIFO_SIZE;
} else {
rd_size = in_size;
in_size = 0;
}
/* Set rx_threshold */
i2c_mmio_write(ctx->base, IC_RX_TL, rd_size - 1);
i2c_intr_switch(ctx->base, ENABLE_READ_INT);
/*
* RESTART only once for entire i2c transaction.
* assume that if both out_size and in_size are not zero,
* then, it is 'repeated Start' condition.
* set R commands bit, start to read
*/
i2c_write_read_commands(ctx->base, rd_size, in_size,
(begin_indx == 0) && (repeat_start != 0));
/* need timeout in case no ACK from slave */
task_wait_event_mask(TASK_EVENT_I2C_IDLE, 2*MSEC);
if (ctx->interrupts & M_TX_ABRT) {
ctx->error_flag = 1;
break; /* when bus abort, no more reading !*/
}
/* read data */
for (i = begin_indx; i < begin_indx + rd_size; i++)
in[i] = i2c_read_byte(ctx->base,
IC_DATA_CMD, 0);
begin_indx += rd_size;
} /* while (in_size) */
ctx->reason = 0;
ctx->interrupts = 0;
/* do not disable device before master is idle */
expire_ts = __hw_clock_source_read() + I2C_TSC_TIMEOUT;
while ((i2c_mmio_read(ctx->base, IC_STATUS) &
(BIT(IC_STATUS_MASTER_ACTIVITY) | BIT(IC_STATUS_TFE))) !=
BIT(IC_STATUS_TFE)) {
if (__hw_clock_source_read() >= expire_ts) {
ctx->error_flag = 1;
break;
}
}
i2c_intr_switch(ctx->base, DISABLE_INT);
i2c_mmio_write(ctx->base, IC_ENABLE, IC_ENABLE_DISABLE);
if (ctx->error_flag)
return EC_ERROR_INVAL;
return EC_SUCCESS;
}
static void i2c_interrupt_handler(struct i2c_context *ctx)
{
uint32_t raw_intr;
if (IS_ENABLED(INTR_DEBUG))
raw_intr = 0x0000FFFF & i2c_mmio_read(ctx->base,
IC_RAW_INTR_STAT);
/* check interrupts */
ctx->interrupts = i2c_mmio_read(ctx->base, IC_INTR_STAT);
ctx->reason = (uint16_t) i2c_mmio_read(ctx->base, IC_TX_ABRT_SOURCE);
if (IS_ENABLED(INTR_DEBUG))
CPRINTS("INTR_STAT = 0x%04x, TX_ABORT_SRC = 0x%04x, "
"RAW_INTR_STAT = 0x%04x",
ctx->interrupts, ctx->reason, raw_intr);
/* disable interrupts */
i2c_intr_switch(ctx->base, DISABLE_INT);
task_set_event(ctx->wait_task_id, TASK_EVENT_I2C_IDLE, 0);
}
static void i2c_isr_bus0(void)
{
i2c_interrupt_handler(&i2c_ctxs[0]);
}
DECLARE_IRQ(ISH_I2C0_IRQ, i2c_isr_bus0);
static void i2c_isr_bus1(void)
{
i2c_interrupt_handler(&i2c_ctxs[1]);
}
DECLARE_IRQ(ISH_I2C1_IRQ, i2c_isr_bus1);
static void i2c_isr_bus2(void)
{
i2c_interrupt_handler(&i2c_ctxs[2]);
}
DECLARE_IRQ(ISH_I2C2_IRQ, i2c_isr_bus2);
static void i2c_config_speed(struct i2c_context *ctx, int kbps)
{
if (kbps > 1000)
ctx->speed = I2C_SPEED_3M4HZ;
else if (kbps > 400)
ctx->speed = I2C_SPEED_1MHZ;
else if (kbps > 100)
ctx->speed = I2C_SPEED_400KHZ;
else
ctx->speed = I2C_SPEED_100KHZ;
}
static void i2c_init_hardware(struct i2c_context *ctx)
{
static const uint8_t speed_val_arr[] = {
[I2C_SPEED_100KHZ] = STD_SPEED_VAL,
[I2C_SPEED_400KHZ] = FAST_SPEED_VAL,
[I2C_SPEED_1MHZ] = FAST_SPEED_VAL,
[I2C_SPEED_3M4HZ] = HIGH_SPEED_VAL,
};
uint32_t *base = ctx->base;
/* disable interrupts */
i2c_intr_switch(base, DISABLE_INT);
i2c_mmio_write(base, IC_ENABLE, IC_ENABLE_DISABLE);
i2c_mmio_write(base, IC_CON, (MASTER_MODE_VAL
| speed_val_arr[ctx->speed]
| IC_RESTART_EN_VAL
| IC_SLAVE_DISABLE_VAL));
i2c_mmio_write(base, IC_FS_SPKLEN, spkln[bus_freq[ctx->bus]]);
i2c_mmio_write(base, IC_HS_SPKLEN, spkln[bus_freq[ctx->bus]]);
/* get RX_FIFO and TX_FIFO depth */
ctx->max_rx_depth = i2c_read_byte(base, IC_COMP_PARAM_1,
RX_BUFFER_DEPTH_OFFSET) + 1;
ctx->max_tx_depth = i2c_read_byte(base, IC_COMP_PARAM_1,
TX_BUFFER_DEPTH_OFFSET) + 1;
}
static void i2c_initial_board_config(struct i2c_context *ctx)
{
uint8_t freq = bus_freq[ctx->bus];
struct i2c_bus_info *bus_info = &board_config[ctx->bus];
bus_info->std_speed.hcnt = default_hcnt_scl_100[freq];
bus_info->std_speed.lcnt = default_lcnt_scl_100[freq];
bus_info->fast_speed.hcnt = default_hcnt_scl_400[freq];
bus_info->fast_speed.lcnt = default_lcnt_scl_400[freq];
bus_info->fast_plus_speed.hcnt = default_hcnt_scl_1000[freq];
bus_info->fast_plus_speed.lcnt = default_lcnt_scl_1000[freq];
bus_info->high_speed.hcnt = default_hcnt_scl_hs[freq];
bus_info->high_speed.lcnt = default_lcnt_scl_hs[freq];
}
static void i2c_init(void)
{
int i;
for (i = 0; i < i2c_ports_used; i++) {
int port = i2c_ports[i].port;
i2c_initial_board_config(&i2c_ctxs[port]);
/* Config speed from i2c_ports[] defined in board.c */
i2c_config_speed(&i2c_ctxs[port], i2c_ports[i].kbps);
i2c_init_hardware(&i2c_ctxs[port]);
task_enable_irq((&i2c_ctxs[port])->int_pin);
}
CPRINTS("Done i2c_init");
}
DECLARE_HOOK(HOOK_INIT, i2c_init, HOOK_PRIO_INIT_I2C);