coreboot-libre-fam15h-rdimm/3rdparty/chromeec/common/usb_pd_protocol.c

5735 lines
157 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "atomic.h"
#include "battery.h"
#include "battery_smart.h"
#include "board.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "ec_commands.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "usb_charge.h"
#include "usb_common.h"
#include "usb_mux.h"
#include "usb_pd.h"
#include "usb_pd_tcpm.h"
#include "usb_pd_tcpc.h"
#include "usbc_ppc.h"
#include "tcpm.h"
#include "version.h"
#include "vboot.h"
#ifdef CONFIG_COMMON_RUNTIME
#define CPRINTF(format, args...) cprintf(CC_USBPD, format, ## args)
#define CPRINTS(format, args...) cprints(CC_USBPD, format, ## args)
BUILD_ASSERT(CONFIG_USB_PD_PORT_COUNT <= EC_USB_PD_MAX_PORTS);
/*
* If we are trying to upgrade the TCPC port that is supplying power, then we
* need to ensure that the battery has enough charge for the upgrade. 100mAh
* is about 5% of most batteries, and it should be enough charge to get us
* through the EC jump to RW and PD upgrade.
*/
#define MIN_BATTERY_FOR_TCPC_UPGRADE_MAH 100 /* mAH */
/*
* Debug log level - higher number == more log
* Level 0: Log state transitions
* Level 1: Level 0, plus state name
* Level 2: Level 1, plus packet info
* Level 3: Level 2, plus ping packet and packet dump on error
*
* Note that higher log level causes timing changes and thus may affect
* performance.
*
* Can be limited to constant debug_level by CONFIG_USB_PD_DEBUG_LEVEL
*/
#ifdef CONFIG_USB_PD_DEBUG_LEVEL
static const int debug_level = CONFIG_USB_PD_DEBUG_LEVEL;
#else
static int debug_level;
#endif
/*
* PD communication enabled flag. When false, PD state machine still
* detects source/sink connection and disconnection, and will still
* provide VBUS, but never sends any PD communication.
*/
static uint8_t pd_comm_enabled[CONFIG_USB_PD_PORT_COUNT];
#else /* CONFIG_COMMON_RUNTIME */
#define CPRINTF(format, args...)
#define CPRINTS(format, args...)
static const int debug_level;
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE
#define DUAL_ROLE_IF_ELSE(port, sink_clause, src_clause) \
(pd[port].power_role == PD_ROLE_SINK ? (sink_clause) : (src_clause))
#else
#define DUAL_ROLE_IF_ELSE(port, sink_clause, src_clause) (src_clause)
#endif
#define READY_RETURN_STATE(port) DUAL_ROLE_IF_ELSE(port, PD_STATE_SNK_READY, \
PD_STATE_SRC_READY)
/* Type C supply voltage (mV) */
#define TYPE_C_VOLTAGE 5000 /* mV */
/* PD counter definitions */
#define PD_MESSAGE_ID_COUNT 7
#define PD_HARD_RESET_COUNT 2
#define PD_CAPS_COUNT 50
#define PD_SNK_CAP_RETRIES 3
/*
* The time that we allow the port partner to send any messages after an
* explicit contract is established. 200ms was chosen somewhat arbitrarily as
* it should be long enough for sources to decide to send a message if they were
* going to, but not so long that a "low power charger connected" notification
* would be shown in the chrome OS UI.
*/
#define READY_HOLD_OFF_US (200 * MSEC)
enum vdm_states {
VDM_STATE_ERR_BUSY = -3,
VDM_STATE_ERR_SEND = -2,
VDM_STATE_ERR_TMOUT = -1,
VDM_STATE_DONE = 0,
/* Anything >0 represents an active state */
VDM_STATE_READY = 1,
VDM_STATE_BUSY = 2,
VDM_STATE_WAIT_RSP_BUSY = 3,
};
#ifdef CONFIG_USB_PD_DUAL_ROLE
/* Port dual-role state */
enum pd_dual_role_states drp_state[CONFIG_USB_PD_PORT_COUNT] = {
[0 ... (CONFIG_USB_PD_PORT_COUNT - 1)] =
CONFIG_USB_PD_INITIAL_DRP_STATE};
/* Enable variable for Try.SRC states */
static uint8_t pd_try_src_enable;
#endif
#ifdef CONFIG_USB_PD_REV30
/*
* The spec. revision is used to index into this array.
* Rev 0 (PD 1.0) - return PD_CTRL_REJECT
* Rev 1 (PD 2.0) - return PD_CTRL_REJECT
* Rev 2 (PD 3.0) - return PD_CTRL_NOT_SUPPORTED
*/
static const uint8_t refuse[] = {
PD_CTRL_REJECT, PD_CTRL_REJECT, PD_CTRL_NOT_SUPPORTED};
#define REFUSE(r) refuse[r]
#else
#define REFUSE(r) PD_CTRL_REJECT
#endif
#ifdef CONFIG_USB_PD_REV30
/*
* The spec. revision is used to index into this array.
* Rev 0 (VDO 1.0) - return VDM_VER10
* Rev 1 (VDO 1.0) - return VDM_VER10
* Rev 2 (VDO 2.0) - return VDM_VER20
*/
static const uint8_t vdo_ver[] = {
VDM_VER10, VDM_VER10, VDM_VER20};
#define VDO_VER(v) vdo_ver[v]
#else
#define VDO_VER(v) VDM_VER10
#endif
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
/* Tracker for which task is waiting on sysjump prep to finish */
static volatile task_id_t sysjump_task_waiting = TASK_ID_INVALID;
#endif
static struct pd_protocol {
/* current port power role (SOURCE or SINK) */
uint8_t power_role;
/* current port data role (DFP or UFP) */
uint8_t data_role;
/* 3-bit rolling message ID counter */
uint8_t msg_id;
/* Port polarity : 0 => CC1 is CC line, 1 => CC2 is CC line */
uint8_t polarity;
/* PD state for port */
enum pd_states task_state;
/* PD state when we run state handler the last time */
enum pd_states last_state;
/* bool: request state change to SUSPENDED */
uint8_t req_suspend_state;
/* The state to go to after timeout */
enum pd_states timeout_state;
/* port flags, see PD_FLAGS_* */
uint32_t flags;
/* Timeout for the current state. Set to 0 for no timeout. */
uint64_t timeout;
/* Time for source recovery after hard reset */
uint64_t src_recover;
/* Time for CC debounce end */
uint64_t cc_debounce;
/* The cc state */
enum pd_cc_states cc_state;
/* status of last transmit */
uint8_t tx_status;
/* Last received */
uint8_t last_msg_id;
/* last requested voltage PDO index */
int requested_idx;
#ifdef CONFIG_USB_PD_DUAL_ROLE
/* Current limit / voltage based on the last request message */
uint32_t curr_limit;
uint32_t supply_voltage;
/* Signal charging update that affects the port */
int new_power_request;
/* Store previously requested voltage request */
int prev_request_mv;
/* Time for Try.SRC states */
uint64_t try_src_marker;
uint64_t try_timeout;
#endif
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/* Time to enter low power mode */
uint64_t low_power_time;
/* Tasks to notify after TCPC has been reset */
int tasks_waiting_on_reset;
/* Tasks preventing TCPC from entering low power mode */
int tasks_preventing_lpm;
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
/*
* Timer for handling TOGGLE_OFF/FORCE_SINK mode when auto-toggle
* enabled. See drp_auto_toggle_next_state() for details.
*/
uint64_t drp_sink_time;
#endif
/*
* Time to ignore Vbus absence due to external IC debounce detection
* logic immediately after a power role swap.
*/
uint64_t vbus_debounce_time;
/* PD state for Vendor Defined Messages */
enum vdm_states vdm_state;
/* Timeout for the current vdm state. Set to 0 for no timeout. */
timestamp_t vdm_timeout;
/* next Vendor Defined Message to send */
uint32_t vdo_data[VDO_MAX_SIZE];
uint8_t vdo_count;
/* VDO to retry if UFP responder replied busy. */
uint32_t vdo_retry;
/* Attached ChromeOS device id, RW hash, and current RO / RW image */
uint16_t dev_id;
uint32_t dev_rw_hash[PD_RW_HASH_SIZE/4];
enum ec_current_image current_image;
#ifdef CONFIG_USB_PD_REV30
/* PD Collision avoidance buffer */
uint16_t ca_buffered;
uint16_t ca_header;
uint32_t ca_buffer[PDO_MAX_OBJECTS];
enum tcpm_transmit_type ca_type;
/* protocol revision */
uint8_t rev;
#endif
/*
* Some port partners are really chatty after an explicit contract is
* established. Therefore, we allow this time for the port partner to
* send any messages in order to avoid a collision of sending messages
* of our own.
*/
uint64_t ready_state_holdoff_timer;
} pd[CONFIG_USB_PD_PORT_COUNT];
#ifdef CONFIG_COMMON_RUNTIME
static const char * const pd_state_names[] = {
"DISABLED", "SUSPENDED",
"SNK_DISCONNECTED", "SNK_DISCONNECTED_DEBOUNCE",
"SNK_HARD_RESET_RECOVER",
"SNK_DISCOVERY", "SNK_REQUESTED", "SNK_TRANSITION", "SNK_READY",
"SNK_SWAP_INIT", "SNK_SWAP_SNK_DISABLE",
"SNK_SWAP_SRC_DISABLE", "SNK_SWAP_STANDBY", "SNK_SWAP_COMPLETE",
"SRC_DISCONNECTED", "SRC_DISCONNECTED_DEBOUNCE",
"SRC_HARD_RESET_RECOVER", "SRC_STARTUP",
"SRC_DISCOVERY", "SRC_NEGOCIATE", "SRC_ACCEPTED", "SRC_POWERED",
"SRC_TRANSITION", "SRC_READY", "SRC_GET_SNK_CAP", "DR_SWAP",
"SRC_SWAP_INIT", "SRC_SWAP_SNK_DISABLE", "SRC_SWAP_SRC_DISABLE",
"SRC_SWAP_STANDBY",
"VCONN_SWAP_SEND", "VCONN_SWAP_INIT", "VCONN_SWAP_READY",
"SOFT_RESET", "HARD_RESET_SEND", "HARD_RESET_EXECUTE", "BIST_RX",
"BIST_TX",
"DRP_AUTO_TOGGLE",
};
BUILD_ASSERT(ARRAY_SIZE(pd_state_names) == PD_STATE_COUNT);
#endif
/*
* 4 entry rw_hash table of type-C devices that AP has firmware updates for.
*/
#ifdef CONFIG_COMMON_RUNTIME
#define RW_HASH_ENTRIES 4
static struct ec_params_usb_pd_rw_hash_entry rw_hash_table[RW_HASH_ENTRIES];
#endif
int pd_comm_is_enabled(int port)
{
#ifdef CONFIG_COMMON_RUNTIME
return pd_comm_enabled[port];
#else
return 1;
#endif
}
static inline void set_state_timeout(int port,
uint64_t timeout,
enum pd_states timeout_state)
{
pd[port].timeout = timeout;
pd[port].timeout_state = timeout_state;
}
#ifdef CONFIG_USB_PD_REV30
int pd_get_rev(int port)
{
return pd[port].rev;
}
int pd_get_vdo_ver(int port)
{
return vdo_ver[pd[port].rev];
}
#endif
/* Return flag for pd state is connected */
int pd_is_connected(int port)
{
if (pd[port].task_state == PD_STATE_DISABLED)
return 0;
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
if (pd[port].task_state == PD_STATE_DRP_AUTO_TOGGLE)
return 0;
#endif
return DUAL_ROLE_IF_ELSE(port,
/* sink */
pd[port].task_state != PD_STATE_SNK_DISCONNECTED &&
pd[port].task_state != PD_STATE_SNK_DISCONNECTED_DEBOUNCE,
/* source */
pd[port].task_state != PD_STATE_SRC_DISCONNECTED &&
pd[port].task_state != PD_STATE_SRC_DISCONNECTED_DEBOUNCE);
}
/*
* Return true if partner port is a DTS or TS capable of entering debug
* mode (eg. is presenting Rp/Rp or Rd/Rd).
*/
int pd_ts_dts_plugged(int port)
{
return pd[port].flags & PD_FLAGS_TS_DTS_PARTNER;
}
/* Return true if partner port is known to be PD capable. */
int pd_capable(int port)
{
return pd[port].flags & PD_FLAGS_PREVIOUS_PD_CONN;
}
/*
* Return true if partner port is capable of communication over USB data
* lines.
*/
int pd_get_partner_usb_comm_capable(int port)
{
return pd[port].flags & PD_FLAGS_PARTNER_USB_COMM;
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
void pd_vbus_low(int port)
{
pd[port].flags &= ~PD_FLAGS_VBUS_NEVER_LOW;
}
#endif
int pd_is_vbus_present(int port)
{
#ifdef CONFIG_USB_PD_VBUS_DETECT_TCPC
return tcpm_get_vbus_level(port);
#else
return pd_snk_is_vbus_provided(port);
#endif
}
#ifdef CONFIG_USB_PD_RETIMER
int pd_is_ufp(int port)
{
return pd[port].cc_state == PD_CC_UFP_ATTACHED;
}
int pd_is_debug_acc(int port)
{
return pd[port].cc_state == PD_CC_UFP_DEBUG_ACC ||
pd[port].cc_state == PD_CC_DFP_DEBUG_ACC;
}
#endif
static void set_polarity(int port, int polarity)
{
tcpm_set_polarity(port, polarity);
#ifdef CONFIG_USBC_PPC_POLARITY
ppc_set_polarity(port, polarity);
#endif /* defined(CONFIG_USBC_PPC_POLARITY) */
}
#ifdef CONFIG_USBC_VCONN
static void set_vconn(int port, int enable)
{
/*
* We always need to tell the TCPC to enable Vconn first, otherwise some
* TCPCs get confused when a PPC sets secondary CC line to 5V and TCPC
* immediately disconnect. If there is a PPC, both devices will
* potentially source Vconn, but that should be okay since Vconn has
* "make before break" electrical requirements when swapping anyway.
*/
tcpm_set_vconn(port, enable);
#ifdef CONFIG_USBC_PPC_VCONN
ppc_set_vconn(port, enable);
#endif
}
#endif /* defined(CONFIG_USBC_VCONN) */
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/* 10 ms is enough time for any TCPC transaction to complete. */
#define PD_LPM_DEBOUNCE_US (10 * MSEC)
/* This is only called from the PD tasks that owns the port. */
static void handle_device_access(int port)
{
/* This should only be called from the PD task */
assert(port == TASK_ID_TO_PD_PORT(task_get_current()));
pd[port].low_power_time = get_time().val + PD_LPM_DEBOUNCE_US;
if (pd[port].flags & PD_FLAGS_LPM_ENGAGED) {
CPRINTS("TCPC p%d Exit Low Power Mode", port);
pd[port].flags &= ~(PD_FLAGS_LPM_ENGAGED |
PD_FLAGS_LPM_REQUESTED);
/*
* Wake to ensure we make another pass through the main task
* loop after clearing the flags.
*/
task_wake(PD_PORT_TO_TASK_ID(port));
}
}
static int pd_device_in_low_power(int port)
{
/*
* If we are actively waking the device up in the PD task, do not
* let TCPC operation wait or retry because we are in low power mode.
*/
if (port == TASK_ID_TO_PD_PORT(task_get_current()) &&
(pd[port].flags & PD_FLAGS_LPM_TRANSITION))
return 0;
return pd[port].flags & PD_FLAGS_LPM_ENGAGED;
}
static int reset_device_and_notify(int port)
{
int rv;
int task, waiting_tasks;
/* This should only be called from the PD task */
assert(port == TASK_ID_TO_PD_PORT(task_get_current()));
pd[port].flags |= PD_FLAGS_LPM_TRANSITION;
rv = tcpm_init(port);
pd[port].flags &= ~PD_FLAGS_LPM_TRANSITION;
if (rv == EC_SUCCESS)
CPRINTS("TCPC p%d init ready", port);
else
CPRINTS("TCPC p%d init failed!", port);
/*
* Before getting the other tasks that are waiting, clear the reset
* event from this PD task to prevent multiple reset/init events
* occurring.
*
* The double reset event happens when the higher priority PD interrupt
* task gets an interrupt during the above tcpm_init function. When that
* occurs, the higher priority task waits correctly for us to finish
* waking the TCPC, but it has also set PD_EVENT_TCPC_RESET again, which
* would result in a second, unnecessary init.
*/
atomic_clear(task_get_event_bitmap(task_get_current()),
PD_EVENT_TCPC_RESET);
waiting_tasks = atomic_read_clear(&pd[port].tasks_waiting_on_reset);
/*
* Now that we are done waking up the device, handle device access
* manually because we ignored it while waking up device.
*/
handle_device_access(port);
/* Clear SW LPM state; the state machine will set it again if needed */
pd[port].flags &= ~PD_FLAGS_LPM_REQUESTED;
/* Wake up all waiting tasks. */
while (waiting_tasks) {
task = __fls(waiting_tasks);
waiting_tasks &= ~BIT(task);
task_set_event(task, TASK_EVENT_PD_AWAKE, 0);
}
return rv;
}
static void pd_wait_for_wakeup(int port)
{
if (port == TASK_ID_TO_PD_PORT(task_get_current())) {
/* If we are in the PD task, we can directly reset */
reset_device_and_notify(port);
} else {
/* Otherwise, we need to wait for the TCPC reset to complete */
atomic_or(&pd[port].tasks_waiting_on_reset,
1 << task_get_current());
/*
* NOTE: We could be sending the PD task the reset event while
* it is already processing the reset event. If that occurs,
* then we will reset the TCPC multiple times, which is
* undesirable but most likely benign. Empirically, this doesn't
* happen much, but it if starts occurring, we can add a guard
* to prevent/reduce it.
*/
task_set_event(PD_PORT_TO_TASK_ID(port),
PD_EVENT_TCPC_RESET, 0);
task_wait_event_mask(TASK_EVENT_PD_AWAKE, -1);
}
}
void pd_wait_exit_low_power(int port)
{
if (pd_device_in_low_power(port))
pd_wait_for_wakeup(port);
}
/*
* This can be called from any task. If we are in the PD task, we can handle
* immediately. Otherwise, we need to notify the PD task via event.
*/
void pd_device_accessed(int port)
{
if (port == TASK_ID_TO_PD_PORT(task_get_current())) {
/* Ignore any access to device while it is waking up */
if (pd[port].flags & PD_FLAGS_LPM_TRANSITION)
return;
handle_device_access(port);
} else {
task_set_event(PD_PORT_TO_TASK_ID(port),
PD_EVENT_DEVICE_ACCESSED, 0);
}
}
void pd_prevent_low_power_mode(int port, int prevent)
{
const int current_task_mask = (1 << task_get_current());
if (prevent)
atomic_or(&pd[port].tasks_preventing_lpm, current_task_mask);
else
atomic_clear(&pd[port].tasks_preventing_lpm, current_task_mask);
}
/* This is only called from the PD tasks that owns the port. */
static void exit_low_power_mode(int port)
{
if (pd[port].flags & PD_FLAGS_LPM_ENGAGED)
reset_device_and_notify(port);
else
pd[port].flags &= ~PD_FLAGS_LPM_REQUESTED;
}
#else /* !CONFIG_USB_PD_TCPC_LOW_POWER */
/* We don't need to notify anyone if low power mode isn't involved. */
static int reset_device_and_notify(int port)
{
const int rv = tcpm_init(port);
if (rv == EC_SUCCESS)
CPRINTS("TCPC p%d init ready", port);
else
CPRINTS("TCPC p%d init failed!", port);
return rv;
}
#endif /* CONFIG_USB_PD_TCPC_LOW_POWER */
#ifdef CONFIG_USB_PD_DUAL_ROLE
static int get_bbram_idx(int port)
{
switch (port) {
case 2:
return SYSTEM_BBRAM_IDX_PD2;
case 1:
return SYSTEM_BBRAM_IDX_PD1;
case 0:
return SYSTEM_BBRAM_IDX_PD0;
default:
return -1;
}
}
static int pd_get_saved_port_flags(int port, uint8_t *flags)
{
if (system_get_bbram(get_bbram_idx(port), flags) != EC_SUCCESS) {
#ifndef CHIP_HOST
CPRINTS("PD NVRAM FAIL");
#endif
return EC_ERROR_UNKNOWN;
}
return EC_SUCCESS;
}
static void pd_set_saved_port_flags(int port, uint8_t flags)
{
if (system_set_bbram(get_bbram_idx(port), flags) != EC_SUCCESS) {
#ifndef CHIP_HOST
CPRINTS("PD NVRAM FAIL");
#endif
}
}
static void pd_update_saved_port_flags(int port, uint8_t flag, uint8_t val)
{
uint8_t saved_flags;
if (pd_get_saved_port_flags(port, &saved_flags) != EC_SUCCESS)
return;
if (val)
saved_flags |= flag;
else
saved_flags &= ~flag;
pd_set_saved_port_flags(port, saved_flags);
}
#endif /* defined(CONFIG_USB_PD_DUAL_ROLE) */
/**
* Invalidate last message received at the port when the port gets disconnected
* or reset(soft/hard). This is used to identify and handle the duplicate
* messages.
*
* @param port USB PD TCPC port number
*/
static void invalidate_last_message_id(int port)
{
/*
* Message id starts from 0 to 7. If last_msg_id is initialized to 0,
* it will lead to repetitive message id with first received packet,
* so initialize it with an invalid value 0xff.
*/
pd[port].last_msg_id = 0xff;
}
/**
* Identify and drop any duplicate messages received at the port.
*
* @param port USB PD TCPC port number
* @param msg_header Message Header containing the RX message ID
* @return 1 if the received message is a duplicate one, 0 otherwise.
*/
static int consume_repeat_message(int port, uint16_t msg_header)
{
uint8_t msg_id = PD_HEADER_ID(msg_header);
/* If repeat message ignore, except softreset control request. */
if (PD_HEADER_TYPE(msg_header) == PD_CTRL_SOFT_RESET &&
PD_HEADER_CNT(msg_header) == 0) {
return 0;
} else if (pd[port].last_msg_id != msg_id) {
pd[port].last_msg_id = msg_id;
} else if (pd[port].last_msg_id == msg_id) {
CPRINTF("C%d Repeat msg_id %d\n", port, msg_id);
return 1;
}
return 0;
}
/**
* Returns true if the port is currently in the try src state.
*/
static inline int is_try_src(int port)
{
return pd[port].flags & PD_FLAGS_TRY_SRC;
}
static inline void set_state(int port, enum pd_states next_state)
{
enum pd_states last_state = pd[port].task_state;
#ifdef CONFIG_LOW_POWER_IDLE
int i;
#endif
set_state_timeout(port, 0, 0);
pd[port].task_state = next_state;
if (last_state == next_state)
return;
#if defined(CONFIG_USBC_PPC) && defined(CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE)
/* If we're entering DRP_AUTO_TOGGLE, there is no sink connected. */
if (next_state == PD_STATE_DRP_AUTO_TOGGLE) {
ppc_sink_is_connected(port, 0);
/*
* Clear the overcurrent event counter
* since we've detected a disconnect.
*/
ppc_clear_oc_event_counter(port);
}
#endif /* CONFIG_USBC_PPC && CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE */
#ifdef CONFIG_USB_PD_DUAL_ROLE
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
/* Clear flag to allow DRP auto toggle when possible */
if (last_state != PD_STATE_DRP_AUTO_TOGGLE)
pd[port].flags &= ~PD_FLAGS_TCPC_DRP_TOGGLE;
#endif
/* Ignore dual-role toggling between sink and source */
if ((last_state == PD_STATE_SNK_DISCONNECTED &&
next_state == PD_STATE_SRC_DISCONNECTED) ||
(last_state == PD_STATE_SRC_DISCONNECTED &&
next_state == PD_STATE_SNK_DISCONNECTED))
return;
if (next_state == PD_STATE_SRC_DISCONNECTED ||
next_state == PD_STATE_SNK_DISCONNECTED) {
#ifdef CONFIG_USBC_PPC
enum tcpc_cc_voltage_status cc1, cc2;
tcpm_get_cc(port, &cc1, &cc2);
/*
* Neither a debug accessory nor UFP attached.
* Tell the PPC module that there is no sink connected.
*/
if (!cc_is_at_least_one_rd(cc1, cc2)) {
ppc_sink_is_connected(port, 0);
/*
* Clear the overcurrent event counter
* since we've detected a disconnect.
*/
ppc_clear_oc_event_counter(port);
}
#endif /* CONFIG_USBC_PPC */
/* Clear the holdoff timer since the port is disconnected. */
pd[port].ready_state_holdoff_timer = 0;
/*
* We should not clear any flags when transitioning back to the
* disconnected state from the debounce state as the two states
* here are really the same states in the state diagram.
*/
if (last_state != PD_STATE_SNK_DISCONNECTED_DEBOUNCE &&
last_state != PD_STATE_SRC_DISCONNECTED_DEBOUNCE) {
pd[port].flags &= ~PD_FLAGS_RESET_ON_DISCONNECT_MASK;
reset_pd_cable(port);
}
/* Clear the input current limit */
pd_set_input_current_limit(port, 0, 0);
#ifdef CONFIG_CHARGE_MANAGER
typec_set_input_current_limit(port, 0, 0);
charge_manager_set_ceil(port,
CEIL_REQUESTOR_PD,
CHARGE_CEIL_NONE);
#endif
#ifdef CONFIG_BC12_DETECT_DATA_ROLE_TRIGGER
/*
* When data role set events are used to enable BC1.2, then CC
* detach events are used to notify BC1.2 that it can be powered
* down.
*/
task_set_event(USB_CHG_PORT_TO_TASK_ID(port),
USB_CHG_EVENT_CC_OPEN, 0);
#endif /* CONFIG_BC12_DETECT_DATA_ROLE_TRIGGER */
#ifdef CONFIG_USBC_VCONN
set_vconn(port, 0);
#endif /* defined(CONFIG_USBC_VCONN) */
pd_update_saved_port_flags(port, PD_BBRMFLG_EXPLICIT_CONTRACT,
0);
#else /* CONFIG_USB_PD_DUAL_ROLE */
if (next_state == PD_STATE_SRC_DISCONNECTED) {
#ifdef CONFIG_USBC_VCONN
set_vconn(port, 0);
#endif /* CONFIG_USBC_VCONN */
#endif /* !CONFIG_USB_PD_DUAL_ROLE */
/* If we are source, make sure VBUS is off and restore RP */
if (pd[port].power_role == PD_ROLE_SOURCE) {
/* Restore non-active ports to CONFIG_USB_PD_PULLUP */
pd_power_supply_reset(port);
tcpm_set_cc(port, TYPEC_CC_RP);
}
#ifdef CONFIG_USB_PD_REV30
/* Adjust rev to highest level*/
pd[port].rev = PD_REV30;
#endif
pd[port].dev_id = 0;
#ifdef CONFIG_CHARGE_MANAGER
charge_manager_update_dualrole(port, CAP_UNKNOWN);
#endif
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
pd_dfp_exit_mode(port, 0, 0);
#endif
/*
* Indicate that the port is disconnected so the board
* can restore state from any previous data swap.
*/
pd_execute_data_swap(port, PD_ROLE_DISCONNECTED);
#ifdef CONFIG_USBC_SS_MUX
usb_mux_set(port, TYPEC_MUX_NONE, USB_SWITCH_DISCONNECT,
pd[port].polarity);
#endif
/* Disable TCPC RX */
tcpm_set_rx_enable(port, 0);
/* Invalidate message IDs. */
invalidate_last_message_id(port);
#ifdef CONFIG_COMMON_RUNTIME
/* detect USB PD cc disconnect */
hook_notify(HOOK_USB_PD_DISCONNECT);
#endif
}
#ifdef CONFIG_LOW_POWER_IDLE
/* If a PD device is attached then disable deep sleep */
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
if (pd_capable(i))
break;
}
if (i == CONFIG_USB_PD_PORT_COUNT)
enable_sleep(SLEEP_MASK_USB_PD);
else
disable_sleep(SLEEP_MASK_USB_PD);
#endif
if (debug_level > 0)
CPRINTF("C%d st%d %s\n", port, next_state,
pd_state_names[next_state]);
else
CPRINTF("C%d st%d\n", port, next_state);
}
/* increment message ID counter */
static void inc_id(int port)
{
pd[port].msg_id = (pd[port].msg_id + 1) & PD_MESSAGE_ID_COUNT;
}
#ifdef CONFIG_USB_PD_REV30
static void sink_can_xmit(int port, int rp)
{
tcpm_select_rp_value(port, rp);
tcpm_set_cc(port, TYPEC_CC_RP);
}
static inline void pd_ca_reset(int port)
{
pd[port].ca_buffered = 0;
}
#endif
void pd_transmit_complete(int port, int status)
{
if (status == TCPC_TX_COMPLETE_SUCCESS)
inc_id(port);
pd[port].tx_status = status;
task_set_event(PD_PORT_TO_TASK_ID(port), PD_EVENT_TX, 0);
}
static int pd_transmit(int port, enum tcpm_transmit_type type,
uint16_t header, const uint32_t *data)
{
int evt;
/* If comms are disabled, do not transmit, return error */
if (!pd_comm_is_enabled(port))
return -1;
#ifdef CONFIG_USB_PD_REV30
/* Source-coordinated collision avoidance */
/*
* In order to avoid message collisions due to asynchronous Messaging
* sent from the Sink, the Source sets Rp to SinkTxOk to indicate to
* the Sink that it is ok to initiate an AMS. When the Source wishes
* to initiate an AMS it sets Rp to SinkTxNG. When the Sink detects
* that Rp is set to SinkTxOk it May initiate an AMS. When the Sink
* detects that Rp is set to SinkTxNG it Shall Not initiate an AMS
* and Shall only send Messages that are part of an AMS the Source has
* initiated. Note that this restriction applies to SOP* AMSs i.e.
* for both Port to Port and Port to Cable Plug communications.
*
* This starts after an Explicit Contract is in place
* PD R3 V1.1 Section 2.5.2.
*
* Note: a Sink can still send Hard Reset signaling at any time.
*/
if ((pd[port].rev == PD_REV30) &&
(pd[port].flags & PD_FLAGS_EXPLICIT_CONTRACT)) {
if (pd[port].power_role == PD_ROLE_SOURCE) {
/*
* Inform Sink that it can't transmit. If a sink
* transmition is in progress and a collsion occurs,
* a reset is generated. This should be rare because
* all extended messages are chunked. This effectively
* defaults to PD REV 2.0 collision avoidance.
*/
sink_can_xmit(port, SINK_TX_NG);
} else if (type != TCPC_TX_HARD_RESET) {
enum tcpc_cc_voltage_status cc1, cc2;
tcpm_get_cc(port, &cc1, &cc2);
if (cc1 == TYPEC_CC_VOLT_RP_1_5 ||
cc2 == TYPEC_CC_VOLT_RP_1_5) {
/* Sink can't transmit now. */
/* Check if message is already buffered. */
if (pd[port].ca_buffered)
return -1;
/* Buffer message and send later. */
pd[port].ca_type = type;
pd[port].ca_header = header;
memcpy(pd[port].ca_buffer,
data, sizeof(uint32_t) *
PD_HEADER_CNT(header));
pd[port].ca_buffered = 1;
return 1;
}
}
}
#endif
tcpm_transmit(port, type, header, data);
/* Wait until TX is complete */
evt = task_wait_event_mask(PD_EVENT_TX, PD_T_TCPC_TX_TIMEOUT);
#ifdef CONFIG_USB_PD_REV30
/*
* If the source just completed a transmit, tell
* the sink it can transmit if it wants to.
*/
if ((pd[port].rev == PD_REV30) &&
(pd[port].power_role == PD_ROLE_SOURCE) &&
(pd[port].flags & PD_FLAGS_EXPLICIT_CONTRACT)) {
sink_can_xmit(port, SINK_TX_OK);
}
#endif
if (evt & TASK_EVENT_TIMER)
return -1;
/* TODO: give different error condition for failed vs discarded */
return pd[port].tx_status == TCPC_TX_COMPLETE_SUCCESS ? 1 : -1;
}
#ifdef CONFIG_USB_PD_REV30
static void pd_ca_send_pending(int port)
{
enum tcpc_cc_voltage_status cc1, cc2;
/* Check if a message has been buffered. */
if (!pd[port].ca_buffered)
return;
tcpm_get_cc(port, &cc1, &cc2);
if ((cc1 != TYPEC_CC_VOLT_RP_1_5) &&
(cc2 != TYPEC_CC_VOLT_RP_1_5))
if (pd_transmit(port, pd[port].ca_type,
pd[port].ca_header,
pd[port].ca_buffer) < 0)
return;
/* Message was sent, so free up the buffer. */
pd[port].ca_buffered = 0;
}
#endif
static void pd_update_roles(int port)
{
/* Notify TCPC of role update */
tcpm_set_msg_header(port, pd[port].power_role, pd[port].data_role);
}
static int send_control(int port, int type)
{
int bit_len;
uint16_t header = PD_HEADER(type, pd[port].power_role,
pd[port].data_role, pd[port].msg_id, 0,
pd_get_rev(port), 0);
bit_len = pd_transmit(port, TCPC_TX_SOP, header, NULL);
if (debug_level >= 2)
CPRINTF("C%d CTRL[%d]>%d\n", port, type, bit_len);
return bit_len;
}
static int send_source_cap(int port)
{
int bit_len;
#if defined(CONFIG_USB_PD_DYNAMIC_SRC_CAP) || \
defined(CONFIG_USB_PD_MAX_SINGLE_SOURCE_CURRENT)
const uint32_t *src_pdo;
const int src_pdo_cnt = charge_manager_get_source_pdo(&src_pdo, port);
#else
const uint32_t *src_pdo = pd_src_pdo;
const int src_pdo_cnt = pd_src_pdo_cnt;
#endif
uint16_t header;
if (src_pdo_cnt == 0)
/* No source capabilities defined, sink only */
header = PD_HEADER(PD_CTRL_REJECT, pd[port].power_role,
pd[port].data_role, pd[port].msg_id, 0,
pd_get_rev(port), 0);
else
header = PD_HEADER(PD_DATA_SOURCE_CAP, pd[port].power_role,
pd[port].data_role, pd[port].msg_id, src_pdo_cnt,
pd_get_rev(port), 0);
bit_len = pd_transmit(port, TCPC_TX_SOP, header, src_pdo);
if (debug_level >= 2)
CPRINTF("C%d srcCAP>%d\n", port, bit_len);
return bit_len;
}
#ifdef CONFIG_USB_PD_REV30
static int send_battery_cap(int port, uint32_t *payload)
{
int bit_len;
uint16_t msg[6] = {0, 0, 0, 0, 0, 0};
uint16_t header = PD_HEADER(PD_EXT_BATTERY_CAP,
pd[port].power_role,
pd[port].data_role,
pd[port].msg_id,
3, /* Number of Data Objects */
pd[port].rev,
1 /* This is an exteded message */
);
/* Set extended header */
msg[0] = PD_EXT_HEADER(0, /* Chunk Number */
0, /* Request Chunk */
9 /* Data Size in bytes */
);
/* Set VID */
msg[1] = USB_VID_GOOGLE;
/* Set PID */
msg[2] = CONFIG_USB_PID;
if (battery_is_present()) {
/*
* We only have one fixed battery,
* so make sure batt cap ref is 0.
*/
if (BATT_CAP_REF(payload[0]) != 0) {
/* Invalid battery reference */
msg[5] = 1;
} else {
uint32_t v;
uint32_t c;
/*
* The Battery Design Capacity field shall return the
* Batterys design capacity in tenths of Wh. If the
* Battery is Hot Swappable and is not present, the
* Battery Design Capacity field shall be set to 0. If
* the Battery is unable to report its Design Capacity,
* it shall return 0xFFFF
*/
msg[3] = 0xffff;
/*
* The Battery Last Full Charge Capacity field shall
* return the Batterys last full charge capacity in
* tenths of Wh. If the Battery is Hot Swappable and
* is not present, the Battery Last Full Charge Capacity
* field shall be set to 0. If the Battery is unable to
* report its Design Capacity, the Battery Last Full
* Charge Capacity field shall be set to 0xFFFF.
*/
msg[4] = 0xffff;
if (battery_design_voltage(&v) == 0) {
if (battery_design_capacity(&c) == 0) {
/*
* Wh = (c * v) / 1000000
* 10th of a Wh = Wh * 10
*/
msg[3] = DIV_ROUND_NEAREST((c * v),
100000);
}
if (battery_full_charge_capacity(&c) == 0) {
/*
* Wh = (c * v) / 1000000
* 10th of a Wh = Wh * 10
*/
msg[4] = DIV_ROUND_NEAREST((c * v),
100000);
}
}
}
}
bit_len = pd_transmit(port, TCPC_TX_SOP, header, (uint32_t *)msg);
if (debug_level >= 2)
CPRINTF("C%d batCap>%d\n", port, bit_len);
return bit_len;
}
static int send_battery_status(int port, uint32_t *payload)
{
int bit_len;
uint32_t msg = 0;
uint16_t header = PD_HEADER(PD_DATA_BATTERY_STATUS,
pd[port].power_role,
pd[port].data_role,
pd[port].msg_id,
1, /* Number of Data Objects */
pd[port].rev,
0 /* This is NOT an extended message */
);
if (battery_is_present()) {
/*
* We only have one fixed battery,
* so make sure batt cap ref is 0.
*/
if (BATT_CAP_REF(payload[0]) != 0) {
/* Invalid battery reference */
msg |= BSDO_INVALID;
} else {
uint32_t v;
uint32_t c;
if (battery_design_voltage(&v) != 0 ||
battery_remaining_capacity(&c) != 0) {
msg |= BSDO_CAP(BSDO_CAP_UNKNOWN);
} else {
/*
* Wh = (c * v) / 1000000
* 10th of a Wh = Wh * 10
*/
msg |= BSDO_CAP(DIV_ROUND_NEAREST((c * v),
100000));
}
/* Battery is present */
msg |= BSDO_PRESENT;
/*
* For drivers that are not smart battery compliant,
* battery_status() returns EC_ERROR_UNIMPLEMENTED and
* the battery is assumed to be idle.
*/
if (battery_status(&c) != 0) {
msg |= BSDO_IDLE; /* assume idle */
} else {
if (c & STATUS_FULLY_CHARGED)
/* Fully charged */
msg |= BSDO_IDLE;
else if (c & STATUS_DISCHARGING)
/* Discharging */
msg |= BSDO_DISCHARGING;
/* else battery is charging.*/
}
}
} else {
msg = BSDO_CAP(BSDO_CAP_UNKNOWN);
}
bit_len = pd_transmit(port, TCPC_TX_SOP, header, &msg);
if (debug_level >= 2)
CPRINTF("C%d batStat>%d\n", port, bit_len);
return bit_len;
}
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE
static void send_sink_cap(int port)
{
int bit_len;
uint16_t header = PD_HEADER(PD_DATA_SINK_CAP, pd[port].power_role,
pd[port].data_role, pd[port].msg_id, pd_snk_pdo_cnt,
pd_get_rev(port), 0);
bit_len = pd_transmit(port, TCPC_TX_SOP, header, pd_snk_pdo);
if (debug_level >= 2)
CPRINTF("C%d snkCAP>%d\n", port, bit_len);
}
static int send_request(int port, uint32_t rdo)
{
int bit_len;
uint16_t header = PD_HEADER(PD_DATA_REQUEST, pd[port].power_role,
pd[port].data_role, pd[port].msg_id, 1,
pd_get_rev(port), 0);
bit_len = pd_transmit(port, TCPC_TX_SOP, header, &rdo);
if (debug_level >= 2)
CPRINTF("C%d REQ>%d\n", port, bit_len);
return bit_len;
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
#ifdef CONFIG_COMMON_RUNTIME
static int send_bist_cmd(int port)
{
/* currently only support sending bist carrier 2 */
uint32_t bdo = BDO(BDO_MODE_CARRIER2, 0);
int bit_len;
uint16_t header = PD_HEADER(PD_DATA_BIST, pd[port].power_role,
pd[port].data_role, pd[port].msg_id, 1,
pd_get_rev(port), 0);
bit_len = pd_transmit(port, TCPC_TX_SOP, header, &bdo);
CPRINTF("C%d BIST>%d\n", port, bit_len);
return bit_len;
}
#endif
static void queue_vdm(int port, uint32_t *header, const uint32_t *data,
int data_cnt)
{
pd[port].vdo_count = data_cnt + 1;
pd[port].vdo_data[0] = header[0];
memcpy(&pd[port].vdo_data[1], data, sizeof(uint32_t) * data_cnt);
/* Set ready, pd task will actually send */
pd[port].vdm_state = VDM_STATE_READY;
}
static void handle_vdm_request(int port, int cnt, uint32_t *payload)
{
int rlen = 0;
uint32_t *rdata;
if (pd[port].vdm_state == VDM_STATE_BUSY) {
/* If UFP responded busy retry after timeout */
if (PD_VDO_CMDT(payload[0]) == CMDT_RSP_BUSY) {
pd[port].vdm_timeout.val = get_time().val +
PD_T_VDM_BUSY;
pd[port].vdm_state = VDM_STATE_WAIT_RSP_BUSY;
pd[port].vdo_retry = (payload[0] & ~VDO_CMDT_MASK) |
CMDT_INIT;
return;
} else {
pd[port].vdm_state = VDM_STATE_DONE;
}
}
if (PD_VDO_SVDM(payload[0]))
rlen = pd_svdm(port, cnt, payload, &rdata);
else
rlen = pd_custom_vdm(port, cnt, payload, &rdata);
if (rlen > 0) {
queue_vdm(port, rdata, &rdata[1], rlen - 1);
return;
}
if (debug_level >= 2)
CPRINTF("C%d Unhandled VDM VID %04x CMD %04x\n",
port, PD_VDO_VID(payload[0]), payload[0] & 0xFFFF);
}
static __maybe_unused int pd_is_disconnected(int port)
{
return pd[port].task_state == PD_STATE_SRC_DISCONNECTED
#ifdef CONFIG_USB_PD_DUAL_ROLE
|| pd[port].task_state == PD_STATE_SNK_DISCONNECTED
#endif
;
}
static void set_usb_mux_with_current_data_role(int port)
{
#ifdef CONFIG_USBC_SS_MUX
/*
* If the SoC is down, then we disconnect the MUX to save power since
* no one cares about the data lines.
*/
#ifdef CONFIG_POWER_COMMON
if (chipset_in_or_transitioning_to_state(CHIPSET_STATE_ANY_OFF)) {
usb_mux_set(port, TYPEC_MUX_NONE, USB_SWITCH_DISCONNECT,
pd[port].polarity);
return;
}
#endif /* CONFIG_POWER_COMMON */
/*
* When PD stack is disconnected, then mux should be disconnected, which
* is also what happens in the set_state disconnection code. Once the
* PD state machine progresses out of disconnect, the MUX state will
* be set correctly again.
*/
if (pd_is_disconnected(port))
usb_mux_set(port, TYPEC_MUX_NONE, USB_SWITCH_DISCONNECT,
pd[port].polarity);
/*
* If new data role isn't DFP and we only support DFP, also disconnect.
*/
else if (IS_ENABLED(CONFIG_USBC_SS_MUX_DFP_ONLY) &&
pd[port].data_role != PD_ROLE_DFP)
usb_mux_set(port, TYPEC_MUX_NONE, USB_SWITCH_DISCONNECT,
pd[port].polarity);
/*
* Otherwise connect mux since we are in S3+
*/
else
usb_mux_set(port, TYPEC_MUX_USB, USB_SWITCH_CONNECT,
pd[port].polarity);
#endif /* CONFIG_USBC_SS_MUX */
}
static void pd_set_data_role(int port, int role)
{
pd[port].data_role = role;
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_update_saved_port_flags(port, PD_BBRMFLG_DATA_ROLE, role);
#endif /* defined(CONFIG_USB_PD_DUAL_ROLE) */
pd_execute_data_swap(port, role);
set_usb_mux_with_current_data_role(port);
pd_update_roles(port);
#ifdef CONFIG_BC12_DETECT_DATA_ROLE_TRIGGER
/*
* For BC1.2 detection that is triggered on data role change events
* instead of VBUS changes, need to set an event to wake up the USB_CHG
* task and indicate the current data role.
*/
if (role == PD_ROLE_UFP)
task_set_event(USB_CHG_PORT_TO_TASK_ID(port),
USB_CHG_EVENT_DR_UFP, 0);
else if (role == PD_ROLE_DFP)
task_set_event(USB_CHG_PORT_TO_TASK_ID(port),
USB_CHG_EVENT_DR_DFP, 0);
#endif /* CONFIG_BC12_DETECT_DATA_ROLE_TRIGGER */
}
#ifdef CONFIG_USBC_VCONN
static void pd_set_vconn_role(int port, int role)
{
if (role == PD_ROLE_VCONN_ON)
pd[port].flags |= PD_FLAGS_VCONN_ON;
else
pd[port].flags &= ~PD_FLAGS_VCONN_ON;
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_update_saved_port_flags(port, PD_BBRMFLG_VCONN_ROLE, role);
#endif
}
#endif /* CONFIG_USBC_VCONN */
void pd_execute_hard_reset(int port)
{
int hard_rst_tx = pd[port].last_state == PD_STATE_HARD_RESET_SEND;
CPRINTF("C%d HARD RST %cX\n", port, hard_rst_tx ? 'T' : 'R');
pd[port].msg_id = 0;
invalidate_last_message_id(port);
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
pd_dfp_exit_mode(port, 0, 0);
#endif
#ifdef CONFIG_USB_PD_REV30
pd[port].rev = PD_REV30;
pd_ca_reset(port);
#endif
/*
* Fake set last state to hard reset to make sure that the next
* state to run knows that we just did a hard reset.
*/
pd[port].last_state = PD_STATE_HARD_RESET_EXECUTE;
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* If we are swapping to a source and have changed to Rp, restore back
* to Rd and turn off vbus to match our power_role.
*/
if (pd[port].task_state == PD_STATE_SNK_SWAP_STANDBY ||
pd[port].task_state == PD_STATE_SNK_SWAP_COMPLETE) {
tcpm_set_cc(port, TYPEC_CC_RD);
pd_power_supply_reset(port);
}
/* Set initial data role (matching power role) */
pd_set_data_role(port, pd[port].power_role);
if (pd[port].power_role == PD_ROLE_SINK) {
/* Clear the input current limit */
pd_set_input_current_limit(port, 0, 0);
#ifdef CONFIG_CHARGE_MANAGER
charge_manager_set_ceil(port,
CEIL_REQUESTOR_PD,
CHARGE_CEIL_NONE);
#endif /* CONFIG_CHARGE_MANAGER */
#ifdef CONFIG_USBC_VCONN
/*
* Sink must turn off Vconn after a hard reset if it was being
* sourced previously
*/
if (pd[port].flags & PD_FLAGS_VCONN_ON) {
set_vconn(port, 0);
pd_set_vconn_role(port, PD_ROLE_VCONN_OFF);
}
#endif
set_state(port, PD_STATE_SNK_HARD_RESET_RECOVER);
return;
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
if (!hard_rst_tx)
usleep(PD_T_PS_HARD_RESET);
/* We are a source, cut power */
pd_power_supply_reset(port);
pd[port].src_recover = get_time().val + PD_T_SRC_RECOVER;
#ifdef CONFIG_USBC_VCONN
set_vconn(port, 0);
#endif
set_state(port, PD_STATE_SRC_HARD_RESET_RECOVER);
}
static void execute_soft_reset(int port)
{
pd[port].msg_id = 0;
invalidate_last_message_id(port);
set_state(port, DUAL_ROLE_IF_ELSE(port, PD_STATE_SNK_DISCOVERY,
PD_STATE_SRC_DISCOVERY));
CPRINTF("C%d Soft Rst\n", port);
}
void pd_soft_reset(void)
{
int i;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; ++i)
if (pd_is_connected(i)) {
set_state(i, PD_STATE_SOFT_RESET);
task_wake(PD_PORT_TO_TASK_ID(i));
}
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* Request desired charge voltage from source.
* Returns EC_SUCCESS on success or non-zero on failure.
*/
static int pd_send_request_msg(int port, int always_send_request)
{
uint32_t rdo, curr_limit, supply_voltage;
int res;
#ifdef CONFIG_CHARGE_MANAGER
int charging = (charge_manager_get_active_charge_port() == port);
#else
const int charging = 1;
#endif
#ifdef CONFIG_USB_PD_CHECK_MAX_REQUEST_ALLOWED
int max_request_allowed = pd_is_max_request_allowed();
#else
const int max_request_allowed = 1;
#endif
/* Clear new power request */
pd[port].new_power_request = 0;
/* Build and send request RDO */
/*
* If this port is not actively charging or we are not allowed to
* request the max voltage, then select vSafe5V
*/
pd_build_request(pd_get_src_cap_cnt(port), pd_get_src_caps(port), 0,
&rdo, &curr_limit, &supply_voltage,
charging && max_request_allowed ?
PD_REQUEST_MAX : PD_REQUEST_VSAFE5V,
get_max_request_mv());
if (!always_send_request) {
/* Don't re-request the same voltage */
if (pd[port].prev_request_mv == supply_voltage)
return EC_SUCCESS;
#ifdef CONFIG_CHARGE_MANAGER
/* Limit current to PD_MIN_MA during transition */
else
charge_manager_force_ceil(port, PD_MIN_MA);
#endif
}
CPRINTF("C%d Req [%d] %dmV %dmA", port, RDO_POS(rdo),
supply_voltage, curr_limit);
if (rdo & RDO_CAP_MISMATCH)
CPRINTF(" Mismatch");
CPRINTF("\n");
pd[port].curr_limit = curr_limit;
pd[port].supply_voltage = supply_voltage;
pd[port].prev_request_mv = supply_voltage;
res = send_request(port, rdo);
if (res < 0)
return res;
set_state(port, PD_STATE_SNK_REQUESTED);
return EC_SUCCESS;
}
#endif
static void pd_update_pdo_flags(int port, uint32_t pdo)
{
#ifdef CONFIG_CHARGE_MANAGER
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
int charge_whitelisted =
(pd[port].power_role == PD_ROLE_SINK &&
pd_charge_from_device(pd_get_identity_vid(port),
pd_get_identity_pid(port)));
#else
const int charge_whitelisted = 0;
#endif
#endif
/* can only parse PDO flags if type is fixed */
if ((pdo & PDO_TYPE_MASK) != PDO_TYPE_FIXED)
return;
#ifdef CONFIG_USB_PD_DUAL_ROLE
if (pdo & PDO_FIXED_DUAL_ROLE)
pd[port].flags |= PD_FLAGS_PARTNER_DR_POWER;
else
pd[port].flags &= ~PD_FLAGS_PARTNER_DR_POWER;
if (pdo & PDO_FIXED_EXTERNAL)
pd[port].flags |= PD_FLAGS_PARTNER_EXTPOWER;
else
pd[port].flags &= ~PD_FLAGS_PARTNER_EXTPOWER;
if (pdo & PDO_FIXED_COMM_CAP)
pd[port].flags |= PD_FLAGS_PARTNER_USB_COMM;
else
pd[port].flags &= ~PD_FLAGS_PARTNER_USB_COMM;
#endif
if (pdo & PDO_FIXED_DATA_SWAP)
pd[port].flags |= PD_FLAGS_PARTNER_DR_DATA;
else
pd[port].flags &= ~PD_FLAGS_PARTNER_DR_DATA;
#ifdef CONFIG_CHARGE_MANAGER
/*
* Treat device as a dedicated charger (meaning we should charge
* from it) if it does not support power swap, or if it is externally
* powered, or if we are a sink and the device identity matches a
* charging white-list.
*/
if (!(pd[port].flags & PD_FLAGS_PARTNER_DR_POWER) ||
(pd[port].flags & PD_FLAGS_PARTNER_EXTPOWER) ||
charge_whitelisted)
charge_manager_update_dualrole(port, CAP_DEDICATED);
else
charge_manager_update_dualrole(port, CAP_DUALROLE);
#endif
}
static void handle_data_request(int port, uint16_t head,
uint32_t *payload)
{
int type = PD_HEADER_TYPE(head);
int cnt = PD_HEADER_CNT(head);
switch (type) {
#ifdef CONFIG_USB_PD_DUAL_ROLE
case PD_DATA_SOURCE_CAP:
if ((pd[port].task_state == PD_STATE_SNK_DISCOVERY)
|| (pd[port].task_state == PD_STATE_SNK_TRANSITION)
|| (pd[port].task_state == PD_STATE_SNK_REQUESTED)
#ifdef CONFIG_USB_PD_VBUS_DETECT_NONE
|| (pd[port].task_state ==
PD_STATE_SNK_HARD_RESET_RECOVER)
#endif
|| (pd[port].task_state == PD_STATE_SNK_READY)) {
#ifdef CONFIG_USB_PD_REV30
/*
* Only adjust sink rev if source rev is higher.
*/
if (PD_HEADER_REV(head) < pd[port].rev)
pd[port].rev = PD_HEADER_REV(head);
#endif
/* Port partner is now known to be PD capable */
pd[port].flags |= PD_FLAGS_PREVIOUS_PD_CONN;
/* src cap 0 should be fixed PDO */
pd_update_pdo_flags(port, payload[0]);
pd_process_source_cap(port, cnt, payload);
/* Source will resend source cap on failure */
pd_send_request_msg(port, 1);
}
break;
#endif /* CONFIG_USB_PD_DUAL_ROLE */
case PD_DATA_REQUEST:
if ((pd[port].power_role == PD_ROLE_SOURCE) && (cnt == 1)) {
#ifdef CONFIG_USB_PD_REV30
/*
* Adjust the rev level to what the sink supports. If
* they're equal, no harm done.
*/
pd[port].rev = PD_HEADER_REV(head);
#endif
if (!pd_check_requested_voltage(payload[0], port)) {
if (send_control(port, PD_CTRL_ACCEPT) < 0)
/*
* if we fail to send accept, do
* nothing and let sink timeout and
* send hard reset
*/
return;
/* explicit contract is now in place */
pd[port].flags |= PD_FLAGS_EXPLICIT_CONTRACT;
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_update_saved_port_flags(
port, PD_BBRMFLG_EXPLICIT_CONTRACT, 1);
#endif /* CONFIG_USB_PD_DUAL_ROLE */
#ifdef CONFIG_USB_PD_REV30
/*
* Start Source-coordinated collision
* avoidance
*/
if (pd[port].rev == PD_REV30 &&
pd[port].power_role == PD_ROLE_SOURCE)
sink_can_xmit(port, SINK_TX_OK);
#endif
pd[port].requested_idx = RDO_POS(payload[0]);
set_state(port, PD_STATE_SRC_ACCEPTED);
return;
}
}
/* the message was incorrect or cannot be satisfied */
send_control(port, PD_CTRL_REJECT);
/* keep last contract in place (whether implicit or explicit) */
set_state(port, PD_STATE_SRC_READY);
break;
case PD_DATA_BIST:
/* If not in READY state, then don't start BIST */
if (DUAL_ROLE_IF_ELSE(port,
pd[port].task_state == PD_STATE_SNK_READY,
pd[port].task_state == PD_STATE_SRC_READY)) {
/* currently only support sending bist carrier mode 2 */
if ((payload[0] >> 28) == 5) {
/* bist data object mode is 2 */
pd_transmit(port, TCPC_TX_BIST_MODE_2, 0,
NULL);
/* Set to appropriate port disconnected state */
set_state(port, DUAL_ROLE_IF_ELSE(port,
PD_STATE_SNK_DISCONNECTED,
PD_STATE_SRC_DISCONNECTED));
}
}
break;
case PD_DATA_SINK_CAP:
pd[port].flags |= PD_FLAGS_SNK_CAP_RECVD;
/* snk cap 0 should be fixed PDO */
pd_update_pdo_flags(port, payload[0]);
if (pd[port].task_state == PD_STATE_SRC_GET_SINK_CAP)
set_state(port, PD_STATE_SRC_READY);
break;
#ifdef CONFIG_USB_PD_REV30
case PD_DATA_BATTERY_STATUS:
break;
#endif
case PD_DATA_VENDOR_DEF:
handle_vdm_request(port, cnt, payload);
break;
default:
CPRINTF("C%d Unhandled data message type %d\n", port, type);
}
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
void pd_request_power_swap(int port)
{
if (pd[port].task_state == PD_STATE_SRC_READY)
set_state(port, PD_STATE_SRC_SWAP_INIT);
else if (pd[port].task_state == PD_STATE_SNK_READY)
set_state(port, PD_STATE_SNK_SWAP_INIT);
task_wake(PD_PORT_TO_TASK_ID(port));
}
#ifdef CONFIG_USBC_VCONN_SWAP
static void pd_request_vconn_swap(int port)
{
if (pd[port].task_state == PD_STATE_SRC_READY ||
pd[port].task_state == PD_STATE_SNK_READY)
set_state(port, PD_STATE_VCONN_SWAP_SEND);
task_wake(PD_PORT_TO_TASK_ID(port));
}
void pd_try_vconn_src(int port)
{
/*
* If we don't currently provide vconn, and we can supply it, send
* a vconn swap request.
*/
if (!(pd[port].flags & PD_FLAGS_VCONN_ON)) {
if (pd_check_vconn_swap(port))
pd_request_vconn_swap(port);
}
}
#endif
#endif /* CONFIG_USB_PD_DUAL_ROLE */
void pd_request_data_swap(int port)
{
if (DUAL_ROLE_IF_ELSE(port,
pd[port].task_state == PD_STATE_SNK_READY,
pd[port].task_state == PD_STATE_SRC_READY))
set_state(port, PD_STATE_DR_SWAP);
task_wake(PD_PORT_TO_TASK_ID(port));
}
static void pd_set_power_role(int port, int role)
{
pd[port].power_role = role;
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_update_saved_port_flags(port, PD_BBRMFLG_POWER_ROLE, role);
#endif /* defined(CONFIG_USB_PD_DUAL_ROLE) */
}
static void pd_dr_swap(int port)
{
pd_set_data_role(port, !pd[port].data_role);
pd[port].flags |= PD_FLAGS_CHECK_IDENTITY;
}
static void handle_ctrl_request(int port, uint16_t head,
uint32_t *payload)
{
int type = PD_HEADER_TYPE(head);
int res;
switch (type) {
case PD_CTRL_GOOD_CRC:
/* should not get it */
break;
case PD_CTRL_PING:
/* Nothing else to do */
break;
case PD_CTRL_GET_SOURCE_CAP:
if (pd[port].task_state == PD_STATE_SRC_READY)
set_state(port, PD_STATE_SRC_DISCOVERY);
else {
res = send_source_cap(port);
if ((res >= 0) &&
(pd[port].task_state == PD_STATE_SRC_DISCOVERY))
set_state(port, PD_STATE_SRC_NEGOCIATE);
}
break;
case PD_CTRL_GET_SINK_CAP:
#ifdef CONFIG_USB_PD_DUAL_ROLE
send_sink_cap(port);
#else
send_control(port, REFUSE(pd[port].rev));
#endif
break;
#ifdef CONFIG_USB_PD_DUAL_ROLE
case PD_CTRL_GOTO_MIN:
#ifdef CONFIG_USB_PD_GIVE_BACK
if (pd[port].task_state == PD_STATE_SNK_READY) {
/*
* Reduce power consumption now!
*
* The source will restore power to this sink
* by sending a new source cap message at a
* later time.
*/
pd_snk_give_back(port, &pd[port].curr_limit,
&pd[port].supply_voltage);
set_state(port, PD_STATE_SNK_TRANSITION);
}
#endif
break;
case PD_CTRL_PS_RDY:
if (pd[port].task_state == PD_STATE_SNK_SWAP_SRC_DISABLE) {
set_state(port, PD_STATE_SNK_SWAP_STANDBY);
} else if (pd[port].task_state == PD_STATE_SRC_SWAP_STANDBY) {
/* reset message ID and swap roles */
pd[port].msg_id = 0;
pd_set_power_role(port, PD_ROLE_SINK);
pd_update_roles(port);
/*
* Give the state machine time to read VBUS as high.
* Note: This is empirically determined, not strictly
* part of the USB PD spec.
*/
pd[port].vbus_debounce_time =
get_time().val + PD_T_DEBOUNCE;
set_state(port, PD_STATE_SNK_DISCOVERY);
#ifdef CONFIG_USBC_VCONN_SWAP
} else if (pd[port].task_state == PD_STATE_VCONN_SWAP_INIT) {
/*
* If VCONN is on, then this PS_RDY tells us it's
* ok to turn VCONN off
*/
if (pd[port].flags & PD_FLAGS_VCONN_ON)
set_state(port, PD_STATE_VCONN_SWAP_READY);
#endif
} else if (pd[port].task_state == PD_STATE_SNK_DISCOVERY) {
/* Don't know what power source is ready. Reset. */
set_state(port, PD_STATE_HARD_RESET_SEND);
} else if (pd[port].task_state == PD_STATE_SNK_SWAP_STANDBY) {
/* Do nothing, assume this is a redundant PD_RDY */
} else if (pd[port].power_role == PD_ROLE_SINK) {
/*
* Give the source some time to send any messages before
* we start our interrogation. Add some jitter of up to
* 100ms, taken from the current system time, to prevent
* multiple collisions.
*/
if (pd[port].task_state == PD_STATE_SNK_TRANSITION)
pd[port].ready_state_holdoff_timer =
get_time().val + READY_HOLD_OFF_US
+ (get_time().le.lo % (100 * MSEC));
set_state(port, PD_STATE_SNK_READY);
pd_set_input_current_limit(port, pd[port].curr_limit,
pd[port].supply_voltage);
#ifdef CONFIG_CHARGE_MANAGER
/* Set ceiling based on what's negotiated */
charge_manager_set_ceil(port,
CEIL_REQUESTOR_PD,
pd[port].curr_limit);
#endif
}
break;
#endif
case PD_CTRL_REJECT:
case PD_CTRL_WAIT:
if (pd[port].task_state == PD_STATE_DR_SWAP) {
if (type == PD_CTRL_WAIT) /* try again ... */
pd[port].flags |= PD_FLAGS_CHECK_DR_ROLE;
set_state(port, READY_RETURN_STATE(port));
}
#ifdef CONFIG_USBC_VCONN_SWAP
else if (pd[port].task_state == PD_STATE_VCONN_SWAP_SEND)
set_state(port, READY_RETURN_STATE(port));
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE
else if (pd[port].task_state == PD_STATE_SRC_SWAP_INIT)
set_state(port, PD_STATE_SRC_READY);
else if (pd[port].task_state == PD_STATE_SNK_SWAP_INIT)
set_state(port, PD_STATE_SNK_READY);
else if (pd[port].task_state == PD_STATE_SNK_REQUESTED) {
/*
* On reception of a WAIT message, transition to
* PD_STATE_SNK_READY after PD_T_SINK_REQUEST ms to
* send another request.
*
* On reception of a REJECT message, transition to
* PD_STATE_SNK_READY but don't resend the request if
* we already have a contract in place.
*
* On reception of a REJECT message without a contract,
* transition to PD_STATE_SNK_DISCOVERY instead.
*/
if (type == PD_CTRL_WAIT) {
/*
* Trigger a new power request when
* we enter PD_STATE_SNK_READY
*/
pd[port].new_power_request = 1;
/*
* After the request is triggered,
* make sure the request is sent.
*/
pd[port].prev_request_mv = 0;
/*
* Transition to PD_STATE_SNK_READY
* after PD_T_SINK_REQUEST ms.
*/
set_state_timeout(port,
get_time().val +
PD_T_SINK_REQUEST,
PD_STATE_SNK_READY);
} else {
/* The request was rejected */
const int in_contract =
pd[port].flags &
PD_FLAGS_EXPLICIT_CONTRACT;
set_state(port,
in_contract ? PD_STATE_SNK_READY
: PD_STATE_SNK_DISCOVERY);
}
}
#endif
break;
case PD_CTRL_ACCEPT:
if (pd[port].task_state == PD_STATE_SOFT_RESET) {
/*
* For the case that we sent soft reset in SNK_DISCOVERY
* on startup due to VBUS never low, clear the flag.
*/
pd[port].flags &= ~PD_FLAGS_VBUS_NEVER_LOW;
execute_soft_reset(port);
} else if (pd[port].task_state == PD_STATE_DR_SWAP) {
/* switch data role */
pd_dr_swap(port);
set_state(port, READY_RETURN_STATE(port));
#ifdef CONFIG_USB_PD_DUAL_ROLE
#ifdef CONFIG_USBC_VCONN_SWAP
} else if (pd[port].task_state == PD_STATE_VCONN_SWAP_SEND) {
/* switch vconn */
set_state(port, PD_STATE_VCONN_SWAP_INIT);
#endif
} else if (pd[port].task_state == PD_STATE_SRC_SWAP_INIT) {
/* explicit contract goes away for power swap */
pd[port].flags &= ~PD_FLAGS_EXPLICIT_CONTRACT;
pd_update_saved_port_flags(port,
PD_BBRMFLG_EXPLICIT_CONTRACT,
0);
set_state(port, PD_STATE_SRC_SWAP_SNK_DISABLE);
} else if (pd[port].task_state == PD_STATE_SNK_SWAP_INIT) {
/* explicit contract goes away for power swap */
pd[port].flags &= ~PD_FLAGS_EXPLICIT_CONTRACT;
pd_update_saved_port_flags(port,
PD_BBRMFLG_EXPLICIT_CONTRACT,
0);
set_state(port, PD_STATE_SNK_SWAP_SNK_DISABLE);
} else if (pd[port].task_state == PD_STATE_SNK_REQUESTED) {
/* explicit contract is now in place */
pd[port].flags |= PD_FLAGS_EXPLICIT_CONTRACT;
pd_update_saved_port_flags(port,
PD_BBRMFLG_EXPLICIT_CONTRACT,
1);
set_state(port, PD_STATE_SNK_TRANSITION);
#endif
}
break;
case PD_CTRL_SOFT_RESET:
execute_soft_reset(port);
/* We are done, acknowledge with an Accept packet */
send_control(port, PD_CTRL_ACCEPT);
break;
case PD_CTRL_PR_SWAP:
#ifdef CONFIG_USB_PD_DUAL_ROLE
if (pd_check_power_swap(port)) {
send_control(port, PD_CTRL_ACCEPT);
/*
* Clear flag for checking power role to avoid
* immediately requesting another swap.
*/
pd[port].flags &= ~PD_FLAGS_CHECK_PR_ROLE;
set_state(port,
DUAL_ROLE_IF_ELSE(port,
PD_STATE_SNK_SWAP_SNK_DISABLE,
PD_STATE_SRC_SWAP_SNK_DISABLE));
} else {
send_control(port, REFUSE(pd[port].rev));
}
#else
send_control(port, REFUSE(pd[port].rev));
#endif
break;
case PD_CTRL_DR_SWAP:
if (pd_check_data_swap(port, pd[port].data_role)) {
/*
* Accept switch and perform data swap. Clear
* flag for checking data role to avoid
* immediately requesting another swap.
*/
pd[port].flags &= ~PD_FLAGS_CHECK_DR_ROLE;
if (send_control(port, PD_CTRL_ACCEPT) >= 0)
pd_dr_swap(port);
} else {
send_control(port, REFUSE(pd[port].rev));
}
break;
case PD_CTRL_VCONN_SWAP:
#ifdef CONFIG_USBC_VCONN_SWAP
if (pd[port].task_state == PD_STATE_SRC_READY ||
pd[port].task_state == PD_STATE_SNK_READY) {
if (pd_check_vconn_swap(port)) {
if (send_control(port, PD_CTRL_ACCEPT) > 0)
set_state(port,
PD_STATE_VCONN_SWAP_INIT);
} else {
send_control(port, REFUSE(pd[port].rev));
}
}
#else
send_control(port, REFUSE(pd[port].rev));
#endif
break;
default:
#ifdef CONFIG_USB_PD_REV30
send_control(port, PD_CTRL_NOT_SUPPORTED);
#endif
CPRINTF("C%d Unhandled ctrl message type %d\n", port, type);
}
}
#ifdef CONFIG_USB_PD_REV30
static void handle_ext_request(int port, uint16_t head, uint32_t *payload)
{
int type = PD_HEADER_TYPE(head);
switch (type) {
case PD_EXT_GET_BATTERY_CAP:
send_battery_cap(port, payload);
break;
case PD_EXT_GET_BATTERY_STATUS:
send_battery_status(port, payload);
break;
case PD_EXT_BATTERY_CAP:
break;
default:
send_control(port, PD_CTRL_NOT_SUPPORTED);
}
}
#endif
static void handle_request(int port, uint16_t head,
uint32_t *payload)
{
int cnt = PD_HEADER_CNT(head);
int data_role = PD_HEADER_DROLE(head);
int p;
/* dump received packet content (only dump ping at debug level 3) */
if ((debug_level == 2 && PD_HEADER_TYPE(head) != PD_CTRL_PING) ||
debug_level >= 3) {
CPRINTF("C%d RECV %04x/%d ", port, head, cnt);
for (p = 0; p < cnt; p++)
CPRINTF("[%d]%08x ", p, payload[p]);
CPRINTF("\n");
}
/*
* If we are in disconnected state, we shouldn't get a request. Do
* a hard reset if we get one.
*/
if (!pd_is_connected(port))
set_state(port, PD_STATE_HARD_RESET_SEND);
/*
* When a data role conflict is detected, USB-C ErrorRecovery
* actions shall be performed, and transitioning to unattached state
* is one such legal action.
*/
if (pd[port].data_role == data_role) {
/*
* If the port doesn't support removing the terminations, just
* go to the unattached state.
*/
if (tcpm_set_cc(port, TYPEC_CC_OPEN) == EC_SUCCESS) {
/* Do not drive VBUS or VCONN. */
pd_power_supply_reset(port);
#ifdef CONFIG_USBC_VCONN
set_vconn(port, 0);
#endif /* defined(CONFIG_USBC_VCONN) */
usleep(PD_T_ERROR_RECOVERY);
/* Restore terminations. */
tcpm_set_cc(port, DUAL_ROLE_IF_ELSE(port, TYPEC_CC_RD,
TYPEC_CC_RP));
}
set_state(port,
DUAL_ROLE_IF_ELSE(port,
PD_STATE_SNK_DISCONNECTED,
PD_STATE_SRC_DISCONNECTED));
return;
}
#ifdef CONFIG_USB_PD_REV30
/* Check if this is an extended chunked data message. */
if (pd[port].rev == PD_REV30 && PD_HEADER_EXT(head)) {
handle_ext_request(port, head, payload);
return;
}
#endif
if (cnt)
handle_data_request(port, head, payload);
else
handle_ctrl_request(port, head, payload);
}
void pd_send_vdm(int port, uint32_t vid, int cmd, const uint32_t *data,
int count)
{
if (count > VDO_MAX_SIZE - 1) {
CPRINTF("C%d VDM over max size\n", port);
return;
}
/* set VDM header with VID & CMD */
pd[port].vdo_data[0] = VDO(vid, ((vid & USB_SID_PD) == USB_SID_PD) ?
1 : (PD_VDO_CMD(cmd) <= CMD_ATTENTION), cmd);
#ifdef CONFIG_USB_PD_REV30
pd[port].vdo_data[0] |= VDO_SVDM_VERS(vdo_ver[pd[port].rev]);
#endif
queue_vdm(port, pd[port].vdo_data, data, count);
task_wake(PD_PORT_TO_TASK_ID(port));
}
static inline int pdo_busy(int port)
{
/*
* Note, main PDO state machine (pd_task) uses READY state exclusively
* to denote port partners have successfully negociated a contract. All
* other protocol actions force state transitions.
*/
int rv = (pd[port].task_state != PD_STATE_SRC_READY);
#ifdef CONFIG_USB_PD_DUAL_ROLE
rv &= (pd[port].task_state != PD_STATE_SNK_READY);
#endif
return rv;
}
static uint64_t vdm_get_ready_timeout(uint32_t vdm_hdr)
{
uint64_t timeout;
int cmd = PD_VDO_CMD(vdm_hdr);
/* its not a structured VDM command */
if (!PD_VDO_SVDM(vdm_hdr))
return 500*MSEC;
switch (PD_VDO_CMDT(vdm_hdr)) {
case CMDT_INIT:
if ((cmd == CMD_ENTER_MODE) || (cmd == CMD_EXIT_MODE))
timeout = PD_T_VDM_WAIT_MODE_E;
else
timeout = PD_T_VDM_SNDR_RSP;
break;
default:
if ((cmd == CMD_ENTER_MODE) || (cmd == CMD_EXIT_MODE))
timeout = PD_T_VDM_E_MODE;
else
timeout = PD_T_VDM_RCVR_RSP;
break;
}
return timeout;
}
static void pd_vdm_send_state_machine(int port)
{
int res;
uint16_t header;
switch (pd[port].vdm_state) {
case VDM_STATE_READY:
/* Only transmit VDM if connected. */
if (!pd_is_connected(port)) {
pd[port].vdm_state = VDM_STATE_ERR_BUSY;
break;
}
/*
* if there's traffic or we're not in PDO ready state don't send
* a VDM.
*/
if (pdo_busy(port))
break;
/*
* To communicate with the cable plug, an explicit contract
* should be established, VCONN should be enabled and data role
* that can communicate with the cable plug should be in place.
* For USB3.0, UFP/DFP can communicate whereas in case of
* USB2.0 only DFP can talk to the cable plug.
*
* For communication between USB2.0 UFP and cable plug,
* data role swap takes place during source and sink
* negotiation and in case of failure, a soft reset is issued.
*/
if (is_sop_prime_ready(port, pd[port].data_role,
pd[port].flags)) {
/* Prepare SOP'/SOP'' header and send VDM */
header = PD_HEADER(PD_DATA_VENDOR_DEF, PD_PLUG_DFP_UFP,
0, pd[port].msg_id,
(int)pd[port].vdo_count,
pd_get_rev(port), 0);
res = pd_transmit(port, TCPC_TX_SOP_PRIME, header,
pd[port].vdo_data);
/*
* If there is no ack from the cable, its a non-emark
* cable and since, the pd flow should continue
* irrespective of cable response, sending
* discover_svid so the pd flow remains intact.
*/
if (res < 0) {
header = PD_HEADER(PD_DATA_VENDOR_DEF,
pd[port].power_role,
pd[port].data_role,
pd[port].msg_id,
(int)pd[port].vdo_count,
pd_get_rev(port), 0);
pd[port].vdo_data[0] =
VDO(USB_SID_PD, 1, CMD_DISCOVER_SVID);
res = pd_transmit(port, TCPC_TX_SOP, header,
pd[port].vdo_data);
reset_pd_cable(port);
}
} else {
/* Prepare SOP header and send VDM */
header = PD_HEADER(PD_DATA_VENDOR_DEF,
pd[port].power_role,
pd[port].data_role,
pd[port].msg_id,
(int)pd[port].vdo_count,
pd_get_rev(port), 0);
res = pd_transmit(port, TCPC_TX_SOP, header,
pd[port].vdo_data);
}
if (res < 0) {
pd[port].vdm_state = VDM_STATE_ERR_SEND;
} else {
pd[port].vdm_state = VDM_STATE_BUSY;
pd[port].vdm_timeout.val = get_time().val +
vdm_get_ready_timeout(pd[port].vdo_data[0]);
}
break;
case VDM_STATE_WAIT_RSP_BUSY:
/* wait and then initiate request again */
if (get_time().val > pd[port].vdm_timeout.val) {
pd[port].vdo_data[0] = pd[port].vdo_retry;
pd[port].vdo_count = 1;
pd[port].vdm_state = VDM_STATE_READY;
}
break;
case VDM_STATE_BUSY:
/* Wait for VDM response or timeout */
if (pd[port].vdm_timeout.val &&
(get_time().val > pd[port].vdm_timeout.val)) {
pd[port].vdm_state = VDM_STATE_ERR_TMOUT;
}
break;
default:
break;
}
}
#ifdef CONFIG_CMD_PD_DEV_DUMP_INFO
static inline void pd_dev_dump_info(uint16_t dev_id, uint8_t *hash)
{
int j;
ccprintf("DevId:%d.%d Hash:", HW_DEV_ID_MAJ(dev_id),
HW_DEV_ID_MIN(dev_id));
for (j = 0; j < PD_RW_HASH_SIZE; j += 4) {
ccprintf(" 0x%02x%02x%02x%02x", hash[j + 3], hash[j + 2],
hash[j + 1], hash[j]);
}
ccprintf("\n");
}
#endif /* CONFIG_CMD_PD_DEV_DUMP_INFO */
int pd_dev_store_rw_hash(int port, uint16_t dev_id, uint32_t *rw_hash,
uint32_t current_image)
{
#ifdef CONFIG_COMMON_RUNTIME
int i;
#endif
pd[port].dev_id = dev_id;
memcpy(pd[port].dev_rw_hash, rw_hash, PD_RW_HASH_SIZE);
#ifdef CONFIG_CMD_PD_DEV_DUMP_INFO
if (debug_level >= 2)
pd_dev_dump_info(dev_id, (uint8_t *)rw_hash);
#endif
pd[port].current_image = current_image;
#ifdef CONFIG_COMMON_RUNTIME
/* Search table for matching device / hash */
for (i = 0; i < RW_HASH_ENTRIES; i++)
if (dev_id == rw_hash_table[i].dev_id)
return !memcmp(rw_hash,
rw_hash_table[i].dev_rw_hash,
PD_RW_HASH_SIZE);
#endif
return 0;
}
#if defined(CONFIG_POWER_COMMON) || defined(CONFIG_USB_PD_ALT_MODE_DFP)
static void exit_dp_mode(int port)
{
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
int opos = pd_alt_mode(port, USB_SID_DISPLAYPORT);
if (opos <= 0)
return;
CPRINTS("C%d Exiting DP mode", port);
if (!pd_dfp_exit_mode(port, USB_SID_DISPLAYPORT, opos))
return;
pd_send_vdm(port, USB_SID_DISPLAYPORT,
CMD_EXIT_MODE | VDO_OPOS(opos), NULL, 0);
pd_vdm_send_state_machine(port);
/* Have to wait for ACK */
#endif /* CONFIG_USB_PD_ALT_MODE_DFP */
}
#endif /* CONFIG_POWER_COMMON */
#ifdef CONFIG_POWER_COMMON
static void handle_new_power_state(int port)
{
if (chipset_in_or_transitioning_to_state(CHIPSET_STATE_ANY_OFF))
/* The SoC will negotiated DP mode again when it boots up */
exit_dp_mode(port);
/* Ensure mux is set properly after chipset transition */
set_usb_mux_with_current_data_role(port);
}
#endif /* CONFIG_POWER_COMMON */
#ifdef CONFIG_USB_PD_DUAL_ROLE
enum pd_dual_role_states pd_get_dual_role(int port)
{
return drp_state[port];
}
#ifdef CONFIG_USB_PD_TRY_SRC
static void pd_update_try_source(void)
{
int i;
int try_src = 0;
int batt_soc = usb_get_battery_soc();
try_src = 0;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++)
try_src |= drp_state[i] == PD_DRP_TOGGLE_ON;
/*
* Enable try source when dual-role toggling AND battery is present
* and at some minimum percentage.
*/
pd_try_src_enable = try_src &&
batt_soc >= CONFIG_USB_PD_TRY_SRC_MIN_BATT_SOC;
#ifdef CONFIG_BATTERY_REVIVE_DISCONNECT
/*
* Don't attempt Try.Src if the battery is in the disconnect state. The
* discharge FET may not be enabled and so attempting Try.Src may cut
* off our only power source at the time.
*/
pd_try_src_enable &= (battery_get_disconnect_state() ==
BATTERY_NOT_DISCONNECTED);
#elif defined(CONFIG_BATTERY_PRESENT_CUSTOM) || \
defined(CONFIG_BATTERY_PRESENT_GPIO)
/*
* When battery is cutoff in ship mode it may not be reliable to
* check if battery is present with its state of charge.
* Also check if battery is initialized and ready to provide power.
*/
pd_try_src_enable &= (battery_is_present() == BP_YES);
#endif /* CONFIG_BATTERY_PRESENT_[CUSTOM|GPIO] */
/*
* Clear this flag to cover case where a TrySrc
* mode went from enabled to disabled and trying_source
* was active at that time.
*/
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++)
pd[i].flags &= ~PD_FLAGS_TRY_SRC;
}
#endif /* CONFIG_USB_PD_TRY_SRC */
#ifdef CONFIG_USB_PD_RESET_MIN_BATT_SOC
static void pd_update_snk_reset(void)
{
int i;
int batt_soc = usb_get_battery_soc();
if (batt_soc < CONFIG_USB_PD_RESET_MIN_BATT_SOC)
return;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
if (pd[i].flags & PD_FLAGS_SNK_WAITING_BATT) {
/*
* Battery has gained sufficient charge to kick off PD
* negotiation and withstand a hard reset. Clear the
* flag and let reset begin if task is waiting in
* SNK_DISCOVERY.
*/
pd[i].flags &= ~PD_FLAGS_SNK_WAITING_BATT;
if (pd[i].task_state == PD_STATE_SNK_DISCOVERY) {
CPRINTS("C%d: Starting soft reset timer", i);
set_state_timeout(i,
get_time().val + PD_T_SINK_WAIT_CAP,
PD_STATE_SOFT_RESET);
}
}
}
}
#endif
#if defined(CONFIG_USB_PD_TRY_SRC) || defined(CONFIG_USB_PD_RESET_MIN_BATT_SOC)
static void pd_update_battery_soc_change(void)
{
#ifdef CONFIG_USB_PD_TRY_SRC
pd_update_try_source();
#endif
#ifdef CONFIG_USB_PD_RESET_MIN_BATT_SOC
pd_update_snk_reset();
#endif
}
DECLARE_HOOK(HOOK_BATTERY_SOC_CHANGE, pd_update_battery_soc_change,
HOOK_PRIO_DEFAULT);
#endif /* CONFIG_USB_PD_TRY_SRC || CONFIG_USB_PD_RESET_MIN_BATT_SOC */
static inline void pd_set_dual_role_no_wakeup(int port,
enum pd_dual_role_states state)
{
drp_state[port] = state;
#ifdef CONFIG_USB_PD_TRY_SRC
pd_update_try_source();
#endif
}
void pd_set_dual_role(int port, enum pd_dual_role_states state)
{
pd_set_dual_role_no_wakeup(port, state);
/* Wake task up to process change */
task_set_event(PD_PORT_TO_TASK_ID(port),
PD_EVENT_UPDATE_DUAL_ROLE, 0);
}
/* This must only be called from the PD task */
static void pd_update_dual_role_config(int port)
{
/*
* Change to sink if port is currently a source AND (new DRP
* state is force sink OR new DRP state is either toggle off
* or debug accessory toggle only and we are in the source
* disconnected state).
*/
if (pd[port].power_role == PD_ROLE_SOURCE &&
((drp_state[port] == PD_DRP_FORCE_SINK && !pd_ts_dts_plugged(port))
|| (drp_state[port] == PD_DRP_TOGGLE_OFF
&& pd[port].task_state == PD_STATE_SRC_DISCONNECTED))) {
pd_set_power_role(port, PD_ROLE_SINK);
set_state(port, PD_STATE_SNK_DISCONNECTED);
tcpm_set_cc(port, TYPEC_CC_RD);
/* Make sure we're not sourcing VBUS. */
pd_power_supply_reset(port);
}
/*
* Change to source if port is currently a sink and the
* new DRP state is force source.
*/
if (pd[port].power_role == PD_ROLE_SINK &&
drp_state[port] == PD_DRP_FORCE_SOURCE) {
pd_set_power_role(port, PD_ROLE_SOURCE);
set_state(port, PD_STATE_SRC_DISCONNECTED);
tcpm_set_cc(port, TYPEC_CC_RP);
}
}
int pd_get_role(int port)
{
return pd[port].power_role;
}
static int pd_is_power_swapping(int port)
{
/* return true if in the act of swapping power roles */
return pd[port].task_state == PD_STATE_SNK_SWAP_SNK_DISABLE ||
pd[port].task_state == PD_STATE_SNK_SWAP_SRC_DISABLE ||
pd[port].task_state == PD_STATE_SNK_SWAP_STANDBY ||
pd[port].task_state == PD_STATE_SNK_SWAP_COMPLETE ||
pd[port].task_state == PD_STATE_SRC_SWAP_SNK_DISABLE ||
pd[port].task_state == PD_STATE_SRC_SWAP_SRC_DISABLE ||
pd[port].task_state == PD_STATE_SRC_SWAP_STANDBY;
}
/*
* Provide Rp to ensure the partner port is in a known state (eg. not
* PD negotiated, not sourcing 20V).
*/
static void pd_partner_port_reset(int port)
{
uint64_t timeout;
uint8_t flags;
/*
* If there is no contract in place (or if we fail to read the BBRAM
* flags), there is no need to reset the partner.
*/
if (pd_get_saved_port_flags(port, &flags) != EC_SUCCESS ||
!(flags & PD_BBRMFLG_EXPLICIT_CONTRACT))
return;
/*
* If we reach here, an explicit contract is in place.
*
* If PD communications are allowed, don't apply Rp. We'll issue a
* SoftReset later on and renegotiate our contract. This particular
* condition only applies to unlocked RO images with an explicit
* contract in place.
*/
if (pd_comm_is_enabled(port))
return;
/* If we just lost power, don't apply Rp. */
if (system_get_reset_flags() &
(EC_RESET_FLAG_BROWNOUT | EC_RESET_FLAG_POWER_ON))
return;
/*
* Clear the active contract bit before we apply Rp in case we
* intentionally brown out because we cut off our only power supply.
*/
pd_update_saved_port_flags(port, PD_BBRMFLG_EXPLICIT_CONTRACT, 0);
/* Provide Rp for 200 msec. or until we no longer have VBUS. */
CPRINTF("C%d Apply Rp!\n", port);
cflush();
tcpm_set_cc(port, TYPEC_CC_RP);
timeout = get_time().val + 200 * MSEC;
while (get_time().val < timeout && pd_is_vbus_present(port))
msleep(10);
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
static enum pd_states drp_auto_toggle_next_state(int port,
enum tcpc_cc_voltage_status cc1, enum tcpc_cc_voltage_status cc2)
{
enum pd_states next_state;
/* Set to appropriate port state */
if (cc_is_open(cc1, cc2)) {
/*
* If nothing is attached then use drp_state to determine next
* state. If DRP auto toggle is still on, then remain in the
* DRP_AUTO_TOGGLE state. Otherwise, stop dual role toggling
* and go to a disconnected state.
*/
switch (drp_state[port]) {
case PD_DRP_TOGGLE_OFF:
next_state = PD_DEFAULT_STATE(port);
break;
case PD_DRP_FREEZE:
if (pd[port].power_role == PD_ROLE_SINK)
next_state = PD_STATE_SNK_DISCONNECTED;
else
next_state = PD_STATE_SRC_DISCONNECTED;
break;
case PD_DRP_FORCE_SINK:
next_state = PD_STATE_SNK_DISCONNECTED;
break;
case PD_DRP_FORCE_SOURCE:
next_state = PD_STATE_SRC_DISCONNECTED;
break;
case PD_DRP_TOGGLE_ON:
default:
next_state = PD_STATE_DRP_AUTO_TOGGLE;
break;
}
} else if ((cc_is_rp(cc1) || cc_is_rp(cc2)) &&
drp_state[port] != PD_DRP_FORCE_SOURCE) {
/* SNK allowed unless ForceSRC */
next_state = PD_STATE_SNK_DISCONNECTED;
} else if (cc_is_at_least_one_rd(cc1, cc2) ||
cc_is_audio_acc(cc1, cc2)) {
/*
* SRC allowed unless ForceSNK or Toggle Off
*
* Ideally we wouldn't use auto-toggle when drp_state is
* TOGGLE_OFF/FORCE_SINK, but for some TCPCs, auto-toggle can't
* be prevented in low power mode. Try being a sink in case the
* connected device is dual-role (this ensures reliable charging
* from a hub, b/72007056). 100 ms is enough time for a
* dual-role partner to switch from sink to source. If the
* connected device is sink-only, then we will attempt
* SNK_DISCONNECTED twice (due to debounce time), then return to
* low power mode (and stay there). After 200 ms, reset ready
* for a new connection.
*/
if (drp_state[port] == PD_DRP_TOGGLE_OFF ||
drp_state[port] == PD_DRP_FORCE_SINK) {
if (get_time().val > pd[port].drp_sink_time + 200*MSEC)
pd[port].drp_sink_time = get_time().val;
if (get_time().val < pd[port].drp_sink_time + 100*MSEC)
next_state = PD_STATE_SNK_DISCONNECTED;
else
next_state = PD_STATE_DRP_AUTO_TOGGLE;
} else
next_state = PD_STATE_SRC_DISCONNECTED;
} else
/* Anything else, keep toggling */
next_state = PD_STATE_DRP_AUTO_TOGGLE;
return next_state;
}
#endif /* CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE */
int pd_get_polarity(int port)
{
return pd[port].polarity;
}
int pd_get_partner_data_swap_capable(int port)
{
/* return data swap capable status of port partner */
return pd[port].flags & PD_FLAGS_PARTNER_DR_DATA;
}
#ifdef CONFIG_COMMON_RUNTIME
void pd_comm_enable(int port, int enable)
{
/* We don't check port >= CONFIG_USB_PD_PORT_COUNT deliberately */
pd_comm_enabled[port] = enable;
/* If type-C connection, then update the TCPC RX enable */
if (pd_is_connected(port))
tcpm_set_rx_enable(port, enable);
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* If communications are enabled, start hard reset timer for
* any port in PD_SNK_DISCOVERY.
*/
if (enable && pd[port].task_state == PD_STATE_SNK_DISCOVERY)
set_state_timeout(port,
get_time().val + PD_T_SINK_WAIT_CAP,
PD_STATE_HARD_RESET_SEND);
#endif
}
#endif
void pd_ping_enable(int port, int enable)
{
if (enable)
pd[port].flags |= PD_FLAGS_PING_ENABLED;
else
pd[port].flags &= ~PD_FLAGS_PING_ENABLED;
}
#if defined(CONFIG_CHARGE_MANAGER)
/**
* Signal power request to indicate a charger update that affects the port.
*/
void pd_set_new_power_request(int port)
{
pd[port].new_power_request = 1;
task_wake(PD_PORT_TO_TASK_ID(port));
}
#endif /* CONFIG_CHARGE_MANAGER */
#if defined(CONFIG_USBC_BACKWARDS_COMPATIBLE_DFP) && defined(CONFIG_USBC_SS_MUX)
/*
* Backwards compatible DFP does not support USB SS because it applies VBUS
* before debouncing CC and setting USB SS muxes, but SS detection will fail
* before we are done debouncing CC.
*/
#error "Backwards compatible DFP does not support USB"
#endif
#ifdef CONFIG_COMMON_RUNTIME
/* Initialize globals based on system state. */
static void pd_init_tasks(void)
{
static int initialized;
int enable = 1;
int i;
/* Initialize globals once, for all PD tasks. */
if (initialized)
return;
#if defined(HAS_TASK_CHIPSET) && defined(CONFIG_USB_PD_DUAL_ROLE)
/* Set dual-role state based on chipset power state */
if (chipset_in_state(CHIPSET_STATE_ANY_OFF))
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++)
drp_state[i] = PD_DRP_FORCE_SINK;
else if (chipset_in_state(CHIPSET_STATE_ANY_SUSPEND))
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++)
drp_state[i] = PD_DRP_TOGGLE_OFF;
else /* CHIPSET_STATE_ON */
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++)
drp_state[i] = PD_DRP_TOGGLE_ON;
#endif
#if defined(CONFIG_USB_PD_COMM_DISABLED)
enable = 0;
#elif defined(CONFIG_USB_PD_COMM_LOCKED)
/* Disable PD communication at init if we're in RO and locked. */
if (!system_is_in_rw() && system_is_locked())
enable = 0;
#ifdef CONFIG_VBOOT_EFS
if (vboot_need_pd_comm())
enable = 1;
#endif
#endif
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++)
pd_comm_enabled[i] = enable;
CPRINTS("PD comm %sabled", enable ? "en" : "dis");
initialized = 1;
}
#endif /* CONFIG_COMMON_RUNTIME */
#if !defined(CONFIG_USB_PD_TCPC) && defined(CONFIG_USB_PD_DUAL_ROLE)
static int pd_restart_tcpc(int port)
{
if (board_set_tcpc_power_mode) {
/* force chip reset */
board_set_tcpc_power_mode(port, 0);
}
return tcpm_init(port);
}
#endif
/* High-priority interrupt tasks implementations */
#if defined(HAS_TASK_PD_INT_C0) || defined(HAS_TASK_PD_INT_C1) || \
defined(HAS_TASK_PD_INT_C2)
/* Used to conditionally compile code in main pd task. */
#define HAS_DEFFERED_INTERRUPT_HANDLER
/* Events for pd_interrupt_handler_task */
#define PD_PROCESS_INTERRUPT BIT(0)
static uint8_t pd_int_task_id[CONFIG_USB_PD_PORT_COUNT];
void schedule_deferred_pd_interrupt(const int port)
{
task_set_event(pd_int_task_id[port], PD_PROCESS_INTERRUPT, 0);
}
/*
* Theoretically, we may need to support up to 480 USB-PD packets per second for
* intensive operations such as FW update over PD. This value has tested well
* preventing watchdog resets with a single bad port partner plugged in.
*/
#define ALERT_STORM_MAX_COUNT 480
#define ALERT_STORM_INTERVAL SECOND
/**
* Main task entry point that handles PD interrupts for a single port
*
* @param p The PD port number for which to handle interrupts (pointer is
* reinterpreted as an integer directly).
*/
void pd_interrupt_handler_task(void *p)
{
const int port = (int) p;
const int port_mask = (PD_STATUS_TCPC_ALERT_0 << port);
struct {
int count;
uint32_t time;
} storm_tracker[CONFIG_USB_PD_PORT_COUNT] = {};
ASSERT(port >= 0 && port < CONFIG_USB_PD_PORT_COUNT);
pd_int_task_id[port] = task_get_current();
while (1) {
const int evt = task_wait_event(-1);
if (evt & PD_PROCESS_INTERRUPT) {
/*
* While the interrupt signal is asserted; we have more
* work to do. This effectively makes the interrupt a
* level-interrupt instead of an edge-interrupt without
* having to enable/disable a real level-interrupt in
* multiple locations.
*
* Also, if the port is disabled do not process
* interrupts. Upon existing suspend, we schedule a
* PD_PROCESS_INTERRUPT to check if we missed anything.
*/
while ((tcpc_get_alert_status() & port_mask) &&
pd_is_port_enabled(port)) {
uint32_t now;
tcpc_alert(port);
now = get_time().le.lo;
if (time_after(now, storm_tracker[port].time)) {
storm_tracker[port].time =
now + ALERT_STORM_INTERVAL;
/*
* Start at 1 since we are processing
* an interrupt now
*/
storm_tracker[port].count = 1;
} else if (++storm_tracker[port].count >
ALERT_STORM_MAX_COUNT) {
CPRINTS("C%d Interrupt storm detected. "
"Disabling port for 5 seconds.",
port);
pd_set_suspend(port, 1);
pd_deferred_resume(port);
}
}
}
}
}
#endif /* HAS_TASK_PD_INT_C0 || HAS_TASK_PD_INT_C1 || HAS_TASK_PD_INT_C2 */
void pd_task(void *u)
{
int head;
int port = TASK_ID_TO_PD_PORT(task_get_current());
uint32_t payload[7];
int timeout = 10*MSEC;
enum tcpc_cc_voltage_status cc1, cc2;
int res, incoming_packet = 0;
int hard_reset_count = 0;
#ifdef CONFIG_USB_PD_DUAL_ROLE
uint64_t next_role_swap = PD_T_DRP_SNK;
uint8_t saved_flgs = 0;
#ifndef CONFIG_USB_PD_VBUS_DETECT_NONE
int snk_hard_reset_vbus_off = 0;
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
const int auto_toggle_supported = tcpm_auto_toggle_supported(port);
#endif
#if defined(CONFIG_CHARGE_MANAGER)
typec_current_t typec_curr = 0, typec_curr_change = 0;
#endif /* CONFIG_CHARGE_MANAGER */
#endif /* CONFIG_USB_PD_DUAL_ROLE */
enum pd_states this_state;
enum pd_cc_states new_cc_state;
timestamp_t now;
uint64_t next_src_cap = 0;
int caps_count = 0, hard_reset_sent = 0;
int snk_cap_count = 0;
int evt;
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/*
* Set the ports in Low Power Mode so that other tasks wait until
* TCPC is initialized and ready.
*/
pd[port].flags |= PD_FLAGS_LPM_ENGAGED;
#endif
#ifdef CONFIG_COMMON_RUNTIME
pd_init_tasks();
#endif
/*
* Ensure the power supply is in the default state and ensure we are not
* sourcing Vconn
*/
pd_power_supply_reset(port);
#ifdef CONFIG_USBC_VCONN
set_vconn(port, 0);
#endif
/* Initialize TCPM driver and wait for TCPC to be ready */
res = reset_device_and_notify(port);
invalidate_last_message_id(port);
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_partner_port_reset(port);
#endif
this_state = res ? PD_STATE_SUSPENDED : PD_DEFAULT_STATE(port);
#ifndef CONFIG_USB_PD_TCPC
if (!res) {
struct ec_response_pd_chip_info_v1 *info;
if (tcpm_get_chip_info(port, 0, &info) ==
EC_SUCCESS) {
CPRINTS("TCPC p%d VID:0x%x PID:0x%x DID:0x%x FWV:0x%lx",
port, info->vendor_id, info->product_id,
info->device_id, info->fw_version_number);
}
}
#endif
#ifdef CONFIG_USB_PD_REV30
/* Set Revision to highest */
pd[port].rev = PD_REV30;
pd_ca_reset(port);
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* If VBUS is high, then initialize flag for VBUS has always been
* present. This flag is used to maintain a PD connection after a
* reset by sending a soft reset.
*/
pd[port].flags |=
pd_is_vbus_present(port) ? PD_FLAGS_VBUS_NEVER_LOW : 0;
#endif
/* Disable TCPC RX until connection is established */
tcpm_set_rx_enable(port, 0);
#ifdef CONFIG_USBC_SS_MUX
/* Initialize USB mux to its default state */
usb_mux_init(port);
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* If there's an explicit contract in place, let's restore the data and
* power roles such that any messages we send to the port partner will
* still be valid.
*/
if (pd_comm_is_enabled(port) &&
(pd_get_saved_port_flags(port, &saved_flgs) == EC_SUCCESS) &&
(saved_flgs & PD_BBRMFLG_EXPLICIT_CONTRACT)) {
/* Only attempt to maintain previous sink contracts */
if ((saved_flgs & PD_BBRMFLG_POWER_ROLE) == PD_ROLE_SINK) {
pd_set_power_role(port,
(saved_flgs & PD_BBRMFLG_POWER_ROLE) ?
PD_ROLE_SOURCE : PD_ROLE_SINK);
pd_set_data_role(port,
(saved_flgs & PD_BBRMFLG_DATA_ROLE) ?
PD_ROLE_DFP : PD_ROLE_UFP);
#ifdef CONFIG_USBC_VCONN
pd_set_vconn_role(port,
(saved_flgs & PD_BBRMFLG_VCONN_ROLE) ?
PD_ROLE_VCONN_ON : PD_ROLE_VCONN_OFF);
#endif /* CONFIG_USBC_VCONN */
/*
* Since there is an explicit contract in place, let's
* issue a SoftReset such that we can renegotiate with
* our port partner in order to synchronize our state
* machines.
*/
this_state = PD_STATE_SOFT_RESET;
/*
* Re-discover any alternate modes we may have been
* using with this port partner.
*/
pd[port].flags |= PD_FLAGS_CHECK_IDENTITY;
} else {
/*
* Vbus was turned off during the power supply reset
* earlier, so clear the contract flag and re-start as
* default role
*/
pd_update_saved_port_flags(port,
PD_BBRMFLG_EXPLICIT_CONTRACT, 0);
}
/*
* Set the TCPC reset event such that we can set our CC
* terminations, determine polarity, and enable RX so we
* can hear back from our port partner if maintaining our old
* connection.
*/
task_set_event(task_get_current(), PD_EVENT_TCPC_RESET, 0);
}
#endif /* defined(CONFIG_USB_PD_DUAL_ROLE) */
/* Set the power role if we haven't already. */
if (this_state != PD_STATE_SOFT_RESET)
pd_set_power_role(port, PD_ROLE_DEFAULT(port));
/* Initialize PD protocol state variables for each port. */
pd[port].vdm_state = VDM_STATE_DONE;
set_state(port, this_state);
tcpm_select_rp_value(port, CONFIG_USB_PD_PULLUP);
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* If we're not in an explicit contract, set our terminations to match
* our default power role.
*/
if (!(saved_flgs & PD_BBRMFLG_EXPLICIT_CONTRACT))
#endif /* CONFIG_USB_PD_DUAL_ROLE */
tcpm_set_cc(port, PD_ROLE_DEFAULT(port) == PD_ROLE_SOURCE ?
TYPEC_CC_RP : TYPEC_CC_RD);
#ifdef CONFIG_USBC_PPC
/*
* Wait to initialize the PPC after setting the correct Rd values in
* the TCPC otherwise the TCPC might not be pulling the CC lines down
* when the PPC connects the CC lines from the USB connector to the
* TCPC cause the source to drop Vbus causing a brown out.
*/
ppc_init(port);
#endif
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
/* Initialize PD Policy engine */
pd_dfp_pe_init(port);
#endif
#ifdef CONFIG_CHARGE_MANAGER
/* Initialize PD and type-C supplier current limits to 0 */
pd_set_input_current_limit(port, 0, 0);
typec_set_input_current_limit(port, 0, 0);
charge_manager_update_dualrole(port, CAP_UNKNOWN);
#endif
#ifdef HAS_DEFFERED_INTERRUPT_HANDLER
/*
* Since most boards configure the TCPC interrupt as edge
* and it is possible that the interrupt line was asserted between init
* and calling set_state, we need to process any pending interrupts now.
* Otherwise future interrupts will never fire because another edge
* never happens. Note this needs to happen after set_state() is called.
*/
schedule_deferred_pd_interrupt(port);
#endif
while (1) {
#ifdef CONFIG_USB_PD_REV30
/* send any pending messages */
pd_ca_send_pending(port);
#endif
/* process VDM messages last */
pd_vdm_send_state_machine(port);
/* Verify board specific health status : current, voltages... */
res = pd_board_checks();
if (res != EC_SUCCESS) {
/* cut the power */
pd_execute_hard_reset(port);
/* notify the other side of the issue */
pd_transmit(port, TCPC_TX_HARD_RESET, 0, NULL);
}
/* wait for next event/packet or timeout expiration */
evt = task_wait_event(timeout);
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
if (evt & PD_EXIT_LOW_POWER_EVENT_MASK)
exit_low_power_mode(port);
if (evt & PD_EVENT_DEVICE_ACCESSED)
handle_device_access(port);
#endif
#ifdef CONFIG_POWER_COMMON
if (evt & PD_EVENT_POWER_STATE_CHANGE)
handle_new_power_state(port);
#endif
#if defined(CONFIG_USB_PD_ALT_MODE_DFP)
if (evt & PD_EVENT_SYSJUMP) {
exit_dp_mode(port);
notify_sysjump_ready(&sysjump_task_waiting);
}
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE
if (evt & PD_EVENT_UPDATE_DUAL_ROLE)
pd_update_dual_role_config(port);
#endif
#ifdef CONFIG_USB_PD_TCPC
/*
* run port controller task to check CC and/or read incoming
* messages
*/
tcpc_run(port, evt);
#else
/* if TCPC has reset, then need to initialize it again */
if (evt & PD_EVENT_TCPC_RESET) {
reset_device_and_notify(port);
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
}
if ((evt & PD_EVENT_TCPC_RESET) &&
(pd[port].task_state != PD_STATE_DRP_AUTO_TOGGLE)) {
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE
if (pd[port].task_state == PD_STATE_SOFT_RESET) {
enum tcpc_cc_voltage_status cc1, cc2;
/*
* Set the terminations to match our power
* role.
*/
tcpm_set_cc(port, pd[port].power_role ?
TYPEC_CC_RP : TYPEC_CC_RD);
/* Determine the polarity. */
tcpm_get_cc(port, &cc1, &cc2);
if (pd[port].power_role == PD_ROLE_SINK) {
pd[port].polarity =
get_snk_polarity(cc1, cc2);
} else {
pd[port].polarity =
(cc1 != TYPEC_CC_VOLT_RD);
}
} else
#endif /* CONFIG_USB_PD_DUAL_ROLE */
{
/* Ensure CC termination is default */
tcpm_set_cc(port, PD_ROLE_DEFAULT(port) ==
PD_ROLE_SOURCE ? TYPEC_CC_RP :
TYPEC_CC_RD);
}
/*
* If we have a stable contract in the default role,
* then simply update TCPC with some missing info
* so that we can continue without resetting PD comms.
* Otherwise, go to the default disconnected state
* and force renegotiation.
*/
if (pd[port].vdm_state == VDM_STATE_DONE && (
#ifdef CONFIG_USB_PD_DUAL_ROLE
(PD_ROLE_DEFAULT(port) == PD_ROLE_SINK &&
pd[port].task_state == PD_STATE_SNK_READY) ||
(pd[port].task_state == PD_STATE_SOFT_RESET) ||
#endif
(PD_ROLE_DEFAULT(port) == PD_ROLE_SOURCE &&
pd[port].task_state == PD_STATE_SRC_READY))) {
set_polarity(port, pd[port].polarity);
tcpm_set_msg_header(port, pd[port].power_role,
pd[port].data_role);
tcpm_set_rx_enable(port, 1);
} else {
/* Ensure state variables are at default */
pd_set_power_role(port, PD_ROLE_DEFAULT(port));
pd[port].vdm_state = VDM_STATE_DONE;
set_state(port, PD_DEFAULT_STATE(port));
}
}
#endif
#ifdef CONFIG_USBC_PPC
/*
* TODO: Useful for non-PPC cases as well, but only needed
* for PPC cases right now. Revisit later.
*/
if (evt & PD_EVENT_SEND_HARD_RESET)
set_state(port, PD_STATE_HARD_RESET_SEND);
#endif /* defined(CONFIG_USBC_PPC) */
/* process any potential incoming message */
incoming_packet = tcpm_has_pending_message(port);
if (incoming_packet) {
/* Dequeue and consume duplicate message ID. */
if (tcpm_dequeue_message(port, payload, &head) ==
EC_SUCCESS
&& !consume_repeat_message(port, head)
)
handle_request(port, head, payload);
/* Check if there are any more messages */
if (tcpm_has_pending_message(port))
task_set_event(PD_PORT_TO_TASK_ID(port),
TASK_EVENT_WAKE, 0);
}
if (pd[port].req_suspend_state)
set_state(port, PD_STATE_SUSPENDED);
/* if nothing to do, verify the state of the world in 500ms */
this_state = pd[port].task_state;
timeout = 500*MSEC;
switch (this_state) {
case PD_STATE_DISABLED:
/* Nothing to do */
break;
case PD_STATE_SRC_DISCONNECTED:
timeout = 10*MSEC;
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/*
* If SW decided we should be in a low power state and
* the CC lines did not change, then don't talk with the
* TCPC otherwise we might wake it up.
*/
if (pd[port].flags & PD_FLAGS_LPM_REQUESTED &&
!(evt & PD_EVENT_CC)) {
timeout = -1;
break;
}
#endif /* CONFIG_USB_PD_TCPC_LOW_POWER */
tcpm_get_cc(port, &cc1, &cc2);
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
/*
* Attempt TCPC auto DRP toggle if it is
* not already auto toggling and not try.src
*/
if (auto_toggle_supported &&
!(pd[port].flags & PD_FLAGS_TCPC_DRP_TOGGLE) &&
!is_try_src(port) &&
cc_is_open(cc1, cc2)) {
set_state(port, PD_STATE_DRP_AUTO_TOGGLE);
timeout = 2*MSEC;
break;
}
#endif
/*
* Transition to DEBOUNCE if we detect appropriate
* signals
*
* (from 4.5.2.2.10.2 Exiting from Try.SRC State)
* If try_src -and-
* have only one Rd (not both) => DEBOUNCE
*
* (from 4.5.2.2.7.2 Exiting from Unattached.SRC State)
* If not try_src -and-
* have at least one Rd => DEBOUNCE -or-
* have audio access => DEBOUNCE
*
* try_src should not exit if both pins are Rd
*/
if ((is_try_src(port) && cc_is_only_one_rd(cc1, cc2)) ||
(!is_try_src(port) &&
(cc_is_at_least_one_rd(cc1, cc2) ||
cc_is_audio_acc(cc1, cc2)))) {
#ifdef CONFIG_USBC_BACKWARDS_COMPATIBLE_DFP
/* Enable VBUS */
if (pd_set_power_supply_ready(port))
break;
#endif
pd[port].cc_state = PD_CC_NONE;
set_state(port,
PD_STATE_SRC_DISCONNECTED_DEBOUNCE);
break;
}
#if defined(CONFIG_USB_PD_DUAL_ROLE)
now = get_time();
/*
* Try.SRC state is embedded here. The port
* shall transition to TryWait.SNK after
* tDRPTry (PD_T_DRP_TRY) and Vbus is within
* vSafe0V, or after tTryTimeout
* (PD_T_TRY_TIMEOUT). Otherwise we should stay
* within Try.SRC (break).
*/
if (is_try_src(port)) {
if (now.val < pd[port].try_src_marker) {
break;
} else if (now.val < pd[port].try_timeout) {
if (pd_is_vbus_present(port))
break;
}
/*
* Transition to TryWait.SNK now, so set
* state and update src marker time.
*/
set_state(port, PD_STATE_SNK_DISCONNECTED);
pd_set_power_role(port, PD_ROLE_SINK);
tcpm_set_cc(port, TYPEC_CC_RD);
pd[port].try_src_marker =
get_time().val + PD_T_DEBOUNCE;
timeout = 2 * MSEC;
break;
}
/*
* If Try.SRC state is not active, then handle
* the normal DRP toggle from SRC->SNK.
*/
if (now.val < next_role_swap ||
drp_state[port] == PD_DRP_FORCE_SOURCE ||
drp_state[port] == PD_DRP_FREEZE)
break;
/*
* Transition to SNK now, so set state and
* update next role swap time.
*/
set_state(port, PD_STATE_SNK_DISCONNECTED);
pd_set_power_role(port, PD_ROLE_SINK);
tcpm_set_cc(port, TYPEC_CC_RD);
next_role_swap = get_time().val + PD_T_DRP_SNK;
/* Swap states quickly */
timeout = 2 * MSEC;
#endif
break;
case PD_STATE_SRC_DISCONNECTED_DEBOUNCE:
timeout = 20*MSEC;
tcpm_get_cc(port, &cc1, &cc2);
if (cc_is_snk_dbg_acc(cc1, cc2)) {
/* Debug accessory */
new_cc_state = PD_CC_UFP_DEBUG_ACC;
} else if (cc_is_at_least_one_rd(cc1, cc2)) {
/* UFP attached */
new_cc_state = PD_CC_UFP_ATTACHED;
} else if (cc_is_audio_acc(cc1, cc2)) {
/* Audio accessory */
new_cc_state = PD_CC_UFP_AUDIO_ACC;
} else {
/* No UFP */
set_state(port, PD_STATE_SRC_DISCONNECTED);
timeout = 5*MSEC;
break;
}
/* Set debounce timer */
if (new_cc_state != pd[port].cc_state) {
pd[port].cc_debounce =
get_time().val +
(is_try_src(port) ? PD_T_DEBOUNCE
: PD_T_CC_DEBOUNCE);
pd[port].cc_state = new_cc_state;
break;
}
/* Debounce the cc state */
if (get_time().val < pd[port].cc_debounce)
break;
/* Debounce complete */
if (IS_ENABLED(CONFIG_COMMON_RUNTIME))
hook_notify(HOOK_USB_PD_CONNECT);
#ifdef CONFIG_USBC_PPC
/*
* If the port is latched off, just continue to
* monitor for a detach.
*/
if (ppc_is_port_latched_off(port))
break;
#endif /* CONFIG_USBC_PPC */
/* UFP is attached */
if (new_cc_state == PD_CC_UFP_ATTACHED ||
new_cc_state == PD_CC_UFP_DEBUG_ACC) {
#ifdef CONFIG_USBC_PPC
/* Inform PPC that a sink is connected. */
ppc_sink_is_connected(port, 1);
#endif /* CONFIG_USBC_PPC */
pd[port].polarity = (cc1 != TYPEC_CC_VOLT_RD);
set_polarity(port, pd[port].polarity);
/* initial data role for source is DFP */
pd_set_data_role(port, PD_ROLE_DFP);
if (new_cc_state == PD_CC_UFP_DEBUG_ACC)
pd[port].flags |=
PD_FLAGS_TS_DTS_PARTNER;
#ifdef CONFIG_USBC_VCONN
/*
* Do not source Vconn when debug accessory is
* detected. Section 4.5.2.2.17.1 in USB spec
* v1-3
*/
if (new_cc_state != PD_CC_UFP_DEBUG_ACC) {
/*
* Start sourcing Vconn before Vbus to
* ensure we are within USB Type-C
* Spec 1.3 tVconnON.
*/
set_vconn(port, 1);
pd_set_vconn_role(port,
PD_ROLE_VCONN_ON);
}
#endif
#ifndef CONFIG_USBC_BACKWARDS_COMPATIBLE_DFP
/* Enable VBUS */
if (pd_set_power_supply_ready(port)) {
#ifdef CONFIG_USBC_VCONN
/* Stop sourcing Vconn if Vbus failed */
set_vconn(port, 0);
pd_set_vconn_role(port,
PD_ROLE_VCONN_OFF);
#endif /* CONFIG_USBC_VCONN */
#ifdef CONFIG_USBC_SS_MUX
usb_mux_set(port, TYPEC_MUX_NONE,
USB_SWITCH_DISCONNECT,
pd[port].polarity);
#endif /* CONFIG_USBC_SS_MUX */
break;
}
/*
* Set correct Rp value determined during
* pd_set_power_supply_ready. This should be
* safe because Vconn is being sourced,
* preventing incorrect CCD detection.
*/
tcpm_set_cc(port, TYPEC_CC_RP);
#endif /* CONFIG_USBC_BACKWARDS_COMPATIBLE_DFP */
/* If PD comm is enabled, enable TCPC RX */
if (pd_comm_is_enabled(port))
tcpm_set_rx_enable(port, 1);
pd[port].flags |= PD_FLAGS_CHECK_PR_ROLE |
PD_FLAGS_CHECK_DR_ROLE;
hard_reset_count = 0;
timeout = 5*MSEC;
set_state(port, PD_STATE_SRC_STARTUP);
}
/*
* AUDIO_ACC will remain in this state indefinitely
* until disconnect.
*/
break;
case PD_STATE_SRC_HARD_RESET_RECOVER:
/* Do not continue until hard reset recovery time */
if (get_time().val < pd[port].src_recover) {
timeout = 50*MSEC;
break;
}
#ifdef CONFIG_USBC_VCONN
/*
* Start sourcing Vconn again and set the flag, in case
* it was 0 due to a previous swap
*/
set_vconn(port, 1);
pd_set_vconn_role(port, PD_ROLE_VCONN_ON);
#endif
/* Enable VBUS */
timeout = 10*MSEC;
if (pd_set_power_supply_ready(port)) {
set_state(port, PD_STATE_SRC_DISCONNECTED);
break;
}
#ifdef CONFIG_USB_PD_TCPM_TCPCI
/*
* After transmitting hard reset, TCPM writes
* to RECEIVE_DETECT register to enable
* PD message passing.
*/
if (pd_comm_is_enabled(port))
tcpm_set_rx_enable(port, 1);
#endif /* CONFIG_USB_PD_TCPM_TCPCI */
set_state(port, PD_STATE_SRC_STARTUP);
break;
case PD_STATE_SRC_STARTUP:
/* Reset cable attributes and flags */
reset_pd_cable(port);
/* Wait for power source to enable */
if (pd[port].last_state != pd[port].task_state) {
pd[port].flags |= PD_FLAGS_CHECK_IDENTITY;
/* reset various counters */
caps_count = 0;
pd[port].msg_id = 0;
snk_cap_count = 0;
set_state_timeout(
port,
#ifdef CONFIG_USBC_BACKWARDS_COMPATIBLE_DFP
/*
* delay for power supply to start up.
* subtract out debounce time if coming
* from debounce state since vbus is
* on during debounce.
*/
get_time().val +
PD_POWER_SUPPLY_TURN_ON_DELAY -
(pd[port].last_state ==
PD_STATE_SRC_DISCONNECTED_DEBOUNCE
? PD_T_CC_DEBOUNCE : 0),
#else
get_time().val +
PD_POWER_SUPPLY_TURN_ON_DELAY,
#endif
PD_STATE_SRC_DISCOVERY);
}
break;
case PD_STATE_SRC_DISCOVERY:
now = get_time();
if (pd[port].last_state != pd[port].task_state) {
caps_count = 0;
next_src_cap = now.val;
/*
* If we have had PD connection with this port
* partner, then start NoResponseTimer.
*/
if (pd_capable(port))
set_state_timeout(port,
get_time().val +
PD_T_NO_RESPONSE,
hard_reset_count <
PD_HARD_RESET_COUNT ?
PD_STATE_HARD_RESET_SEND :
PD_STATE_SRC_DISCONNECTED);
}
/* Send source cap some minimum number of times */
if (caps_count < PD_CAPS_COUNT &&
next_src_cap <= now.val) {
/* Query capabilities of the other side */
res = send_source_cap(port);
/* packet was acked => PD capable device) */
if (res >= 0) {
set_state(port,
PD_STATE_SRC_NEGOCIATE);
timeout = 10*MSEC;
hard_reset_count = 0;
caps_count = 0;
/* Port partner is PD capable */
pd[port].flags |=
PD_FLAGS_PREVIOUS_PD_CONN;
} else { /* failed, retry later */
timeout = PD_T_SEND_SOURCE_CAP;
next_src_cap = now.val +
PD_T_SEND_SOURCE_CAP;
caps_count++;
}
} else if (caps_count < PD_CAPS_COUNT) {
timeout = next_src_cap - now.val;
}
break;
case PD_STATE_SRC_NEGOCIATE:
/* wait for a "Request" message */
if (pd[port].last_state != pd[port].task_state)
set_state_timeout(port,
get_time().val +
PD_T_SENDER_RESPONSE,
PD_STATE_HARD_RESET_SEND);
break;
case PD_STATE_SRC_ACCEPTED:
/* Accept sent, wait for enabling the new voltage */
if (pd[port].last_state != pd[port].task_state)
set_state_timeout(
port,
get_time().val +
PD_T_SINK_TRANSITION,
PD_STATE_SRC_POWERED);
break;
case PD_STATE_SRC_POWERED:
/* Switch to the new requested voltage */
if (pd[port].last_state != pd[port].task_state) {
pd_transition_voltage(pd[port].requested_idx);
set_state_timeout(
port,
get_time().val +
PD_POWER_SUPPLY_TURN_ON_DELAY,
PD_STATE_SRC_TRANSITION);
}
break;
case PD_STATE_SRC_TRANSITION:
/* the voltage output is good, notify the source */
res = send_control(port, PD_CTRL_PS_RDY);
if (res >= 0) {
timeout = 10*MSEC;
/*
* Give the sink some time to send any messages
* before we may send messages of our own. Add
* some jitter of up to 100ms, taken from the
* current system time, to prevent multiple
* collisions.
*/
pd[port].ready_state_holdoff_timer =
get_time().val + READY_HOLD_OFF_US
+ (get_time().le.lo % (100 * MSEC));
/* it'a time to ping regularly the sink */
set_state(port, PD_STATE_SRC_READY);
} else {
/* The sink did not ack, cut the power... */
set_state(port, PD_STATE_SRC_DISCONNECTED);
}
break;
case PD_STATE_SRC_READY:
timeout = PD_T_SOURCE_ACTIVITY;
/*
* Don't send any traffic yet until our holdoff timer
* has expired. Some devices are chatty once we reach
* the SRC_READY state and we may end up in a collision
* of messages if we try to immediately send our
* interrogations.
*/
if (get_time().val <=
pd[port].ready_state_holdoff_timer)
break;
/*
* Don't send any PD traffic if we woke up due to
* incoming packet or if VDO response pending to avoid
* collisions.
*/
if (incoming_packet ||
(pd[port].vdm_state == VDM_STATE_BUSY))
break;
/* Send updated source capabilities to our partner */
if (pd[port].flags & PD_FLAGS_UPDATE_SRC_CAPS) {
res = send_source_cap(port);
if (res >= 0) {
set_state(port,
PD_STATE_SRC_NEGOCIATE);
pd[port].flags &=
~PD_FLAGS_UPDATE_SRC_CAPS;
}
break;
}
/* Send get sink cap if haven't received it yet */
if (!(pd[port].flags & PD_FLAGS_SNK_CAP_RECVD)) {
if (++snk_cap_count <= PD_SNK_CAP_RETRIES) {
/* Get sink cap to know if dual-role device */
send_control(port, PD_CTRL_GET_SINK_CAP);
set_state(port, PD_STATE_SRC_GET_SINK_CAP);
break;
} else if (debug_level >= 2 &&
snk_cap_count == PD_SNK_CAP_RETRIES+1) {
CPRINTF("C%d ERR SNK_CAP\n", port);
}
}
/* Check power role policy, which may trigger a swap */
if (pd[port].flags & PD_FLAGS_CHECK_PR_ROLE) {
pd_check_pr_role(port, PD_ROLE_SOURCE,
pd[port].flags);
pd[port].flags &= ~PD_FLAGS_CHECK_PR_ROLE;
break;
}
/* Check data role policy, which may trigger a swap */
if (pd[port].flags & PD_FLAGS_CHECK_DR_ROLE) {
pd_check_dr_role(port, pd[port].data_role,
pd[port].flags);
pd[port].flags &= ~PD_FLAGS_CHECK_DR_ROLE;
break;
}
/* Send discovery SVDMs last */
if (pd[port].data_role == PD_ROLE_DFP &&
(pd[port].flags & PD_FLAGS_CHECK_IDENTITY)) {
#ifndef CONFIG_USB_PD_SIMPLE_DFP
pd_send_vdm(port, USB_SID_PD,
CMD_DISCOVER_IDENT, NULL, 0);
#endif
pd[port].flags &= ~PD_FLAGS_CHECK_IDENTITY;
break;
}
if (!(pd[port].flags & PD_FLAGS_PING_ENABLED))
break;
/* Verify that the sink is alive */
res = send_control(port, PD_CTRL_PING);
if (res >= 0)
break;
/* Ping dropped. Try soft reset. */
set_state(port, PD_STATE_SOFT_RESET);
timeout = 10 * MSEC;
break;
case PD_STATE_SRC_GET_SINK_CAP:
if (pd[port].last_state != pd[port].task_state)
set_state_timeout(port,
get_time().val +
PD_T_SENDER_RESPONSE,
PD_STATE_SRC_READY);
break;
case PD_STATE_DR_SWAP:
if (pd[port].last_state != pd[port].task_state) {
res = send_control(port, PD_CTRL_DR_SWAP);
if (res < 0) {
timeout = 10*MSEC;
/*
* If failed to get goodCRC, send
* soft reset, otherwise ignore
* failure.
*/
set_state(port, res == -1 ?
PD_STATE_SOFT_RESET :
READY_RETURN_STATE(port));
break;
}
/* Wait for accept or reject */
set_state_timeout(port,
get_time().val +
PD_T_SENDER_RESPONSE,
READY_RETURN_STATE(port));
}
break;
#ifdef CONFIG_USB_PD_DUAL_ROLE
case PD_STATE_SRC_SWAP_INIT:
if (pd[port].last_state != pd[port].task_state) {
res = send_control(port, PD_CTRL_PR_SWAP);
if (res < 0) {
timeout = 10*MSEC;
/*
* If failed to get goodCRC, send
* soft reset, otherwise ignore
* failure.
*/
set_state(port, res == -1 ?
PD_STATE_SOFT_RESET :
PD_STATE_SRC_READY);
break;
}
/* Wait for accept or reject */
set_state_timeout(port,
get_time().val +
PD_T_SENDER_RESPONSE,
PD_STATE_SRC_READY);
}
break;
case PD_STATE_SRC_SWAP_SNK_DISABLE:
/* Give time for sink to stop drawing current */
if (pd[port].last_state != pd[port].task_state)
set_state_timeout(port,
get_time().val +
PD_T_SINK_TRANSITION,
PD_STATE_SRC_SWAP_SRC_DISABLE);
break;
case PD_STATE_SRC_SWAP_SRC_DISABLE:
if (pd[port].last_state != pd[port].task_state) {
/* Turn power off */
pd_power_supply_reset(port);
/*
* Switch to Rd and swap roles to sink
*
* The reason we do this as early as possible is
* to help prevent CC disconnection cases where
* both partners are applying an Rp. Certain PD
* stacks (e.g. qualcomm), reflexively apply
* their Rp once VBUS falls beneath
* ~3.67V. (b/77827528).
*/
tcpm_set_cc(port, TYPEC_CC_RD);
pd_set_power_role(port, PD_ROLE_SINK);
/* Inform TCPC of power role update. */
pd_update_roles(port);
set_state_timeout(port,
get_time().val +
PD_POWER_SUPPLY_TURN_OFF_DELAY,
PD_STATE_SRC_SWAP_STANDBY);
}
break;
case PD_STATE_SRC_SWAP_STANDBY:
/* Send PS_RDY to let sink know our power is off */
if (pd[port].last_state != pd[port].task_state) {
/* Send PS_RDY */
res = send_control(port, PD_CTRL_PS_RDY);
if (res < 0) {
timeout = 10*MSEC;
set_state(port,
PD_STATE_SRC_DISCONNECTED);
break;
}
/* Wait for PS_RDY from new source */
set_state_timeout(port,
get_time().val +
PD_T_PS_SOURCE_ON,
PD_STATE_SNK_DISCONNECTED);
}
break;
case PD_STATE_SUSPENDED: {
#ifndef CONFIG_USB_PD_TCPC
int rstatus;
#endif
CPRINTS("TCPC p%d suspended!", port);
pd[port].req_suspend_state = 0;
#ifdef CONFIG_USB_PD_TCPC
pd_rx_disable_monitoring(port);
pd_hw_release(port);
pd_power_supply_reset(port);
#else
rstatus = tcpm_release(port);
if (rstatus != 0 && rstatus != EC_ERROR_UNIMPLEMENTED)
CPRINTS("TCPC p%d release failed!", port);
#endif
/* Drain any outstanding software message queues. */
tcpm_clear_pending_messages(port);
/* Wait for resume */
while (pd[port].task_state == PD_STATE_SUSPENDED) {
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
int evt = task_wait_event(-1);
if (evt & PD_EVENT_SYSJUMP)
/* Nothing to do for sysjump prep */
notify_sysjump_ready(
&sysjump_task_waiting);
#else
task_wait_event(-1);
#endif
}
#ifdef CONFIG_USB_PD_TCPC
pd_hw_init(port, PD_ROLE_DEFAULT(port));
CPRINTS("TCPC p%d resumed!", port);
#else
if (rstatus != EC_ERROR_UNIMPLEMENTED &&
pd_restart_tcpc(port) != 0) {
/* stay in PD_STATE_SUSPENDED */
CPRINTS("TCPC p%d restart failed!", port);
break;
}
/* Set the CC termination and state back to default */
tcpm_set_cc(port,
PD_ROLE_DEFAULT(port) == PD_ROLE_SOURCE ?
TYPEC_CC_RP :
TYPEC_CC_RD);
set_state(port, PD_DEFAULT_STATE(port));
CPRINTS("TCPC p%d resumed!", port);
#endif
break;
}
case PD_STATE_SNK_DISCONNECTED:
#ifdef CONFIG_USB_PD_LOW_POWER
timeout = (drp_state[port] !=
PD_DRP_TOGGLE_ON ? SECOND : 10*MSEC);
#else
timeout = 10*MSEC;
#endif
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/*
* If SW decided we should be in a low power state and
* the CC lines did not change, then don't talk with the
* TCPC otherwise we might wake it up.
*/
if (pd[port].flags & PD_FLAGS_LPM_REQUESTED &&
!(evt & PD_EVENT_CC)) {
timeout = -1;
break;
}
#endif /* CONFIG_USB_PD_TCPC_LOW_POWER */
tcpm_get_cc(port, &cc1, &cc2);
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
/*
* Attempt TCPC auto DRP toggle if it is not already
* auto toggling and not try.src, and dual role toggling
* is allowed.
*/
if (auto_toggle_supported &&
!(pd[port].flags & PD_FLAGS_TCPC_DRP_TOGGLE) &&
!is_try_src(port) &&
cc_is_open(cc1, cc2) &&
(drp_state[port] == PD_DRP_TOGGLE_ON)) {
set_state(port, PD_STATE_DRP_AUTO_TOGGLE);
timeout = 2*MSEC;
break;
}
#endif
/* Source connection monitoring */
if (!cc_is_open(cc1, cc2)) {
pd[port].cc_state = PD_CC_NONE;
hard_reset_count = 0;
new_cc_state = PD_CC_NONE;
pd[port].cc_debounce = get_time().val +
PD_T_CC_DEBOUNCE;
set_state(port,
PD_STATE_SNK_DISCONNECTED_DEBOUNCE);
timeout = 10*MSEC;
break;
}
/*
* If Try.SRC is active and failed to detect a SNK,
* then it transitions to TryWait.SNK. Need to prevent
* normal dual role toggle until tDRPTryWait timer
* expires.
*/
if (pd[port].flags & PD_FLAGS_TRY_SRC) {
if (get_time().val > pd[port].try_src_marker)
pd[port].flags &= ~PD_FLAGS_TRY_SRC;
break;
}
/* If no source detected, check for role toggle. */
if (drp_state[port] == PD_DRP_TOGGLE_ON &&
get_time().val >= next_role_swap) {
/* Swap roles to source */
pd_set_power_role(port, PD_ROLE_SOURCE);
set_state(port, PD_STATE_SRC_DISCONNECTED);
tcpm_set_cc(port, TYPEC_CC_RP);
next_role_swap = get_time().val + PD_T_DRP_SRC;
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/*
* Clear low power mode flag as we are swapping
* states quickly.
*/
pd[port].flags &= ~PD_FLAGS_LPM_REQUESTED;
#endif
/* Swap states quickly */
timeout = 2*MSEC;
break;
}
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/*
* If we are remaining in the SNK_DISCONNECTED state,
* let's go into low power mode and wait for a change on
* CC status.
*/
pd[port].flags |= PD_FLAGS_LPM_REQUESTED;
#endif/* CONFIG_USB_PD_TCPC_LOW_POWER */
break;
case PD_STATE_SNK_DISCONNECTED_DEBOUNCE:
tcpm_get_cc(port, &cc1, &cc2);
if (cc_is_rp(cc1) && cc_is_rp(cc2)) {
/* Debug accessory */
new_cc_state = PD_CC_DFP_DEBUG_ACC;
} else if (cc_is_rp(cc1) || cc_is_rp(cc2)) {
new_cc_state = PD_CC_DFP_ATTACHED;
} else {
/* No connection any more */
set_state(port, PD_STATE_SNK_DISCONNECTED);
timeout = 5*MSEC;
break;
}
timeout = 20*MSEC;
/* Debounce the cc state */
if (new_cc_state != pd[port].cc_state) {
pd[port].cc_debounce = get_time().val +
PD_T_CC_DEBOUNCE;
pd[port].cc_state = new_cc_state;
break;
}
/* Wait for CC debounce and VBUS present */
if (get_time().val < pd[port].cc_debounce ||
!pd_is_vbus_present(port))
break;
if (pd_try_src_enable &&
!(pd[port].flags & PD_FLAGS_TRY_SRC)) {
/*
* If TRY_SRC is enabled, but not active,
* then force attempt to connect as source.
*/
pd[port].try_src_marker = get_time().val
+ PD_T_DRP_TRY;
pd[port].try_timeout = get_time().val
+ PD_T_TRY_TIMEOUT;
/* Swap roles to source */
pd_set_power_role(port, PD_ROLE_SOURCE);
tcpm_set_cc(port, TYPEC_CC_RP);
timeout = 2*MSEC;
set_state(port, PD_STATE_SRC_DISCONNECTED);
/* Set flag after the state change */
pd[port].flags |= PD_FLAGS_TRY_SRC;
break;
}
/* We are attached */
if (IS_ENABLED(CONFIG_COMMON_RUNTIME))
hook_notify(HOOK_USB_PD_CONNECT);
pd[port].polarity = get_snk_polarity(cc1, cc2);
set_polarity(port, pd[port].polarity);
/* reset message ID on connection */
pd[port].msg_id = 0;
/* initial data role for sink is UFP */
pd_set_data_role(port, PD_ROLE_UFP);
#if defined(CONFIG_CHARGE_MANAGER)
typec_curr = usb_get_typec_current_limit(
pd[port].polarity, cc1, cc2);
typec_set_input_current_limit(
port, typec_curr, TYPE_C_VOLTAGE);
#endif
/* If PD comm is enabled, enable TCPC RX */
if (pd_comm_is_enabled(port))
tcpm_set_rx_enable(port, 1);
/* DFP is attached */
if (new_cc_state == PD_CC_DFP_ATTACHED ||
new_cc_state == PD_CC_DFP_DEBUG_ACC) {
pd[port].flags |= PD_FLAGS_CHECK_PR_ROLE |
PD_FLAGS_CHECK_DR_ROLE |
PD_FLAGS_CHECK_IDENTITY;
/* Reset cable attributes and flags */
reset_pd_cable(port);
if (new_cc_state == PD_CC_DFP_DEBUG_ACC)
pd[port].flags |=
PD_FLAGS_TS_DTS_PARTNER;
set_state(port, PD_STATE_SNK_DISCOVERY);
timeout = 10*MSEC;
hook_call_deferred(
&pd_usb_billboard_deferred_data,
PD_T_AME);
}
break;
case PD_STATE_SNK_HARD_RESET_RECOVER:
if (pd[port].last_state != pd[port].task_state)
pd[port].flags |= PD_FLAGS_CHECK_IDENTITY;
#ifdef CONFIG_USB_PD_VBUS_DETECT_NONE
/*
* Can't measure vbus state so this is the maximum
* recovery time for the source.
*/
if (pd[port].last_state != pd[port].task_state)
set_state_timeout(port, get_time().val +
PD_T_SAFE_0V +
PD_T_SRC_RECOVER_MAX +
PD_T_SRC_TURN_ON,
PD_STATE_SNK_DISCONNECTED);
#else
/* Wait for VBUS to go low and then high*/
if (pd[port].last_state != pd[port].task_state) {
snk_hard_reset_vbus_off = 0;
set_state_timeout(port,
get_time().val +
PD_T_SAFE_0V,
hard_reset_count <
PD_HARD_RESET_COUNT ?
PD_STATE_HARD_RESET_SEND :
PD_STATE_SNK_DISCOVERY);
}
if (!pd_is_vbus_present(port) &&
!snk_hard_reset_vbus_off) {
/* VBUS has gone low, reset timeout */
snk_hard_reset_vbus_off = 1;
set_state_timeout(port,
get_time().val +
PD_T_SRC_RECOVER_MAX +
PD_T_SRC_TURN_ON,
PD_STATE_SNK_DISCONNECTED);
}
if (pd_is_vbus_present(port) &&
snk_hard_reset_vbus_off) {
#ifdef CONFIG_USB_PD_TCPM_TCPCI
/*
* After transmitting hard reset, TCPM writes
* to RECEIVE_MESSAGE register to enable
* PD message passing.
*/
if (pd_comm_is_enabled(port))
tcpm_set_rx_enable(port, 1);
#endif /* CONFIG_USB_PD_TCPM_TCPCI */
/* VBUS went high again */
set_state(port, PD_STATE_SNK_DISCOVERY);
timeout = 10*MSEC;
}
/*
* Don't need to set timeout because VBUS changing
* will trigger an interrupt and wake us up.
*/
#endif
break;
case PD_STATE_SNK_DISCOVERY:
/* Wait for source cap expired only if we are enabled */
if ((pd[port].last_state != pd[port].task_state)
&& pd_comm_is_enabled(port)) {
#ifdef CONFIG_USB_PD_RESET_MIN_BATT_SOC
/*
* If the battery has not met a configured safe
* level for hard resets, refrain from starting
* reset timers as a hard reset could brown out
* the board. Note this may mean that
* high-power chargers will stay at 15W until a
* reset is sent, depending on boot timing.
*/
int batt_soc = usb_get_battery_soc();
if (batt_soc < CONFIG_USB_PD_RESET_MIN_BATT_SOC)
pd[port].flags |=
PD_FLAGS_SNK_WAITING_BATT;
else
pd[port].flags &=
~PD_FLAGS_SNK_WAITING_BATT;
#endif
if (pd[port].flags &
PD_FLAGS_SNK_WAITING_BATT) {
#ifdef CONFIG_CHARGE_MANAGER
/*
* Configure this port as dedicated for
* now, so it won't be de-selected by
* the charge manager leaving safe mode.
*/
charge_manager_update_dualrole(port,
CAP_DEDICATED);
#endif
CPRINTS("C%d: Battery low. "
"Hold reset timer", port);
/*
* If VBUS has never been low, and we timeout
* waiting for source cap, try a soft reset
* first, in case we were already in a stable
* contract before this boot.
*/
} else if (pd[port].flags &
PD_FLAGS_VBUS_NEVER_LOW) {
set_state_timeout(port,
get_time().val +
PD_T_SINK_WAIT_CAP,
PD_STATE_SOFT_RESET);
/*
* If we haven't passed hard reset counter,
* start SinkWaitCapTimer, otherwise start
* NoResponseTimer.
*/
} else if (hard_reset_count <
PD_HARD_RESET_COUNT) {
set_state_timeout(port,
get_time().val +
PD_T_SINK_WAIT_CAP,
PD_STATE_HARD_RESET_SEND);
} else if (pd_capable(port)) {
/* ErrorRecovery */
set_state_timeout(port,
get_time().val +
PD_T_NO_RESPONSE,
PD_STATE_SNK_DISCONNECTED);
}
#if defined(CONFIG_CHARGE_MANAGER)
/*
* If we didn't come from disconnected, must
* have come from some path that did not set
* typec current limit. So, set to 0 so that
* we guarantee this is revised below.
*/
if (pd[port].last_state !=
PD_STATE_SNK_DISCONNECTED_DEBOUNCE)
typec_curr = 0;
#endif
}
#if defined(CONFIG_CHARGE_MANAGER)
timeout = PD_T_SINK_ADJ - PD_T_DEBOUNCE;
/* Check if CC pull-up has changed */
tcpm_get_cc(port, &cc1, &cc2);
if (typec_curr != usb_get_typec_current_limit(
pd[port].polarity, cc1, cc2)) {
/* debounce signal by requiring two reads */
if (typec_curr_change) {
/* set new input current limit */
typec_curr =
usb_get_typec_current_limit(
pd[port].polarity,
cc1, cc2);
typec_set_input_current_limit(
port, typec_curr, TYPE_C_VOLTAGE);
} else {
/* delay for debounce */
timeout = PD_T_DEBOUNCE;
}
typec_curr_change = !typec_curr_change;
} else {
typec_curr_change = 0;
}
#endif
break;
case PD_STATE_SNK_REQUESTED:
/* Wait for ACCEPT or REJECT */
if (pd[port].last_state != pd[port].task_state) {
hard_reset_count = 0;
set_state_timeout(port,
get_time().val +
PD_T_SENDER_RESPONSE,
PD_STATE_HARD_RESET_SEND);
}
break;
case PD_STATE_SNK_TRANSITION:
/* Wait for PS_RDY */
if (pd[port].last_state != pd[port].task_state)
set_state_timeout(port,
get_time().val +
PD_T_PS_TRANSITION,
PD_STATE_HARD_RESET_SEND);
break;
case PD_STATE_SNK_READY:
timeout = 20*MSEC;
/*
* Don't send any traffic yet until our holdoff timer
* has expired. Some devices are chatty once we reach
* the SNK_READY state and we may end up in a collision
* of messages if we try to immediately send our
* interrogations.
*/
if (get_time().val <=
pd[port].ready_state_holdoff_timer)
break;
/*
* Don't send any PD traffic if we woke up due to
* incoming packet or if VDO response pending to avoid
* collisions.
*/
if (incoming_packet ||
(pd[port].vdm_state == VDM_STATE_BUSY))
break;
/* Check for new power to request */
if (pd[port].new_power_request) {
if (pd_send_request_msg(port, 0) != EC_SUCCESS)
set_state(port, PD_STATE_SOFT_RESET);
break;
}
/* Check power role policy, which may trigger a swap */
if (pd[port].flags & PD_FLAGS_CHECK_PR_ROLE) {
pd_check_pr_role(port, PD_ROLE_SINK,
pd[port].flags);
pd[port].flags &= ~PD_FLAGS_CHECK_PR_ROLE;
break;
}
/* Check data role policy, which may trigger a swap */
if (pd[port].flags & PD_FLAGS_CHECK_DR_ROLE) {
pd_check_dr_role(port, pd[port].data_role,
pd[port].flags);
pd[port].flags &= ~PD_FLAGS_CHECK_DR_ROLE;
break;
}
/* If DFP, send discovery SVDMs */
if (pd[port].data_role == PD_ROLE_DFP &&
(pd[port].flags & PD_FLAGS_CHECK_IDENTITY)) {
pd_send_vdm(port, USB_SID_PD,
CMD_DISCOVER_IDENT, NULL, 0);
pd[port].flags &= ~PD_FLAGS_CHECK_IDENTITY;
break;
}
/* Sent all messages, don't need to wake very often */
timeout = 200*MSEC;
break;
case PD_STATE_SNK_SWAP_INIT:
if (pd[port].last_state != pd[port].task_state) {
res = send_control(port, PD_CTRL_PR_SWAP);
if (res < 0) {
timeout = 10*MSEC;
/*
* If failed to get goodCRC, send
* soft reset, otherwise ignore
* failure.
*/
set_state(port, res == -1 ?
PD_STATE_SOFT_RESET :
PD_STATE_SNK_READY);
break;
}
/* Wait for accept or reject */
set_state_timeout(port,
get_time().val +
PD_T_SENDER_RESPONSE,
PD_STATE_SNK_READY);
}
break;
case PD_STATE_SNK_SWAP_SNK_DISABLE:
/* Stop drawing power */
pd_set_input_current_limit(port, 0, 0);
#ifdef CONFIG_CHARGE_MANAGER
typec_set_input_current_limit(port, 0, 0);
charge_manager_set_ceil(port,
CEIL_REQUESTOR_PD,
CHARGE_CEIL_NONE);
#endif
set_state(port, PD_STATE_SNK_SWAP_SRC_DISABLE);
timeout = 10*MSEC;
break;
case PD_STATE_SNK_SWAP_SRC_DISABLE:
/* Wait for PS_RDY */
if (pd[port].last_state != pd[port].task_state)
set_state_timeout(port,
get_time().val +
PD_T_PS_SOURCE_OFF,
PD_STATE_HARD_RESET_SEND);
break;
case PD_STATE_SNK_SWAP_STANDBY:
if (pd[port].last_state != pd[port].task_state) {
/* Switch to Rp and enable power supply. */
tcpm_set_cc(port, TYPEC_CC_RP);
if (pd_set_power_supply_ready(port)) {
/* Restore Rd */
tcpm_set_cc(port, TYPEC_CC_RD);
timeout = 10*MSEC;
set_state(port,
PD_STATE_SNK_DISCONNECTED);
break;
}
/* Wait for power supply to turn on */
set_state_timeout(
port,
get_time().val +
PD_POWER_SUPPLY_TURN_ON_DELAY,
PD_STATE_SNK_SWAP_COMPLETE);
}
break;
case PD_STATE_SNK_SWAP_COMPLETE:
/* Send PS_RDY and change to source role */
res = send_control(port, PD_CTRL_PS_RDY);
if (res < 0) {
/* Restore Rd */
tcpm_set_cc(port, TYPEC_CC_RD);
pd_power_supply_reset(port);
timeout = 10 * MSEC;
set_state(port, PD_STATE_SNK_DISCONNECTED);
break;
}
/* Don't send GET_SINK_CAP on swap */
snk_cap_count = PD_SNK_CAP_RETRIES+1;
caps_count = 0;
pd[port].msg_id = 0;
pd_set_power_role(port, PD_ROLE_SOURCE);
pd_update_roles(port);
set_state(port, PD_STATE_SRC_DISCOVERY);
timeout = 10*MSEC;
break;
#ifdef CONFIG_USBC_VCONN_SWAP
case PD_STATE_VCONN_SWAP_SEND:
if (pd[port].last_state != pd[port].task_state) {
res = send_control(port, PD_CTRL_VCONN_SWAP);
if (res < 0) {
timeout = 10*MSEC;
/*
* If failed to get goodCRC, send
* soft reset, otherwise ignore
* failure.
*/
set_state(port, res == -1 ?
PD_STATE_SOFT_RESET :
READY_RETURN_STATE(port));
break;
}
/* Wait for accept or reject */
set_state_timeout(port,
get_time().val +
PD_T_SENDER_RESPONSE,
READY_RETURN_STATE(port));
}
break;
case PD_STATE_VCONN_SWAP_INIT:
if (pd[port].last_state != pd[port].task_state) {
if (!(pd[port].flags & PD_FLAGS_VCONN_ON)) {
/* Turn VCONN on and wait for it */
set_vconn(port, 1);
set_state_timeout(port,
get_time().val + PD_VCONN_SWAP_DELAY,
PD_STATE_VCONN_SWAP_READY);
} else {
set_state_timeout(port,
get_time().val + PD_T_VCONN_SOURCE_ON,
READY_RETURN_STATE(port));
}
}
break;
case PD_STATE_VCONN_SWAP_READY:
if (pd[port].last_state != pd[port].task_state) {
if (!(pd[port].flags & PD_FLAGS_VCONN_ON)) {
/* VCONN is now on, send PS_RDY */
pd_set_vconn_role(port,
PD_ROLE_VCONN_ON);
res = send_control(port,
PD_CTRL_PS_RDY);
if (res == -1) {
timeout = 10*MSEC;
/*
* If failed to get goodCRC,
* send soft reset
*/
set_state(port,
PD_STATE_SOFT_RESET);
break;
}
set_state(port,
READY_RETURN_STATE(port));
} else {
/* Turn VCONN off and wait for it */
set_vconn(port, 0);
pd_set_vconn_role(port,
PD_ROLE_VCONN_OFF);
set_state_timeout(port,
get_time().val + PD_VCONN_SWAP_DELAY,
READY_RETURN_STATE(port));
}
}
break;
#endif /* CONFIG_USBC_VCONN_SWAP */
#endif /* CONFIG_USB_PD_DUAL_ROLE */
case PD_STATE_SOFT_RESET:
if (pd[port].last_state != pd[port].task_state) {
/* Message ID of soft reset is always 0 */
pd[port].msg_id = 0;
res = send_control(port, PD_CTRL_SOFT_RESET);
/* if soft reset failed, try hard reset. */
if (res < 0) {
set_state(port,
PD_STATE_HARD_RESET_SEND);
timeout = 5*MSEC;
break;
}
set_state_timeout(
port,
get_time().val + PD_T_SENDER_RESPONSE,
PD_STATE_HARD_RESET_SEND);
}
break;
case PD_STATE_HARD_RESET_SEND:
hard_reset_count++;
if (pd[port].last_state != pd[port].task_state)
hard_reset_sent = 0;
#ifdef CONFIG_CHARGE_MANAGER
if (pd[port].last_state == PD_STATE_SNK_DISCOVERY ||
(pd[port].last_state == PD_STATE_SOFT_RESET &&
(pd[port].flags & PD_FLAGS_VBUS_NEVER_LOW))) {
pd[port].flags &= ~PD_FLAGS_VBUS_NEVER_LOW;
/*
* If discovery timed out, assume that we
* have a dedicated charger attached. This
* may not be a correct assumption according
* to the specification, but it generally
* works in practice and the harmful
* effects of a wrong assumption here
* are minimal.
*/
charge_manager_update_dualrole(port,
CAP_DEDICATED);
}
#endif
/* try sending hard reset until it succeeds */
if (!hard_reset_sent) {
if (pd_transmit(port, TCPC_TX_HARD_RESET,
0, NULL) < 0) {
timeout = 10*MSEC;
break;
}
/* successfully sent hard reset */
hard_reset_sent = 1;
/*
* If we are source, delay before cutting power
* to allow sink time to get hard reset.
*/
if (pd[port].power_role == PD_ROLE_SOURCE) {
set_state_timeout(port,
get_time().val + PD_T_PS_HARD_RESET,
PD_STATE_HARD_RESET_EXECUTE);
} else {
set_state(port,
PD_STATE_HARD_RESET_EXECUTE);
timeout = 10*MSEC;
}
}
break;
case PD_STATE_HARD_RESET_EXECUTE:
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* If hard reset while in the last stages of power
* swap, then we need to restore our CC resistor.
*/
if (pd[port].last_state == PD_STATE_SNK_SWAP_STANDBY)
tcpm_set_cc(port, TYPEC_CC_RD);
#endif
/* reset our own state machine */
pd_execute_hard_reset(port);
timeout = 10*MSEC;
break;
#ifdef CONFIG_COMMON_RUNTIME
case PD_STATE_BIST_RX:
send_bist_cmd(port);
/* Delay at least enough for partner to finish BIST */
timeout = PD_T_BIST_RECEIVE + 20*MSEC;
/* Set to appropriate port disconnected state */
set_state(port, DUAL_ROLE_IF_ELSE(port,
PD_STATE_SNK_DISCONNECTED,
PD_STATE_SRC_DISCONNECTED));
break;
case PD_STATE_BIST_TX:
pd_transmit(port, TCPC_TX_BIST_MODE_2, 0, NULL);
/* Delay at least enough to finish sending BIST */
timeout = PD_T_BIST_TRANSMIT + 20*MSEC;
/* Set to appropriate port disconnected state */
set_state(port, DUAL_ROLE_IF_ELSE(port,
PD_STATE_SNK_DISCONNECTED,
PD_STATE_SRC_DISCONNECTED));
break;
#endif
#ifdef CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE
case PD_STATE_DRP_AUTO_TOGGLE:
{
enum pd_states next_state;
assert(auto_toggle_supported);
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/*
* If SW decided we should be in a low power state and
* the CC lines did not change, then don't talk with the
* TCPC otherwise we might wake it up.
*/
if (pd[port].flags & PD_FLAGS_LPM_REQUESTED &&
!(evt & PD_EVENT_CC))
break;
#endif
/* Check for connection */
tcpm_get_cc(port, &cc1, &cc2);
next_state = drp_auto_toggle_next_state(port, cc1, cc2);
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/*
* The next state is not determined just by what is
* attached, but also depends on DRP_STATE. Regardless
* of next state, if nothing is attached, then always
* request low power mode.
*/
if (cc_is_open(cc1, cc2))
pd[port].flags |= PD_FLAGS_LPM_REQUESTED;
#endif
if (next_state == PD_STATE_SNK_DISCONNECTED) {
tcpm_set_cc(port, TYPEC_CC_RD);
pd_set_power_role(port, PD_ROLE_SINK);
timeout = 2*MSEC;
} else if (next_state == PD_STATE_SRC_DISCONNECTED) {
tcpm_set_cc(port, TYPEC_CC_RP);
pd_set_power_role(port, PD_ROLE_SOURCE);
timeout = 2*MSEC;
} else {
/*
* We are staying in PD_STATE_DRP_AUTO_TOGGLE,
* therefore enable auto-toggle.
*/
tcpm_enable_drp_toggle(port);
pd[port].flags |= PD_FLAGS_TCPC_DRP_TOGGLE;
timeout = -1;
}
set_state(port, next_state);
break;
}
#endif
default:
break;
}
pd[port].last_state = this_state;
/*
* Check for state timeout, and if not check if need to adjust
* timeout value to wake up on the next state timeout.
*/
now = get_time();
if (pd[port].timeout) {
if (now.val >= pd[port].timeout) {
set_state(port, pd[port].timeout_state);
/* On a state timeout, run next state soon */
timeout = timeout < 10*MSEC ? timeout : 10*MSEC;
} else if (pd[port].timeout - now.val < timeout) {
timeout = pd[port].timeout - now.val;
}
}
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/* Determine if we need to put the TCPC in low power mode */
if (pd[port].flags & PD_FLAGS_LPM_REQUESTED &&
!(pd[port].flags & PD_FLAGS_LPM_ENGAGED)) {
int64_t time_left;
/* If any task prevents LPM, wait another debounce */
if (pd[port].tasks_preventing_lpm) {
pd[port].low_power_time =
PD_LPM_DEBOUNCE_US + now.val;
}
time_left = pd[port].low_power_time - now.val;
if (time_left <= 0) {
pd[port].flags |= PD_FLAGS_LPM_ENGAGED;
pd[port].flags |= PD_FLAGS_LPM_TRANSITION;
tcpm_enter_low_power_mode(port);
pd[port].flags &= ~PD_FLAGS_LPM_TRANSITION;
CPRINTS("TCPC p%d Enter Low Power Mode", port);
timeout = -1;
} else if (timeout < 0 || timeout > time_left) {
timeout = time_left;
}
}
#endif
/* Check for disconnection if we're connected */
if (!pd_is_connected(port))
continue;
#ifdef CONFIG_USB_PD_DUAL_ROLE
if (pd_is_power_swapping(port))
continue;
#endif
if (pd[port].power_role == PD_ROLE_SOURCE) {
/* Source: detect disconnect by monitoring CC */
tcpm_get_cc(port, &cc1, &cc2);
if (pd[port].polarity)
cc1 = cc2;
if (cc1 == TYPEC_CC_VOLT_OPEN) {
set_state(port, PD_STATE_SRC_DISCONNECTED);
/* Debouncing */
timeout = 10*MSEC;
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* If Try.SRC is configured, then ATTACHED_SRC
* needs to transition to TryWait.SNK. Change
* power role to SNK and start state timer.
*/
if (pd_try_src_enable) {
/* Swap roles to sink */
pd_set_power_role(port, PD_ROLE_SINK);
tcpm_set_cc(port, TYPEC_CC_RD);
/* Set timer for TryWait.SNK state */
pd[port].try_src_marker = get_time().val
+ PD_T_DEBOUNCE;
/* Advance to TryWait.SNK state */
set_state(port,
PD_STATE_SNK_DISCONNECTED);
/* Mark state as TryWait.SNK */
pd[port].flags |= PD_FLAGS_TRY_SRC;
}
#endif
}
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
/*
* Sink disconnect if VBUS is low and
* 1) we are not waiting for VBUS to debounce after a power
* role swap.
* 2) we are not recovering from a hard reset.
*/
if (pd[port].power_role == PD_ROLE_SINK &&
pd[port].vbus_debounce_time < get_time().val &&
!pd_is_vbus_present(port) &&
pd[port].task_state != PD_STATE_SNK_HARD_RESET_RECOVER &&
pd[port].task_state != PD_STATE_HARD_RESET_EXECUTE) {
/* Sink: detect disconnect by monitoring VBUS */
set_state(port, PD_STATE_SNK_DISCONNECTED);
/* set timeout small to reconnect fast */
timeout = 5*MSEC;
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
}
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
static void pd_chipset_resume(void)
{
int i;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
#ifdef CONFIG_CHARGE_MANAGER
if (charge_manager_get_active_charge_port() != i)
#endif
pd[i].flags |= PD_FLAGS_CHECK_PR_ROLE |
PD_FLAGS_CHECK_DR_ROLE;
pd_set_dual_role(i, PD_DRP_TOGGLE_ON);
}
CPRINTS("PD:S3->S0");
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, pd_chipset_resume, HOOK_PRIO_DEFAULT);
static void pd_chipset_suspend(void)
{
int i;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++)
pd_set_dual_role(i, PD_DRP_TOGGLE_OFF);
CPRINTS("PD:S0->S3");
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, pd_chipset_suspend, HOOK_PRIO_DEFAULT);
static void pd_chipset_startup(void)
{
int i;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
pd_set_dual_role_no_wakeup(i, PD_DRP_TOGGLE_OFF);
pd[i].flags |= PD_FLAGS_CHECK_IDENTITY;
/* Reset cable attributes and flags */
reset_pd_cable(i);
task_set_event(PD_PORT_TO_TASK_ID(i),
PD_EVENT_POWER_STATE_CHANGE |
PD_EVENT_UPDATE_DUAL_ROLE,
0);
}
CPRINTS("PD:S5->S3");
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, pd_chipset_startup, HOOK_PRIO_DEFAULT);
static void pd_chipset_shutdown(void)
{
int i;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
pd_set_dual_role_no_wakeup(i, PD_DRP_FORCE_SINK);
task_set_event(PD_PORT_TO_TASK_ID(i),
PD_EVENT_POWER_STATE_CHANGE |
PD_EVENT_UPDATE_DUAL_ROLE,
0);
}
CPRINTS("PD:S3->S5");
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, pd_chipset_shutdown, HOOK_PRIO_DEFAULT);
#endif /* CONFIG_USB_PD_DUAL_ROLE */
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
void pd_prepare_sysjump(void)
{
int i;
/* Exit modes before sysjump so we can cleanly enter again later */
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
/*
* We can't be in an alternate mode if PD comm is disabled or
* the port is suspended, so no need to send the event
*/
if (!pd_comm_is_enabled(i) ||
pd[i].task_state == PD_STATE_SUSPENDED)
continue;
sysjump_task_waiting = task_get_current();
task_set_event(PD_PORT_TO_TASK_ID(i), PD_EVENT_SYSJUMP, 0);
task_wait_event_mask(TASK_EVENT_SYSJUMP_READY, -1);
sysjump_task_waiting = TASK_ID_INVALID;
}
}
#endif
#ifdef CONFIG_COMMON_RUNTIME
/*
* (enable=1) request pd_task transition to the suspended state. hang
* around for a while until we observe the state change. this can
* take a while (like 300ms) on startup when pd_task is sleeping in
* tcpci_tcpm_init.
*
* (enable=0) force pd_task out of the suspended state and into the
* port's default state.
*/
void pd_set_suspend(int port, int enable)
{
int tries = 300;
if (enable) {
pd[port].req_suspend_state = 1;
do {
task_wake(PD_PORT_TO_TASK_ID(port));
if (pd[port].task_state == PD_STATE_SUSPENDED)
break;
msleep(1);
} while (--tries != 0);
if (!tries)
CPRINTS("TCPC p%d set_suspend failed!", port);
} else {
if (pd[port].task_state != PD_STATE_SUSPENDED)
CPRINTS("TCPC p%d suspend disable request "
"while not suspended!", port);
set_state(port, PD_DEFAULT_STATE(port));
/*
* Since we did not service interrupts while we were suspended,
* see if there is a waiting interrupt to be serviced. If the
* interrupt line isn't asserted, we won't communicate with the
* TCPC.
*/
#ifdef HAS_TASK_PD_INT_C0
schedule_deferred_pd_interrupt(port);
#endif
task_wake(PD_PORT_TO_TASK_ID(port));
}
}
#ifdef CONFIG_USB_PD_TCPM_TCPCI
static uint32_t pd_ports_to_resume;
static void resume_pd_port(void)
{
uint32_t port;
uint32_t suspended_ports = atomic_read_clear(&pd_ports_to_resume);
while (suspended_ports) {
port = __builtin_ctz(suspended_ports);
suspended_ports &= ~BIT(port);
pd_set_suspend(port, 0);
}
}
DECLARE_DEFERRED(resume_pd_port);
void pd_deferred_resume(int port)
{
atomic_or(&pd_ports_to_resume, 1 << port);
hook_call_deferred(&resume_pd_port_data, 5 * SECOND);
}
#endif /* CONFIG_USB_PD_DEFERRED_RESUME */
int pd_is_port_enabled(int port)
{
switch (pd[port].task_state) {
case PD_STATE_DISABLED:
case PD_STATE_SUSPENDED:
return 0;
default:
return 1;
}
}
#if defined(CONFIG_CMD_PD) && defined(CONFIG_CMD_PD_FLASH)
static int hex8tou32(char *str, uint32_t *val)
{
char *ptr = str;
uint32_t tmp = 0;
while (*ptr) {
char c = *ptr++;
if (c >= '0' && c <= '9')
tmp = (tmp << 4) + (c - '0');
else if (c >= 'A' && c <= 'F')
tmp = (tmp << 4) + (c - 'A' + 10);
else if (c >= 'a' && c <= 'f')
tmp = (tmp << 4) + (c - 'a' + 10);
else
return EC_ERROR_INVAL;
}
if (ptr != str + 8)
return EC_ERROR_INVAL;
*val = tmp;
return EC_SUCCESS;
}
static int remote_flashing(int argc, char **argv)
{
int port, cnt, cmd;
uint32_t data[VDO_MAX_SIZE-1];
char *e;
static int flash_offset[CONFIG_USB_PD_PORT_COUNT];
if (argc < 4 || argc > (VDO_MAX_SIZE + 4 - 1))
return EC_ERROR_PARAM_COUNT;
port = strtoi(argv[1], &e, 10);
if (*e || port >= CONFIG_USB_PD_PORT_COUNT)
return EC_ERROR_PARAM2;
cnt = 0;
if (!strcasecmp(argv[3], "erase")) {
cmd = VDO_CMD_FLASH_ERASE;
flash_offset[port] = 0;
ccprintf("ERASE ...");
} else if (!strcasecmp(argv[3], "reboot")) {
cmd = VDO_CMD_REBOOT;
ccprintf("REBOOT ...");
} else if (!strcasecmp(argv[3], "signature")) {
cmd = VDO_CMD_ERASE_SIG;
ccprintf("ERASE SIG ...");
} else if (!strcasecmp(argv[3], "info")) {
cmd = VDO_CMD_READ_INFO;
ccprintf("INFO...");
} else if (!strcasecmp(argv[3], "version")) {
cmd = VDO_CMD_VERSION;
ccprintf("VERSION...");
} else {
int i;
argc -= 3;
for (i = 0; i < argc; i++)
if (hex8tou32(argv[i+3], data + i))
return EC_ERROR_INVAL;
cmd = VDO_CMD_FLASH_WRITE;
cnt = argc;
ccprintf("WRITE %d @%04x ...", argc * 4,
flash_offset[port]);
flash_offset[port] += argc * 4;
}
pd_send_vdm(port, USB_VID_GOOGLE, cmd, data, cnt);
/* Wait until VDM is done */
while (pd[port].vdm_state > 0)
task_wait_event(100*MSEC);
ccprintf("DONE %d\n", pd[port].vdm_state);
return EC_SUCCESS;
}
#endif /* defined(CONFIG_CMD_PD) && defined(CONFIG_CMD_PD_FLASH) */
#if defined(CONFIG_USB_PD_ALT_MODE) && !defined(CONFIG_USB_PD_ALT_MODE_DFP)
void pd_send_hpd(int port, enum hpd_event hpd)
{
uint32_t data[1];
int opos = pd_alt_mode(port, USB_SID_DISPLAYPORT);
if (!opos)
return;
data[0] = VDO_DP_STATUS((hpd == hpd_irq), /* IRQ_HPD */
(hpd != hpd_low), /* HPD_HI|LOW */
0, /* request exit DP */
0, /* request exit USB */
0, /* MF pref */
1, /* enabled */
0, /* power low */
0x2);
pd_send_vdm(port, USB_SID_DISPLAYPORT,
VDO_OPOS(opos) | CMD_ATTENTION, data, 1);
/* Wait until VDM is done. */
while (pd[0].vdm_state > 0)
task_wait_event(USB_PD_RX_TMOUT_US * (PD_RETRY_COUNT + 1));
}
#endif
int pd_fetch_acc_log_entry(int port)
{
timestamp_t timeout;
/* Cannot send a VDM now, the host should retry */
if (pd[port].vdm_state > 0)
return pd[port].vdm_state == VDM_STATE_BUSY ?
EC_RES_BUSY : EC_RES_UNAVAILABLE;
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_GET_LOG, NULL, 0);
timeout.val = get_time().val + 75*MSEC;
/* Wait until VDM is done */
while ((pd[port].vdm_state > 0) &&
(get_time().val < timeout.val))
task_wait_event(10*MSEC);
if (pd[port].vdm_state > 0)
return EC_RES_TIMEOUT;
else if (pd[port].vdm_state < 0)
return EC_RES_ERROR;
return EC_RES_SUCCESS;
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
void pd_request_source_voltage(int port, int mv)
{
pd_set_max_voltage(mv);
if (pd[port].task_state == PD_STATE_SNK_READY ||
pd[port].task_state == PD_STATE_SNK_TRANSITION) {
/* Set flag to send new power request in pd_task */
pd[port].new_power_request = 1;
} else {
pd_set_power_role(port, PD_ROLE_SINK);
tcpm_set_cc(port, TYPEC_CC_RD);
set_state(port, PD_STATE_SNK_DISCONNECTED);
}
task_wake(PD_PORT_TO_TASK_ID(port));
}
void pd_set_external_voltage_limit(int port, int mv)
{
pd_set_max_voltage(mv);
if (pd[port].task_state == PD_STATE_SNK_READY ||
pd[port].task_state == PD_STATE_SNK_TRANSITION) {
/* Set flag to send new power request in pd_task */
pd[port].new_power_request = 1;
task_wake(PD_PORT_TO_TASK_ID(port));
}
}
void pd_update_contract(int port)
{
if ((pd[port].task_state >= PD_STATE_SRC_NEGOCIATE) &&
(pd[port].task_state <= PD_STATE_SRC_GET_SINK_CAP)) {
pd[port].flags |= PD_FLAGS_UPDATE_SRC_CAPS;
task_wake(PD_PORT_TO_TASK_ID(port));
}
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
#ifdef CONFIG_USBC_PPC
static void pd_send_hard_reset(int port)
{
task_set_event(PD_PORT_TO_TASK_ID(port), PD_EVENT_SEND_HARD_RESET, 0);
}
static uint32_t port_oc_reset_req;
static void re_enable_ports(void)
{
uint32_t ports = atomic_read_clear(&port_oc_reset_req);
while (ports) {
int port = __fls(ports);
ports &= ~BIT(port);
/*
* Let the board know that the overcurrent is
* over since we're going to attempt re-enabling
* the port.
*/
board_overcurrent_event(port, 0);
pd_send_hard_reset(port);
/*
* TODO(b/117854867): PD3.0 to send an alert message
* indicating OCP after explicit contract.
*/
}
}
DECLARE_DEFERRED(re_enable_ports);
void pd_handle_overcurrent(int port)
{
/* Keep track of the overcurrent events. */
CPRINTS("C%d: overcurrent!", port);
#ifdef CONFIG_USB_PD_LOGGING
pd_log_event(PD_EVENT_PS_FAULT, PD_LOG_PORT_SIZE(port, 0), PS_FAULT_OCP,
NULL);
#endif /* defined(CONFIG_USB_PD_LOGGING) */
ppc_add_oc_event(port);
/* Let the board specific code know about the OC event. */
board_overcurrent_event(port, 1);
/* Wait 1s before trying to re-enable the port. */
atomic_or(&port_oc_reset_req, BIT(port));
hook_call_deferred(&re_enable_ports_data, SECOND);
}
#endif /* defined(CONFIG_USBC_PPC) */
static int command_pd(int argc, char **argv)
{
int port;
char *e;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
if (!strcasecmp(argv[1], "dump")) {
if (argc >= 3) {
#ifdef CONFIG_USB_PD_DEBUG_LEVEL
return EC_ERROR_PARAM2;
#else
int level = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
debug_level = level;
#endif
}
ccprintf("debug=%d\n", debug_level);
return EC_SUCCESS;
}
#ifdef CONFIG_CMD_PD
#ifdef CONFIG_CMD_PD_DEV_DUMP_INFO
else if (!strncasecmp(argv[1], "rwhashtable", 3)) {
int i;
struct ec_params_usb_pd_rw_hash_entry *p;
for (i = 0; i < RW_HASH_ENTRIES; i++) {
p = &rw_hash_table[i];
pd_dev_dump_info(p->dev_id, p->dev_rw_hash);
}
return EC_SUCCESS;
}
#endif /* CONFIG_CMD_PD_DEV_DUMP_INFO */
#ifdef CONFIG_USB_PD_TRY_SRC
else if (!strncasecmp(argv[1], "trysrc", 6)) {
int enable;
if (argc >= 3) {
enable = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM3;
pd_try_src_enable = enable ? 1 : 0;
}
ccprintf("Try.SRC %s\n", pd_try_src_enable ? "on" : "off");
return EC_SUCCESS;
}
#endif
#endif
/* command: pd <port> <subcmd> [args] */
port = strtoi(argv[1], &e, 10);
if (argc < 3)
return EC_ERROR_PARAM_COUNT;
if (*e || port >= CONFIG_USB_PD_PORT_COUNT)
return EC_ERROR_PARAM2;
#if defined(CONFIG_CMD_PD) && defined(CONFIG_USB_PD_DUAL_ROLE)
if (!strcasecmp(argv[2], "tx")) {
set_state(port, PD_STATE_SNK_DISCOVERY);
task_wake(PD_PORT_TO_TASK_ID(port));
} else if (!strcasecmp(argv[2], "bist_rx")) {
set_state(port, PD_STATE_BIST_RX);
task_wake(PD_PORT_TO_TASK_ID(port));
} else if (!strcasecmp(argv[2], "bist_tx")) {
if (*e)
return EC_ERROR_PARAM3;
set_state(port, PD_STATE_BIST_TX);
task_wake(PD_PORT_TO_TASK_ID(port));
} else if (!strcasecmp(argv[2], "charger")) {
pd_set_power_role(port, PD_ROLE_SOURCE);
tcpm_set_cc(port, TYPEC_CC_RP);
set_state(port, PD_STATE_SRC_DISCONNECTED);
task_wake(PD_PORT_TO_TASK_ID(port));
} else if (!strncasecmp(argv[2], "dev", 3)) {
int max_volt;
if (argc >= 4)
max_volt = strtoi(argv[3], &e, 10) * 1000;
else
max_volt = pd_get_max_voltage();
pd_request_source_voltage(port, max_volt);
ccprintf("max req: %dmV\n", max_volt);
} else if (!strcasecmp(argv[2], "disable")) {
pd_comm_enable(port, 0);
ccprintf("Port C%d disable\n", port);
return EC_SUCCESS;
} else if (!strcasecmp(argv[2], "enable")) {
pd_comm_enable(port, 1);
ccprintf("Port C%d enabled\n", port);
return EC_SUCCESS;
} else if (!strncasecmp(argv[2], "hard", 4)) {
set_state(port, PD_STATE_HARD_RESET_SEND);
task_wake(PD_PORT_TO_TASK_ID(port));
} else if (!strncasecmp(argv[2], "info", 4)) {
int i;
ccprintf("Hash ");
for (i = 0; i < PD_RW_HASH_SIZE / 4; i++)
ccprintf("%08x ", pd[port].dev_rw_hash[i]);
ccprintf("\nImage %s\n", system_image_copy_t_to_string(
(enum system_image_copy_t)pd[port].current_image));
} else if (!strncasecmp(argv[2], "soft", 4)) {
set_state(port, PD_STATE_SOFT_RESET);
task_wake(PD_PORT_TO_TASK_ID(port));
} else if (!strncasecmp(argv[2], "swap", 4)) {
if (argc < 4)
return EC_ERROR_PARAM_COUNT;
if (!strncasecmp(argv[3], "power", 5))
pd_request_power_swap(port);
else if (!strncasecmp(argv[3], "data", 4))
pd_request_data_swap(port);
#ifdef CONFIG_USBC_VCONN_SWAP
else if (!strncasecmp(argv[3], "vconn", 5))
pd_request_vconn_swap(port);
#endif
else
return EC_ERROR_PARAM3;
} else if (!strncasecmp(argv[2], "ping", 4)) {
int enable;
if (argc > 3) {
enable = strtoi(argv[3], &e, 10);
if (*e)
return EC_ERROR_PARAM3;
pd_ping_enable(port, enable);
}
ccprintf("Pings %s\n",
(pd[port].flags & PD_FLAGS_PING_ENABLED) ?
"on" : "off");
} else if (!strncasecmp(argv[2], "vdm", 3)) {
if (argc < 4)
return EC_ERROR_PARAM_COUNT;
if (!strncasecmp(argv[3], "ping", 4)) {
uint32_t enable;
if (argc < 5)
return EC_ERROR_PARAM_COUNT;
enable = strtoi(argv[4], &e, 10);
if (*e)
return EC_ERROR_PARAM4;
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_PING_ENABLE,
&enable, 1);
} else if (!strncasecmp(argv[3], "curr", 4)) {
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_CURRENT,
NULL, 0);
} else if (!strncasecmp(argv[3], "vers", 4)) {
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_VERSION,
NULL, 0);
} else {
return EC_ERROR_PARAM_COUNT;
}
#if defined(CONFIG_CMD_PD) && defined(CONFIG_CMD_PD_FLASH)
} else if (!strncasecmp(argv[2], "flash", 4)) {
return remote_flashing(argc, argv);
#endif
#if defined(CONFIG_CMD_PD) && defined(CONFIG_USB_PD_DUAL_ROLE)
} else if (!strcasecmp(argv[2], "dualrole")) {
if (argc < 4) {
ccprintf("dual-role toggling: ");
switch (drp_state[port]) {
case PD_DRP_TOGGLE_ON:
ccprintf("on\n");
break;
case PD_DRP_TOGGLE_OFF:
ccprintf("off\n");
break;
case PD_DRP_FREEZE:
ccprintf("freeze\n");
break;
case PD_DRP_FORCE_SINK:
ccprintf("force sink\n");
break;
case PD_DRP_FORCE_SOURCE:
ccprintf("force source\n");
break;
}
} else {
if (!strcasecmp(argv[3], "on"))
pd_set_dual_role(port, PD_DRP_TOGGLE_ON);
else if (!strcasecmp(argv[3], "off"))
pd_set_dual_role(port, PD_DRP_TOGGLE_OFF);
else if (!strcasecmp(argv[3], "freeze"))
pd_set_dual_role(port, PD_DRP_FREEZE);
else if (!strcasecmp(argv[3], "sink"))
pd_set_dual_role(port, PD_DRP_FORCE_SINK);
else if (!strcasecmp(argv[3], "source"))
pd_set_dual_role(port,
PD_DRP_FORCE_SOURCE);
else
return EC_ERROR_PARAM4;
}
return EC_SUCCESS;
#endif
} else
#endif
if (!strncasecmp(argv[2], "state", 5)) {
ccprintf("Port C%d CC%d, %s - Role: %s-%s%s "
"State: %d(%s), Flags: 0x%04x\n",
port, pd[port].polarity + 1,
pd_comm_is_enabled(port) ? "Ena" : "Dis",
pd[port].power_role == PD_ROLE_SOURCE ? "SRC" : "SNK",
pd[port].data_role == PD_ROLE_DFP ? "DFP" : "UFP",
(pd[port].flags & PD_FLAGS_VCONN_ON) ? "-VC" : "",
pd[port].task_state,
debug_level > 0 ?
pd_state_names[pd[port].task_state] : "",
pd[port].flags);
} else {
return EC_ERROR_PARAM1;
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(pd, command_pd,
"dump"
#ifdef CONFIG_USB_PD_TRY_SRC
"|trysrc"
#endif
" [0|1|2]"
#ifdef CONFIG_CMD_PD_DEV_DUMP_INFO
"|rwhashtable"
#endif
"\n\t<port> state"
#ifdef CONFIG_USB_PD_DUAL_ROLE
"|tx|bist_rx|bist_tx|charger|dev"
"\n\t<port> disable|enable|soft|info|hard|ping"
"\n\t<port> dualrole [on|off|freeze|sink|source]"
"\n\t<port> swap [power|data|vconn]"
"\n\t<port> vdm [ping|curr|vers]"
#ifdef CONFIG_CMD_PD_FLASH
"\n\t<port> flash [erase|reboot|signature|info|version]"
#endif /* CONFIG_CMD_PD_FLASH */
#endif /* CONFIG_USB_PD_DUAL_ROLE */
,
"USB PD");
#ifdef HAS_TASK_HOSTCMD
static enum ec_status hc_pd_ports(struct host_cmd_handler_args *args)
{
struct ec_response_usb_pd_ports *r = args->response;
r->num_ports = CONFIG_USB_PD_PORT_COUNT;
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_PORTS,
hc_pd_ports,
EC_VER_MASK(0));
#ifdef CONFIG_USB_PD_DUAL_ROLE
static const enum pd_dual_role_states dual_role_map[USB_PD_CTRL_ROLE_COUNT] = {
[USB_PD_CTRL_ROLE_TOGGLE_ON] = PD_DRP_TOGGLE_ON,
[USB_PD_CTRL_ROLE_TOGGLE_OFF] = PD_DRP_TOGGLE_OFF,
[USB_PD_CTRL_ROLE_FORCE_SINK] = PD_DRP_FORCE_SINK,
[USB_PD_CTRL_ROLE_FORCE_SOURCE] = PD_DRP_FORCE_SOURCE,
[USB_PD_CTRL_ROLE_FREEZE] = PD_DRP_FREEZE,
};
#endif
#ifdef CONFIG_USBC_SS_MUX
static const enum typec_mux typec_mux_map[USB_PD_CTRL_MUX_COUNT] = {
[USB_PD_CTRL_MUX_NONE] = TYPEC_MUX_NONE,
[USB_PD_CTRL_MUX_USB] = TYPEC_MUX_USB,
[USB_PD_CTRL_MUX_AUTO] = TYPEC_MUX_DP,
[USB_PD_CTRL_MUX_DP] = TYPEC_MUX_DP,
[USB_PD_CTRL_MUX_DOCK] = TYPEC_MUX_DOCK,
};
#endif
__attribute__((weak)) uint8_t board_get_dp_pin_mode(int port)
{
return 0;
}
static enum ec_status hc_usb_pd_control(struct host_cmd_handler_args *args)
{
const struct ec_params_usb_pd_control *p = args->params;
struct ec_response_usb_pd_control_v2 *r_v2 = args->response;
struct ec_response_usb_pd_control_v1 *r_v1 = args->response;
struct ec_response_usb_pd_control *r = args->response;
if (p->port >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
if (p->role >= USB_PD_CTRL_ROLE_COUNT ||
p->mux >= USB_PD_CTRL_MUX_COUNT)
return EC_RES_INVALID_PARAM;
if (p->role != USB_PD_CTRL_ROLE_NO_CHANGE)
#ifdef CONFIG_USB_PD_DUAL_ROLE
pd_set_dual_role(p->port, dual_role_map[p->role]);
#else
return EC_RES_INVALID_PARAM;
#endif
#ifdef CONFIG_USBC_SS_MUX
if (p->mux != USB_PD_CTRL_MUX_NO_CHANGE)
usb_mux_set(p->port, typec_mux_map[p->mux],
typec_mux_map[p->mux] == TYPEC_MUX_NONE ?
USB_SWITCH_DISCONNECT :
USB_SWITCH_CONNECT,
pd_get_polarity(p->port));
#endif /* CONFIG_USBC_SS_MUX */
if (p->swap == USB_PD_CTRL_SWAP_DATA)
pd_request_data_swap(p->port);
#ifdef CONFIG_USB_PD_DUAL_ROLE
else if (p->swap == USB_PD_CTRL_SWAP_POWER)
pd_request_power_swap(p->port);
#ifdef CONFIG_USBC_VCONN_SWAP
else if (p->swap == USB_PD_CTRL_SWAP_VCONN)
pd_request_vconn_swap(p->port);
#endif
#endif
switch (args->version) {
case 0:
r->enabled = pd_comm_is_enabled(p->port);
r->role = pd[p->port].power_role;
r->polarity = pd[p->port].polarity;
r->state = pd[p->port].task_state;
args->response_size = sizeof(*r);
break;
case 1:
case 2:
r_v2->enabled =
(pd_comm_is_enabled(p->port) ?
PD_CTRL_RESP_ENABLED_COMMS : 0) |
(pd_is_connected(p->port) ?
PD_CTRL_RESP_ENABLED_CONNECTED : 0) |
((pd[p->port].flags & PD_FLAGS_PREVIOUS_PD_CONN) ?
PD_CTRL_RESP_ENABLED_PD_CAPABLE : 0);
r_v2->role =
(pd[p->port].power_role ? PD_CTRL_RESP_ROLE_POWER : 0) |
(pd[p->port].data_role ? PD_CTRL_RESP_ROLE_DATA : 0) |
((pd[p->port].flags & PD_FLAGS_VCONN_ON) ?
PD_CTRL_RESP_ROLE_VCONN : 0) |
((pd[p->port].flags & PD_FLAGS_PARTNER_DR_POWER) ?
PD_CTRL_RESP_ROLE_DR_POWER : 0) |
((pd[p->port].flags & PD_FLAGS_PARTNER_DR_DATA) ?
PD_CTRL_RESP_ROLE_DR_DATA : 0) |
((pd[p->port].flags & PD_FLAGS_PARTNER_USB_COMM) ?
PD_CTRL_RESP_ROLE_USB_COMM : 0) |
((pd[p->port].flags & PD_FLAGS_PARTNER_EXTPOWER) ?
PD_CTRL_RESP_ROLE_EXT_POWERED : 0);
r_v2->polarity = pd[p->port].polarity;
if (debug_level > 0)
strzcpy(r_v2->state,
pd_state_names[pd[p->port].task_state],
sizeof(r_v2->state));
else
r_v2->state[0] = '\0';
r_v2->cc_state = pd[p->port].cc_state;
r_v2->dp_mode = board_get_dp_pin_mode(p->port);
r_v2->cable_type = get_usb_pd_mux_cable_type(p->port);
if (args->version == 1)
args->response_size = sizeof(*r_v1);
else
args->response_size = sizeof(*r_v2);
break;
default:
return EC_RES_INVALID_PARAM;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_CONTROL,
hc_usb_pd_control,
EC_VER_MASK(0) | EC_VER_MASK(1) | EC_VER_MASK(2));
#ifdef CONFIG_HOSTCMD_FLASHPD
static enum ec_status hc_remote_flash(struct host_cmd_handler_args *args)
{
const struct ec_params_usb_pd_fw_update *p = args->params;
int port = p->port;
const uint32_t *data = &(p->size) + 1;
int i, size, rv = EC_RES_SUCCESS;
timestamp_t timeout;
if (port >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
if (p->size + sizeof(*p) > args->params_size)
return EC_RES_INVALID_PARAM;
#if defined(CONFIG_BATTERY_PRESENT_CUSTOM) || \
defined(CONFIG_BATTERY_PRESENT_GPIO)
/*
* Do not allow PD firmware update if no battery and this port
* is sinking power, because we will lose power.
*/
if (battery_is_present() != BP_YES &&
charge_manager_get_active_charge_port() == port)
return EC_RES_UNAVAILABLE;
#endif
/*
* Busy still with a VDM that host likely generated. 1 deep VDM queue
* so just return for retry logic on host side to deal with.
*/
if (pd[port].vdm_state > 0)
return EC_RES_BUSY;
switch (p->cmd) {
case USB_PD_FW_REBOOT:
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_REBOOT, NULL, 0);
/*
* Return immediately to free pending i2c bus. Host needs to
* manage this delay.
*/
return EC_RES_SUCCESS;
case USB_PD_FW_FLASH_ERASE:
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_FLASH_ERASE, NULL, 0);
/*
* Return immediately. Host needs to manage delays here which
* can be as long as 1.2 seconds on 64KB RW flash.
*/
return EC_RES_SUCCESS;
case USB_PD_FW_ERASE_SIG:
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_ERASE_SIG, NULL, 0);
timeout.val = get_time().val + 500*MSEC;
break;
case USB_PD_FW_FLASH_WRITE:
/* Data size must be a multiple of 4 */
if (!p->size || p->size % 4)
return EC_RES_INVALID_PARAM;
size = p->size / 4;
for (i = 0; i < size; i += VDO_MAX_SIZE - 1) {
pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_FLASH_WRITE,
data + i, MIN(size - i, VDO_MAX_SIZE - 1));
timeout.val = get_time().val + 500*MSEC;
/* Wait until VDM is done */
while ((pd[port].vdm_state > 0) &&
(get_time().val < timeout.val))
task_wait_event(10*MSEC);
if (pd[port].vdm_state > 0)
return EC_RES_TIMEOUT;
}
return EC_RES_SUCCESS;
default:
return EC_RES_INVALID_PARAM;
break;
}
/* Wait until VDM is done or timeout */
while ((pd[port].vdm_state > 0) && (get_time().val < timeout.val))
task_wait_event(50*MSEC);
if ((pd[port].vdm_state > 0) ||
(pd[port].vdm_state == VDM_STATE_ERR_TMOUT))
rv = EC_RES_TIMEOUT;
else if (pd[port].vdm_state < 0)
rv = EC_RES_ERROR;
return rv;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_FW_UPDATE,
hc_remote_flash,
EC_VER_MASK(0));
#endif /* CONFIG_HOSTCMD_FLASHPD */
#ifdef CONFIG_HOSTCMD_RWHASHPD
static enum ec_status
hc_remote_rw_hash_entry(struct host_cmd_handler_args *args)
{
int i, idx = 0, found = 0;
const struct ec_params_usb_pd_rw_hash_entry *p = args->params;
static int rw_hash_next_idx;
if (!p->dev_id)
return EC_RES_INVALID_PARAM;
for (i = 0; i < RW_HASH_ENTRIES; i++) {
if (p->dev_id == rw_hash_table[i].dev_id) {
idx = i;
found = 1;
break;
}
}
if (!found) {
idx = rw_hash_next_idx;
rw_hash_next_idx = rw_hash_next_idx + 1;
if (rw_hash_next_idx == RW_HASH_ENTRIES)
rw_hash_next_idx = 0;
}
memcpy(&rw_hash_table[idx], p, sizeof(*p));
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_RW_HASH_ENTRY,
hc_remote_rw_hash_entry,
EC_VER_MASK(0));
#endif /* CONFIG_HOSTCMD_RWHASHPD */
static enum ec_status hc_remote_pd_dev_info(struct host_cmd_handler_args *args)
{
const uint8_t *port = args->params;
struct ec_params_usb_pd_rw_hash_entry *r = args->response;
if (*port >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
r->dev_id = pd[*port].dev_id;
if (r->dev_id) {
memcpy(r->dev_rw_hash, pd[*port].dev_rw_hash,
PD_RW_HASH_SIZE);
}
r->current_image = pd[*port].current_image;
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_DEV_INFO,
hc_remote_pd_dev_info,
EC_VER_MASK(0));
#ifndef CONFIG_USB_PD_TCPC
#ifdef CONFIG_EC_CMD_PD_CHIP_INFO
static enum ec_status hc_remote_pd_chip_info(struct host_cmd_handler_args *args)
{
const struct ec_params_pd_chip_info *p = args->params;
struct ec_response_pd_chip_info_v1 *info;
if (p->port >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
if (tcpm_get_chip_info(p->port, p->live, &info))
return EC_RES_ERROR;
/*
* Take advantage of the fact that v0 and v1 structs have the
* same layout for v0 data. (v1 just appends data)
*/
args->response_size =
args->version ? sizeof(struct ec_response_pd_chip_info_v1)
: sizeof(struct ec_response_pd_chip_info);
memcpy(args->response, info, args->response_size);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_PD_CHIP_INFO,
hc_remote_pd_chip_info,
EC_VER_MASK(0) | EC_VER_MASK(1));
#endif
#endif
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
static enum ec_status hc_remote_pd_set_amode(struct host_cmd_handler_args *args)
{
const struct ec_params_usb_pd_set_mode_request *p = args->params;
if ((p->port >= CONFIG_USB_PD_PORT_COUNT) || (!p->svid) || (!p->opos))
return EC_RES_INVALID_PARAM;
switch (p->cmd) {
case PD_EXIT_MODE:
if (pd_dfp_exit_mode(p->port, p->svid, p->opos))
pd_send_vdm(p->port, p->svid,
CMD_EXIT_MODE | VDO_OPOS(p->opos), NULL, 0);
else {
CPRINTF("Failed exit mode\n");
return EC_RES_ERROR;
}
break;
case PD_ENTER_MODE:
if (pd_dfp_enter_mode(p->port, p->svid, p->opos))
pd_send_vdm(p->port, p->svid, CMD_ENTER_MODE |
VDO_OPOS(p->opos), NULL, 0);
break;
default:
return EC_RES_INVALID_PARAM;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_SET_AMODE,
hc_remote_pd_set_amode,
EC_VER_MASK(0));
#endif /* CONFIG_USB_PD_ALT_MODE_DFP */
#endif /* HAS_TASK_HOSTCMD */
#ifdef CONFIG_CMD_PD_CONTROL
static enum ec_status pd_control(struct host_cmd_handler_args *args)
{
static int pd_control_disabled[CONFIG_USB_PD_PORT_COUNT];
const struct ec_params_pd_control *cmd = args->params;
int enable = 0;
if (cmd->chip >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
/* Always allow disable command */
if (cmd->subcmd == PD_CONTROL_DISABLE) {
pd_control_disabled[cmd->chip] = 1;
return EC_RES_SUCCESS;
}
if (pd_control_disabled[cmd->chip])
return EC_RES_ACCESS_DENIED;
if (cmd->subcmd == PD_SUSPEND) {
/*
* The AP is requesting to suspend PD traffic on the EC so it
* can perform a firmware upgrade. If Vbus is present on the
* connector (it is either a source or sink), then we will
* prevent the upgrade if there is not enough battery to finish
* the upgrade. We cannot rely on the EC's active charger data
* as the EC just rebooted into RW and has not necessarily
* picked the active charger yet.
*/
#ifdef HAS_TASK_CHARGER
if (pd_is_vbus_present(cmd->chip)) {
struct batt_params batt = { 0 };
/*
* The charger task has not re-initialized, so we need
* to ask the battery directly.
*/
battery_get_params(&batt);
if (batt.remaining_capacity <
MIN_BATTERY_FOR_TCPC_UPGRADE_MAH ||
batt.flags & BATT_FLAG_BAD_REMAINING_CAPACITY) {
CPRINTS("C%d: Cannot suspend for upgrade, not "
"enough battery (%dmAh)!",
cmd->chip, batt.remaining_capacity);
return EC_RES_BUSY;
}
}
#else
if (pd_is_vbus_present(cmd->chip)) {
CPRINTS("C%d: Cannot suspend for upgrade, Vbus "
"present!",
cmd->chip);
return EC_RES_BUSY;
}
#endif
enable = 0;
} else if (cmd->subcmd == PD_RESUME) {
enable = 1;
} else if (cmd->subcmd == PD_RESET) {
#ifdef HAS_TASK_PDCMD
board_reset_pd_mcu();
#else
return EC_RES_INVALID_COMMAND;
#endif
} else if (cmd->subcmd == PD_CHIP_ON && board_set_tcpc_power_mode) {
board_set_tcpc_power_mode(cmd->chip, 1);
return EC_RES_SUCCESS;
} else {
return EC_RES_INVALID_COMMAND;
}
pd_comm_enable(cmd->chip, enable);
pd_set_suspend(cmd->chip, !enable);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_PD_CONTROL, pd_control, EC_VER_MASK(0));
#endif /* CONFIG_CMD_PD_CONTROL */
#endif /* CONFIG_COMMON_RUNTIME */