coreboot-libre-fam15h-rdimm/3rdparty/chromeec/chip/stm32/adc-stm32f3.c

261 lines
5.4 KiB
C

/* Copyright 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "adc.h"
#include "adc_chip.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "dma.h"
#include "hooks.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#define ADC_SINGLE_READ_TIMEOUT 3000 /* 3 ms */
#define SMPR1_EXPAND(v) ((v) | ((v) << 3) | ((v) << 6) | ((v) << 9) | \
((v) << 12) | ((v) << 15) | ((v) << 18) | \
((v) << 21))
#define SMPR2_EXPAND(v) (SMPR1_EXPAND(v) | ((v) << 24) | ((v) << 27))
/* Default ADC sample time = 13.5 cycles */
#ifndef CONFIG_ADC_SAMPLE_TIME
#define CONFIG_ADC_SAMPLE_TIME 2
#endif
struct mutex adc_lock;
static int watchdog_ain_id;
static inline void adc_set_channel(int sample_id, int channel)
{
uint32_t mask, val;
volatile uint32_t *sqr_reg;
if (sample_id < 6) {
mask = 0x1f << (sample_id * 5);
val = channel << (sample_id * 5);
sqr_reg = &STM32_ADC_SQR3;
} else if (sample_id < 12) {
mask = 0x1f << ((sample_id - 6) * 5);
val = channel << ((sample_id - 6) * 5);
sqr_reg = &STM32_ADC_SQR2;
} else {
mask = 0x1f << ((sample_id - 12) * 5);
val = channel << ((sample_id - 12) * 5);
sqr_reg = &STM32_ADC_SQR1;
}
*sqr_reg = (*sqr_reg & ~mask) | val;
}
static void adc_configure(int ain_id)
{
/* Set ADC channel */
adc_set_channel(0, ain_id);
/* Disable DMA */
STM32_ADC_CR2 &= ~BIT(8);
/* Disable scan mode */
STM32_ADC_CR1 &= ~BIT(8);
}
static void __attribute__((unused)) adc_configure_all(void)
{
int i;
/* Set ADC channels */
STM32_ADC_SQR1 = (ADC_CH_COUNT - 1) << 20;
for (i = 0; i < ADC_CH_COUNT; ++i)
adc_set_channel(i, adc_channels[i].channel);
/* Enable DMA */
STM32_ADC_CR2 |= BIT(8);
/* Enable scan mode */
STM32_ADC_CR1 |= BIT(8);
}
static inline int adc_powered(void)
{
return STM32_ADC_CR2 & BIT(0);
}
static inline int adc_conversion_ended(void)
{
return STM32_ADC_SR & BIT(1);
}
static int adc_watchdog_enabled(void)
{
return STM32_ADC_CR1 & BIT(23);
}
static int adc_enable_watchdog_no_lock(void)
{
/* Fail if watchdog already enabled */
if (adc_watchdog_enabled())
return EC_ERROR_UNKNOWN;
/* Set channel */
STM32_ADC_SQR3 = watchdog_ain_id;
STM32_ADC_SQR1 = 0;
STM32_ADC_CR1 = (STM32_ADC_CR1 & ~0x1f) | watchdog_ain_id;
/* Clear interrupt bit */
STM32_ADC_SR &= ~0x1;
/* AWDSGL=1, SCAN=1, AWDIE=1, AWDEN=1 */
STM32_ADC_CR1 |= BIT(9) | BIT(8) | BIT(6) | BIT(23);
/* Disable DMA */
STM32_ADC_CR2 &= ~BIT(8);
/* CONT=1 */
STM32_ADC_CR2 |= BIT(1);
/* Start conversion */
STM32_ADC_CR2 |= BIT(0);
return EC_SUCCESS;
}
int adc_enable_watchdog(int ain_id, int high, int low)
{
int ret;
if (!adc_powered())
return EC_ERROR_UNKNOWN;
mutex_lock(&adc_lock);
watchdog_ain_id = ain_id;
/* Set thresholds */
STM32_ADC_HTR = high & 0xfff;
STM32_ADC_LTR = low & 0xfff;
ret = adc_enable_watchdog_no_lock();
mutex_unlock(&adc_lock);
return ret;
}
static int adc_disable_watchdog_no_lock(void)
{
/* Fail if watchdog not running */
if (!adc_watchdog_enabled())
return EC_ERROR_UNKNOWN;
/* AWDEN=0, AWDIE=0 */
STM32_ADC_CR1 &= ~BIT(23) & ~BIT(6);
/* CONT=0 */
STM32_ADC_CR2 &= ~BIT(1);
return EC_SUCCESS;
}
int adc_disable_watchdog(void)
{
int ret;
if (!adc_powered())
return EC_ERROR_UNKNOWN;
mutex_lock(&adc_lock);
ret = adc_disable_watchdog_no_lock();
mutex_unlock(&adc_lock);
return ret;
}
int adc_read_channel(enum adc_channel ch)
{
const struct adc_t *adc = adc_channels + ch;
int value;
int restore_watchdog = 0;
timestamp_t deadline;
if (!adc_powered())
return EC_ERROR_UNKNOWN;
mutex_lock(&adc_lock);
if (adc_watchdog_enabled()) {
restore_watchdog = 1;
adc_disable_watchdog_no_lock();
}
adc_configure(adc->channel);
/* Clear EOC bit */
STM32_ADC_SR &= ~BIT(1);
/* Start conversion (Note: For now only confirmed on F4) */
#if defined(CHIP_FAMILY_STM32F4)
STM32_ADC_CR2 |= STM32_ADC_CR2_ADON | STM32_ADC_CR2_SWSTART;
#else
STM32_ADC_CR2 |= STM32_ADC_CR2_ADON;
#endif
/* Wait for EOC bit set */
deadline.val = get_time().val + ADC_SINGLE_READ_TIMEOUT;
value = ADC_READ_ERROR;
do {
if (adc_conversion_ended()) {
value = STM32_ADC_DR & ADC_READ_MAX;
break;
}
} while (!timestamp_expired(deadline, NULL));
if (restore_watchdog)
adc_enable_watchdog_no_lock();
mutex_unlock(&adc_lock);
return (value == ADC_READ_ERROR) ? ADC_READ_ERROR :
value * adc->factor_mul / adc->factor_div + adc->shift;
}
static void adc_init(void)
{
/*
* Enable ADC clock.
* APB2 clock is 16MHz. ADC clock prescaler is /2.
* So the ADC clock is 8MHz.
*/
clock_enable_module(MODULE_ADC, 1);
/*
* ADC clock is divided with respect to AHB, so no delay needed
* here. If ADC clock is the same as AHB, a dummy read on ADC
* register is needed here.
*/
if (!adc_powered()) {
/* Power on ADC module */
STM32_ADC_CR2 |= STM32_ADC_CR2_ADON;
/* Reset calibration */
STM32_ADC_CR2 |= STM32_ADC_CR2_RSTCAL;
while (STM32_ADC_CR2 & STM32_ADC_CR2_RSTCAL)
;
/* A/D Calibrate */
STM32_ADC_CR2 |= STM32_ADC_CR2_CAL;
while (STM32_ADC_CR2 & STM32_ADC_CR2_CAL)
;
}
/* Set right alignment */
STM32_ADC_CR2 &= ~STM32_ADC_CR2_ALIGN;
/* Set sample time of all channels */
STM32_ADC_SMPR1 = SMPR1_EXPAND(CONFIG_ADC_SAMPLE_TIME);
STM32_ADC_SMPR2 = SMPR2_EXPAND(CONFIG_ADC_SAMPLE_TIME);
}
DECLARE_HOOK(HOOK_INIT, adc_init, HOOK_PRIO_INIT_ADC);