Update Concurrent Programming
This commit is contained in:
parent
9d729412d4
commit
a467610eae
|
@ -4,9 +4,16 @@ from datetime import datetime
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
|
||||||
renew_length = 12
|
local_threads_number = 7 # in a more realistic model: local threads number << global arrows state size
|
||||||
local_threads_number = 10
|
# then, locations would be picked at random in this great global arrows state
|
||||||
number_of_cycles = 20
|
# but the goal of this "micro-model" is not to explore the algorithms of choice of an arrow in the state
|
||||||
|
# it is to fix the way the scheduler terminates the local threads that have done their task
|
||||||
|
# in a realistic model, the number of cycles is infinite (the user decides when to stop a running simulation)
|
||||||
|
# and the size of the "renew" list (the list of the active local threads) depends on the computational power available
|
||||||
|
# this "micro-model" allows to explore the ineractions [scheduler <-> local threads] when the the "renew" list size varies
|
||||||
|
renew_length = 16 # renew_length can vary from 1 to number_of_cycles (if more, a part of it remains empty)
|
||||||
|
number_of_cycles = 20 # in a realistic model: number_of_cycles >> renew_length
|
||||||
|
|
||||||
renew = []
|
renew = []
|
||||||
done = []
|
done = []
|
||||||
arrows = []
|
arrows = []
|
||||||
|
@ -16,19 +23,21 @@ def init():
|
||||||
for i in range(0, renew_length):
|
for i in range(0, renew_length):
|
||||||
renew.append(0)
|
renew.append(0)
|
||||||
for j in range(0, local_threads_number):
|
for j in range(0, local_threads_number):
|
||||||
arrows.append(random.randint(10,99)) # nombres à deux chiffres pour simplifier l'affichage
|
arrows.append(random.randint(10,99))
|
||||||
copy.append(arrows[j])
|
copy.append(arrows[j])
|
||||||
print(' ',arrows,' < initial global state',' '*27,end='[')
|
print(' ',arrows,' < initial global arrows state',' '*11,'now start delta ',end='[')
|
||||||
for i in range(0, renew_length): print('{:>4}'.format(renew[i]), end='')
|
for i in range(0, renew_length): print('{:>4}'.format(renew[i]), end='')
|
||||||
print(']')
|
print(']')
|
||||||
|
|
||||||
def disp(coord, id, start, prev, next):
|
def disp(coord, id, start, prev, next):
|
||||||
print(' {} at [{}] {} > {} by thread n°{:>3} {!s:.4} {}'.format(
|
print(' {} at [{}] {} > {} by thread n°{:>3} {: >.3f} - {: >.3f} = {!s:.4} {}'.format(
|
||||||
arrows,
|
arrows,
|
||||||
coord,
|
coord,
|
||||||
prev,
|
prev,
|
||||||
next,
|
next,
|
||||||
str(id),
|
str(id),
|
||||||
|
datetime.now().timestamp() / 10 - int(datetime.now().timestamp() / 10),
|
||||||
|
start / 10 - int(start / 10),
|
||||||
datetime.now().timestamp() - start,
|
datetime.now().timestamp() - start,
|
||||||
'[', # renew
|
'[', # renew
|
||||||
),
|
),
|
||||||
|
@ -43,7 +52,7 @@ def local_thread(coord, id):
|
||||||
val = random.randint(1,1000)
|
val = random.randint(1,1000)
|
||||||
time.sleep(val / 1000)
|
time.sleep(val / 1000)
|
||||||
prev = arrows[coord]
|
prev = arrows[coord]
|
||||||
next = arrows[coord] = 10 + val % 89
|
next = arrows[coord] = 10 + val % 89 # ou n'importe quelle autre modification !...
|
||||||
done.append(id)
|
done.append(id)
|
||||||
for i in range(0, renew_length):
|
for i in range(0, renew_length):
|
||||||
if renew[i] == id:
|
if renew[i] == id:
|
||||||
|
@ -62,13 +71,15 @@ for id in range (0, number_of_cycles):
|
||||||
t = Thread(target=local_thread, args=(random.randint(0, len(arrows) - 1), id))
|
t = Thread(target=local_thread, args=(random.randint(0, len(arrows) - 1), id))
|
||||||
t.start()
|
t.start()
|
||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
print(' ',copy,' < initial global state (to compare)')
|
print(' ',copy,' < initial global arrows state (to compare)')
|
||||||
print('history: ',done) # done.sort() # print(done)
|
print('history: ',done) # done.sort() # print(done)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Le **scheduler**, ou processus principal, effectue un calcul sur l'**état global**.
|
Le **scheduler**, ou processus principal, effectue un calcul sur l'**état global**.
|
||||||
Pour cela, il génère des threads de calcul locaux ou '**local_threads**'
|
Pour cela, il génère des threads de calcul locaux ou '**local_threads**'
|
||||||
|
|
Loading…
Reference in New Issue