coreboot-kgpe-d16/src/lib/hardwaremain.c

534 lines
13 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* C Bootstrap code for the coreboot
*/
#include <bootstate.h>
#include <console/console.h>
#include <version.h>
#include <device/device.h>
#include <device/pci.h>
#include <delay.h>
#include <stdlib.h>
#include <reset.h>
#include <boot/tables.h>
#include <cbfs.h>
#include <lib.h>
#if CONFIG_HAVE_ACPI_RESUME
#include <arch/acpi.h>
#endif
#include <timer.h>
#include <timestamp.h>
#include <thread.h>
#if BOOT_STATE_DEBUG
#define BS_DEBUG_LVL BIOS_DEBUG
#else
#define BS_DEBUG_LVL BIOS_NEVER
#endif
static boot_state_t bs_pre_device(void *arg);
static boot_state_t bs_dev_init_chips(void *arg);
static boot_state_t bs_dev_enumerate(void *arg);
static boot_state_t bs_dev_resources(void *arg);
static boot_state_t bs_dev_enable(void *arg);
static boot_state_t bs_dev_init(void *arg);
static boot_state_t bs_post_device(void *arg);
static boot_state_t bs_os_resume_check(void *arg);
static boot_state_t bs_os_resume(void *arg);
static boot_state_t bs_write_tables(void *arg);
static boot_state_t bs_payload_load(void *arg);
static boot_state_t bs_payload_boot(void *arg);
/*
* Typically a state will take 4 time samples:
* 1. Before state entry callbacks
* 2. After state entry callbacks / Before state function.
* 3. After state function / Before state exit callbacks.
* 4. After state exit callbacks.
*/
#define MAX_TIME_SAMPLES 4
struct boot_state_times {
int num_samples;
struct mono_time samples[MAX_TIME_SAMPLES];
};
/* The prologue (BS_ON_ENTRY) and epilogue (BS_ON_EXIT) of a state can be
* blocked from transitioning to the next (state,seq) pair. When the blockers
* field is 0 a transition may occur. */
struct boot_phase {
struct boot_state_callback *callbacks;
int blockers;
};
struct boot_state {
const char *name;
boot_state_t id;
struct boot_phase phases[2];
boot_state_t (*run_state)(void *arg);
void *arg;
int complete : 1;
#if CONFIG_HAVE_MONOTONIC_TIMER
struct boot_state_times times;
#endif
};
#define BS_INIT(state_, run_func_) \
{ \
.name = #state_, \
.id = state_, \
.phases = { { NULL, 0 }, { NULL, 0 } }, \
.run_state = run_func_, \
.arg = NULL, \
.complete = 0, \
}
#define BS_INIT_ENTRY(state_, run_func_) \
[state_] = BS_INIT(state_, run_func_)
static struct boot_state boot_states[] = {
BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device),
BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips),
BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate),
BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources),
BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_enable),
BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables),
BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
BS_INIT_ENTRY(BS_PAYLOAD_BOOT, bs_payload_boot),
};
static boot_state_t bs_pre_device(void *arg)
{
return BS_DEV_INIT_CHIPS;
}
static boot_state_t bs_dev_init_chips(void *arg)
{
timestamp_add_now(TS_DEVICE_ENUMERATE);
/* Initialize chips early, they might disable unused devices. */
dev_initialize_chips();
return BS_DEV_ENUMERATE;
}
static boot_state_t bs_dev_enumerate(void *arg)
{
/* Find the devices we don't have hard coded knowledge about. */
dev_enumerate();
post_code(POST_DEVICE_ENUMERATION_COMPLETE);
return BS_DEV_RESOURCES;
}
static boot_state_t bs_dev_resources(void *arg)
{
timestamp_add_now(TS_DEVICE_CONFIGURE);
/* Now compute and assign the bus resources. */
dev_configure();
post_code(POST_DEVICE_CONFIGURATION_COMPLETE);
return BS_DEV_ENABLE;
}
static boot_state_t bs_dev_enable(void *arg)
{
timestamp_add_now(TS_DEVICE_ENABLE);
/* Now actually enable devices on the bus */
dev_enable();
post_code(POST_DEVICES_ENABLED);
return BS_DEV_INIT;
}
static boot_state_t bs_dev_init(void *arg)
{
timestamp_add_now(TS_DEVICE_INITIALIZE);
/* And of course initialize devices on the bus */
dev_initialize();
post_code(POST_DEVICES_INITIALIZED);
return BS_POST_DEVICE;
}
static boot_state_t bs_post_device(void *arg)
{
timestamp_add_now(TS_DEVICE_DONE);
timestamp_reinit();
return BS_OS_RESUME_CHECK;
}
static boot_state_t bs_os_resume_check(void *arg)
{
#if CONFIG_HAVE_ACPI_RESUME
void *wake_vector;
wake_vector = acpi_find_wakeup_vector();
if (wake_vector != NULL) {
boot_states[BS_OS_RESUME].arg = wake_vector;
return BS_OS_RESUME;
}
post_code(0x8a);
#endif
timestamp_add_now(TS_CBMEM_POST);
return BS_WRITE_TABLES;
}
static boot_state_t bs_os_resume(void *wake_vector)
{
#if CONFIG_HAVE_ACPI_RESUME
acpi_resume(wake_vector);
#endif
return BS_WRITE_TABLES;
}
static boot_state_t bs_write_tables(void *arg)
{
timestamp_add_now(TS_WRITE_TABLES);
/* Now that we have collected all of our information
* write our configuration tables.
*/
write_tables();
return BS_PAYLOAD_LOAD;
}
static boot_state_t bs_payload_load(void *arg)
{
void *payload;
void *entry;
timestamp_add_now(TS_LOAD_PAYLOAD);
Extend CBFS to support arbitrary ROM source media. Summary: Isolate CBFS underlying I/O to board/arch-specific implementations as "media stream", to allow loading and booting romstage on non-x86. CBFS functions now all take a new "media source" parameter; use CBFS_DEFAULT_MEDIA if you simply want to load from main firmware. API Changes: cbfs_find => cbfs_get_file. cbfs_find_file => cbfs_get_file_content. cbfs_get_file => cbfs_get_file_content with correct type. CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM, the ROM may come from USB, UART, or SPI -- any serial devices and not available for memory mapping. To support these devices (and allowing CBFS to read from multiple source at the same time), CBFS operations are now virtual-ized into "cbfs_media". To simplify porting existing code, every media source must support both "reading into pre-allocated memory (read)" and "read and return an allocated buffer (map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*" provides simple memory mapping simulation. Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA is defined for CBFS functions to automatically initialize a per-board default media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS function names relying on memory mapped backend (ex, "cbfs_find" => actually loads files). Now we only have two getters: struct cbfs_file *entry = cbfs_get_file(media, name); void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type); Test results: - Verified to work on x86/qemu. - Compiles on ARM, and follow up commit will provide working SPI driver. Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746 Signed-off-by: Hung-Te Lin <hungte@chromium.org> Reviewed-on: http://review.coreboot.org/2182 Tested-by: build bot (Jenkins) Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
payload = cbfs_load_payload(CBFS_DEFAULT_MEDIA,
CONFIG_CBFS_PREFIX "/payload");
if (! payload)
die("Could not find a payload\n");
entry = selfload(get_lb_mem(), payload);
if (! entry)
die("Could not load payload\n");
/* Pass the payload to the next state. */
boot_states[BS_PAYLOAD_BOOT].arg = entry;
return BS_PAYLOAD_BOOT;
}
static boot_state_t bs_payload_boot(void *entry)
{
selfboot(entry);
printk(BIOS_EMERG, "Boot failed");
/* Returning from this state will fail because the following signals
* return to a completed state. */
return BS_PAYLOAD_BOOT;
}
#if CONFIG_HAVE_MONOTONIC_TIMER
static void bs_sample_time(struct boot_state *state)
{
struct mono_time *mt;
mt = &state->times.samples[state->times.num_samples];
timer_monotonic_get(mt);
state->times.num_samples++;
}
static void bs_report_time(struct boot_state *state)
{
struct rela_time entry_time;
struct rela_time run_time;
struct rela_time exit_time;
struct boot_state_times *times;
times = &state->times;
entry_time = mono_time_diff(&times->samples[0], &times->samples[1]);
run_time = mono_time_diff(&times->samples[1], &times->samples[2]);
exit_time = mono_time_diff(&times->samples[2], &times->samples[3]);
printk(BIOS_DEBUG, "BS: %s times (us): entry %ld run %ld exit %ld\n",
state->name,
rela_time_in_microseconds(&entry_time),
rela_time_in_microseconds(&run_time),
rela_time_in_microseconds(&exit_time));
}
#else
static inline void bs_sample_time(struct boot_state *state) {}
static inline void bs_report_time(struct boot_state *state) {}
#endif
#if CONFIG_TIMER_QUEUE
static void bs_run_timers(int drain)
{
/* Drain all timer callbacks until none are left, if directed.
* Otherwise run the timers only once. */
do {
if (!timers_run())
break;
} while (drain);
}
#else
static void bs_run_timers(int drain) {}
#endif
static void bs_call_callbacks(struct boot_state *state,
boot_state_sequence_t seq)
{
struct boot_phase *phase = &state->phases[seq];
while (1) {
if (phase->callbacks != NULL) {
struct boot_state_callback *bscb;
/* Remove the first callback. */
bscb = phase->callbacks;
phase->callbacks = bscb->next;
bscb->next = NULL;
#if BOOT_STATE_DEBUG
printk(BS_DEBUG_LVL, "BS: callback (%p) @ %s.\n",
bscb, bscb->location);
#endif
bscb->callback(bscb->arg);
continue;
}
/* All callbacks are complete and there are no blockers for
* this state. Therefore, this part of the state is complete. */
if (!phase->blockers)
break;
/* Something is blocking this state from transitioning. As
* there are no more callbacks a pending timer needs to be
* ran to unblock the state. */
bs_run_timers(0);
}
}
/* Keep track of the current state. */
static struct state_tracker {
boot_state_t state_id;
boot_state_sequence_t seq;
} current_phase = {
.state_id = BS_PRE_DEVICE,
.seq = BS_ON_ENTRY,
};
static void bs_walk_state_machine(void)
{
while (1) {
struct boot_state *state;
boot_state_t next_id;
state = &boot_states[current_phase.state_id];
if (state->complete) {
printk(BIOS_EMERG, "BS: %s state already executed.\n",
state->name);
break;
}
printk(BS_DEBUG_LVL, "BS: Entering %s state.\n", state->name);
bs_run_timers(0);
bs_sample_time(state);
bs_call_callbacks(state, current_phase.seq);
/* Update the current sequence so that any calls to block the
* current state from the run_state() function will place a
* block on the correct phase. */
current_phase.seq = BS_ON_EXIT;
bs_sample_time(state);
next_id = state->run_state(state->arg);
printk(BS_DEBUG_LVL, "BS: Exiting %s state.\n", state->name);
bs_sample_time(state);
bs_call_callbacks(state, current_phase.seq);
/* Update the current phase with new state id and sequence. */
current_phase.state_id = next_id;
current_phase.seq = BS_ON_ENTRY;
bs_sample_time(state);
bs_report_time(state);
state->complete = 1;
}
}
static int boot_state_sched_callback(struct boot_state *state,
struct boot_state_callback *bscb,
boot_state_sequence_t seq)
{
if (state->complete) {
printk(BIOS_WARNING,
"Tried to schedule callback on completed state %s.\n",
state->name);
return -1;
}
bscb->next = state->phases[seq].callbacks;
state->phases[seq].callbacks = bscb;
return 0;
}
int boot_state_sched_on_entry(struct boot_state_callback *bscb,
boot_state_t state_id)
{
struct boot_state *state = &boot_states[state_id];
return boot_state_sched_callback(state, bscb, BS_ON_ENTRY);
}
int boot_state_sched_on_exit(struct boot_state_callback *bscb,
boot_state_t state_id)
{
struct boot_state *state = &boot_states[state_id];
return boot_state_sched_callback(state, bscb, BS_ON_EXIT);
}
static void boot_state_schedule_static_entries(void)
{
extern struct boot_state_init_entry _bs_init_begin;
extern struct boot_state_init_entry _bs_init_end;
struct boot_state_init_entry *cur;
cur = &_bs_init_begin;
while (cur != &_bs_init_end) {
if (cur->when == BS_ON_ENTRY)
boot_state_sched_on_entry(&cur->bscb, cur->state);
else
boot_state_sched_on_exit(&cur->bscb, cur->state);
cur++;
}
}
void main(void)
{
/* Record current time, try to locate timestamps in CBMEM. */
timestamp_init(rdtsc());
timestamp_add_now(TS_START_RAMSTAGE);
post_code(POST_ENTRY_RAMSTAGE);
/* console_init() MUST PRECEDE ALL printk()! */
console_init();
post_code(POST_CONSOLE_READY);
printk(BIOS_NOTICE, "coreboot-%s%s %s booting...\n",
coreboot_version, coreboot_extra_version, coreboot_build);
post_code(POST_CONSOLE_BOOT_MSG);
threads_initialize();
/* Schedule the static boot state entries. */
boot_state_schedule_static_entries();
/* FIXME: Is there a better way to handle this? */
init_timer();
bs_walk_state_machine();
die("Boot state machine failure.\n");
}
int boot_state_block(boot_state_t state, boot_state_sequence_t seq)
{
struct boot_phase *bp;
/* Blocking a previously ran state is not appropriate. */
if (current_phase.state_id > state ||
(current_phase.state_id == state && current_phase.seq > seq) ) {
printk(BIOS_WARNING,
"BS: Completed state (%d, %d) block attempted.\n",
state, seq);
return -1;
}
bp = &boot_states[state].phases[seq];
bp->blockers++;
return 0;
}
int boot_state_unblock(boot_state_t state, boot_state_sequence_t seq)
{
struct boot_phase *bp;
/* Blocking a previously ran state is not appropriate. */
if (current_phase.state_id > state ||
(current_phase.state_id == state && current_phase.seq > seq) ) {
printk(BIOS_WARNING,
"BS: Completed state (%d, %d) unblock attempted.\n",
state, seq);
return -1;
}
bp = &boot_states[state].phases[seq];
if (bp->blockers == 0) {
printk(BIOS_WARNING,
"BS: Unblock attempted on non-blocked state (%d, %d).\n",
state, seq);
return -1;
}
bp->blockers--;
return 0;
}
void boot_state_current_block(void)
{
boot_state_block(current_phase.state_id, current_phase.seq);
}
void boot_state_current_unblock(void)
{
boot_state_unblock(current_phase.state_id, current_phase.seq);
}