coreboot-kgpe-d16/src/arch/x86/Makefile.inc

348 lines
14 KiB
PHP
Raw Normal View History

2012-07-20 07:11:21 +02:00
################################################################################
##
## This file is part of the coreboot project.
##
2012-07-20 07:11:21 +02:00
## Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
## Copyright (C) 2009-2010 coresystems GmbH
## Copyright (C) 2009 Ronald G. Minnich
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; version 2 of the License.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
###############################################################################
# Take care of subdirectories
###############################################################################
subdirs-y += boot
# subdirs-y += init
subdirs-y += lib
subdirs-y += smp
DISASSEMBLY=-Wa,--divide
################################################################################
# i386 specific tools
NVRAMTOOL:=$(objutil)/nvramtool/nvramtool
OPTION_TABLE_H:=
ifeq ($(CONFIG_HAVE_OPTION_TABLE),y)
cbfs-files-y += cmos_layout.bin
cmos_layout.bin-file = $(obj)/cmos_layout.bin
cmos_layout.bin-type = 0x01aa
$(obj)/cmos_layout.bin: $(NVRAMTOOL) $(top)/src/mainboard/$(MAINBOARDDIR)/cmos.layout
@printf " OPTION $(subst $(obj)/,,$(@))\n"
$(NVRAMTOOL) -y $(top)/src/mainboard/$(MAINBOARDDIR)/cmos.layout -L $@
OPTION_TABLE_H:=$(obj)/option_table.h
$(OPTION_TABLE_H): $(NVRAMTOOL) $(top)/src/mainboard/$(MAINBOARDDIR)/cmos.layout
@printf " OPTION $(subst $(obj)/,,$(@))\n"
$(NVRAMTOOL) -y $(top)/src/mainboard/$(MAINBOARDDIR)/cmos.layout -H $@
endif # CONFIG_HAVE_OPTION_TABLE
stripped_vgabios_id = $(call strip_quotes,$(CONFIG_VGA_BIOS_ID))
cbfs-files-$(CONFIG_VGA_BIOS) += pci$(stripped_vgabios_id).rom
pci$(stripped_vgabios_id).rom-file := $(call strip_quotes,$(CONFIG_VGA_BIOS_FILE))
pci$(stripped_vgabios_id).rom-type := optionrom
cbfs-files-$(CONFIG_INTEL_MBI) += mbi.bin
mbi.bin-file := $(call strip_quotes,$(CONFIG_MBI_FILE))
mbi.bin-type := mbi
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
ifeq ($(CONFIG_ARCH_ROMSTAGE_X86_32),y)
CBFSTOOL_PRE1_OPTS = -m x86 -o $$(( $(CONFIG_ROM_SIZE) - $(CONFIG_CBFS_SIZE) ))
# Make sure that segment for .car.data is ignored while adding romstage.
CBFSTOOL_PRE_OPTS = -b $(shell cat $(objcbfs)/base_xip.txt) -S ".car.data"
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
endif
###############################################################################
# bootblock
###############################################################################
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
ifeq ($(CONFIG_ARCH_BOOTBLOCK_X86_32),y)
bootblock-srcs += $(src)/arch/x86/init/failover.ld
bootblock-srcs += $(src)/cpu/x86/16bit/entry16.ld
bootblock-srcs += $(src)/cpu/x86/16bit/reset16.ld
bootblock-srcs += $(src)/arch/x86/lib/id.ld
ifeq ($(CONFIG_CPU_INTEL_FIRMWARE_INTERFACE_TABLE),y)
bootblock-srcs += $(src)/cpu/intel/fit/fit.ld
endif
# TODO: Why can't this use the real bootblock-y += xxx.S mechanism instead?
bootblock_inc = $(src)/arch/x86/init/prologue.inc
bootblock_inc += $(src)/cpu/x86/16bit/entry16.inc
bootblock_inc += $(src)/cpu/x86/16bit/reset16.inc
bootblock_inc += $(src)/cpu/x86/32bit/entry32.inc
bootblock_inc += $(src)/arch/x86/lib/id.inc
ifeq ($(CONFIG_CPU_INTEL_FIRMWARE_INTERFACE_TABLE),y)
bootblock_inc += $(src)/cpu/intel/fit/fit.inc
endif
bootblock_inc += $(chipset_bootblock_inc)
ifeq ($(CONFIG_SSE),y)
bootblock_inc += $(src)/cpu/x86/sse_enable.inc
endif
bootblock_inc += $(objgenerated)/bootblock.inc
bootblock_inc += $(src)/arch/x86/lib/walkcbfs.S
bootblock_romccflags := -mcpu=i386 -O2 -D__PRE_RAM__ -D__BOOTBLOCK__
ifeq ($(CONFIG_SSE),y)
bootblock_romccflags := -mcpu=k7 -msse -O2 -D__PRE_RAM__ -D__BOOTBLOCK__
endif
$(objgenerated)/bootblock.ld: $(obj)/config.h $$(filter %.ld,$$(bootblock-srcs))
@printf " GEN $(subst $(obj)/,,$(@))\n"
printf '$(foreach ldscript,$(^),#include "$(ldscript)"\n)' | $(CC_bootblock) $(PREPROCESS_ONLY) - > $@
$(objgenerated)/bootblock_inc.S: $$(bootblock_inc)
@printf " GEN $(subst $(obj)/,,$(@))\n"
printf '$(foreach crt0,$(bootblock_inc),#include "$(crt0)"\n)' > $@
$(objgenerated)/bootblock.o: $(objgenerated)/bootblock.s
@printf " CC $(subst $(obj)/,,$(@))\n"
$(CC_bootblock) $(CFLAGS_x86_32) $(DISASSEMBLY) -c -o $@ $< > $(basename $@).disasm
$(objgenerated)/bootblock.s: $(objgenerated)/bootblock_inc.S $(obj)/config.h $(obj)/build.h
@printf " CC $(subst $(obj)/,,$(@))\n"
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$(CC_bootblock) -MMD -x assembler-with-cpp -E -I$(src)/include -I$(src)/arch/x86/include -I$(obj) -include $(obj)/build.h -include $(obj)/config.h -I. -I$(src) $< -o $@
$(objgenerated)/bootblock.inc: $(src)/arch/x86/init/$(subst ",,$(CONFIG_BOOTBLOCK_SOURCE)) $(objutil)/romcc/romcc $(OPTION_TABLE_H)
@printf " ROMCC $(subst $(obj)/,,$(@))\n"
$(CC_bootblock) $(CPPFLAGS_bootblock) -MM -MT$(objgenerated)/bootblock.inc \
$< > $(objgenerated)/bootblock.inc.d
$(ROMCC) -c -S $(bootblock_romccflags) -I. $(CPPFLAGS_bootblock) $< -o $@
$(objcbfs)/bootblock.debug: $(objgenerated)/bootblock.o $(objgenerated)/bootblock.ld
@printf " LINK $(subst $(obj)/,,$(@))\n"
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$(LD_bootblock) -m elf_i386 -static -o $@ -L$(obj) $< -T $(objgenerated)/bootblock.ld
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
endif # CONFIG_ARCH_BOOTBLOCK_X86_32
###############################################################################
# romstage
###############################################################################
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
ifeq ($(CONFIG_ARCH_ROMSTAGE_X86_32),y)
crt0s = $(src)/arch/x86/init/prologue.inc
romstage-srcs += $(src)/arch/x86/init/romstage.ld
crt0s += $(src)/cpu/x86/32bit/entry32.inc
romstage-srcs += $(src)/cpu/x86/32bit/entry32.ld
crt0s += $(src)/cpu/x86/fpu_enable.inc
ifeq ($(CONFIG_SSE),y)
crt0s += $(src)/cpu/x86/sse_enable.inc
endif
crt0s += $(cpu_incs)
crt0s += $(cpu_incs-y)
crt0s += $(obj)/mainboard/$(MAINBOARDDIR)/romstage.inc
ifeq ($(CONFIG_ROMCC),y)
crt0s += $(src)/arch/x86/init/crt0_romcc_epilogue.inc
endif
ifeq ($(CONFIG_ROMCC),y)
ifeq ($(CONFIG_MMX),y)
ifeq ($(CONFIG_SSE),y)
ROMCCFLAGS := -mcpu=p4 -O2 # MMX, SSE
else
ROMCCFLAGS := -mcpu=p2 -O2 # MMX, !SSE
endif
else
ROMCCFLAGS := -mcpu=i386 -O2 # !MMX, !SSE
endif
$(objcbfs)/romstage%.bin: $(objcbfs)/romstage%.elf
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
@printf " OBJCOPY $(subst $(obj)/,,$(@))\n"
$(OBJCOPY_romstage) -O binary $< $@
$(objcbfs)/romstage%.elf: $(objcbfs)/romstage%.debug
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
@printf " OBJCOPY $(subst $(obj)/,,$(@))\n"
cp $< $@.tmp
$(OBJCOPY_romstage) --strip-debug $@.tmp
$(OBJCOPY_romstage) --add-gnu-debuglink=$< $@.tmp
mv $@.tmp $@
$(obj)/mainboard/$(MAINBOARDDIR)/romstage.inc: $(src)/mainboard/$(MAINBOARDDIR)/romstage.c $(objutil)/romcc/romcc $(OPTION_TABLE_H) $(obj)/build.h $(obj)/config.h
printf " ROMCC romstage.inc\n"
$(ROMCC) -c -S $(ROMCCFLAGS) -D__PRE_RAM__ -I. $(CPPFLAGS_romstage) $< -o $@
else
$(obj)/mainboard/$(MAINBOARDDIR)/romstage.pre.inc: $(src)/mainboard/$(MAINBOARDDIR)/romstage.c $(OPTION_TABLE_H) $(obj)/build.h $(obj)/config.h
@printf " CC romstage.inc\n"
$(CC_romstage) $(CPPFLAGS_romstage) $(CFLAGS_romstage) -MMD -D__PRE_RAM__ -I$(src) -I. -I$(obj) -c -S $< -o $@
$(obj)/mainboard/$(MAINBOARDDIR)/romstage.inc: $(obj)/mainboard/$(MAINBOARDDIR)/romstage.pre.inc
@printf " POST romstage.inc\n"
sed -e 's/\.rodata/.rom.data/g' -e 's/\^\.text/.section .rom.text/g' \
-e 's/\^\.section \.text/.section .rom.text/g' $^ > $@.tmp
mv $@.tmp $@
endif
romstage-srcs += $(objgenerated)/crt0.S
romstage-libs ?=
$(objcbfs)/romstage_null.debug: $$(romstage-objs) $(objgenerated)/romstage_null.ld $$(romstage-libs)
@printf " LINK $(subst $(obj)/,,$(@))\n"
$(LD_romstage) --gc-sections -nostdlib -nostartfiles -static -o $@ -L$(obj) $(COMPILER_RT_FLAGS_romstage) --start-group $(filter-out %.ld,$(romstage-objs)) $(romstage-libs) $(COMPILER_RT_romstage) --end-group -T $(objgenerated)/romstage_null.ld
$(OBJCOPY_romstage) --only-section .illegal_globals $(@) $(objcbfs)/romstage_null.offenders && \
$(NM_romstage) $(objcbfs)/romstage_null.offenders | grep -q ""; if [ $$? -eq 0 ]; then \
echo "Forbidden global variables in romstage:"; \
$(NM_romstage) $(objcbfs)/romstage_null.offenders; false; \
else true; fi
$(objcbfs)/romstage.debug: $$(romstage-objs) $(objgenerated)/romstage.ld $$(romstage-libs)
@printf " LINK $(subst $(obj)/,,$(@))\n"
$(LD_romstage) --gc-sections -nostdlib -nostartfiles -static -o $@ -L$(obj) $(COMPILER_RT_FLAGS_romstage) --start-group $(filter-out %.ld,$(romstage-objs)) $(romstage-libs) $(COMPILER_RT_romstage) --end-group -T $(objgenerated)/romstage.ld
$(objgenerated)/romstage_null.ld: $(obj)/config.h $$(filter %.ld,$$(romstage-srcs))
@printf " GEN $(subst $(obj)/,,$(@))\n"
rm -f $@
printf "ROMSTAGE_BASE = 0x0;\n" > $@.tmp
printf '$(foreach ldscript,$(^),#include "$(ldscript)"\n)' >> $@.tmp
$(CC_romstage) $(PREPROCESS_ONLY) $@.tmp > $@
$(objgenerated)/romstage.ld: $(objgenerated)/romstage_null.ld $(objcbfs)/base_xip.txt
@printf " GEN $(subst $(obj)/,,$(@))\n"
rm -f $@
sed -e 's/^/ROMSTAGE_BASE = /g' -e 's/$$/;/g' $(objcbfs)/base_xip.txt > $@.tmp
sed -e '/^ROMSTAGE_BASE/d' $(objgenerated)/romstage_null.ld >> $@.tmp
mv $@.tmp $@
$(objcbfs)/base_xip.txt: $(obj)/coreboot.pre1 $(objcbfs)/romstage_null.bin
rm -f $@
$(CBFSTOOL) $(obj)/coreboot.pre1 locate -T -f $(objcbfs)/romstage_null.bin -n $(CONFIG_CBFS_PREFIX)/romstage -P $(CONFIG_XIP_ROM_SIZE) > $@.tmp \
|| { echo "The romstage is larger than XIP size. Please expand the CONFIG_XIP_ROM_SIZE" ; exit 1; }
mv $@.tmp $@
$(objgenerated)/crt0.S: $$(crt0s)
@printf " GEN $(subst $(obj)/,,$(@))\n"
printf '$(foreach crt0,$(crt0s),#include "$(crt0)"\n)' > $@
# Compiling crt0 with -g seems to trigger https://sourceware.org/bugzilla/show_bug.cgi?id=6428
romstage-S-ccopts += -I. -g0
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
endif # CONFIG_ARCH_ROMSTAGE_X86_32
###############################################################################
# ramstage
###############################################################################
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
ifeq ($(CONFIG_ARCH_RAMSTAGE_X86_32),y)
ramstage-srcs += $(wildcard src/mainboard/$(MAINBOARDDIR)/mainboard.c)
ifeq ($(CONFIG_GENERATE_MP_TABLE),y)
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/mptable.c),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/mptable.c
endif
endif
ifeq ($(CONFIG_GENERATE_PIRQ_TABLE),y)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/irq_tables.c
endif
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/reset.c),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/reset.c
endif
ifeq ($(CONFIG_HAVE_ACPI_TABLES),y)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/acpi_tables.c
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/dsdt.asl
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/ssdt2.asl),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/ssdt2.asl
endif
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/ssdt3.asl),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/ssdt3.asl
endif
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/ssdt4.asl),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/ssdt4.asl
endif
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/ssdt5.asl),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/ssdt5.asl
endif
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/fadt.c),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/fadt.c
endif
endif # CONFIG_GENERATE_ACPI_TABLES
ifeq ($(CONFIG_HAVE_SMI_HANDLER),y)
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/smihandler.c),)
smm-srcs += src/mainboard/$(MAINBOARDDIR)/smihandler.c
endif
endif
ifneq ($(wildcard src/mainboard/$(MAINBOARDDIR)/get_bus_conf.c),)
ramstage-srcs += src/mainboard/$(MAINBOARDDIR)/get_bus_conf.c
endif
ramstage-libs ?=
ifeq ($(CONFIG_RELOCATABLE_RAMSTAGE),y)
$(eval $(call rmodule_link,$(objcbfs)/ramstage.debug, $(objgenerated)/ramstage.o, $(CONFIG_HEAP_SIZE),x86_32))
# The rmodule_link defintion creates an elf file with .rmod extension.
$(objcbfs)/ramstage.elf: $(objcbfs)/ramstage.debug.rmod
cp $< $@
else
ramstage-srcs += $(src)/arch/x86/ramstage.ld
$(objcbfs)/ramstage.debug: $(objgenerated)/ramstage.o $(obj)/arch/x86/ramstage.ramstage.ld
@printf " CC $(subst $(obj)/,,$(@))\n"
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
$(LD_ramstage) $(CPPFLAGS) --gc-sections -o $@ -L$(obj) $< -T $(obj)/arch/x86/ramstage.ramstage.ld
endif
$(objgenerated)/ramstage.o: $$(ramstage-objs) $(COMPILER_RT_ramstage) $$(ramstage-libs)
@printf " CC $(subst $(obj)/,,$(@))\n"
$(LD_ramstage) -m elf_i386 -r -o $@ $(COMPILER_RT_FLAGS_ramstage) --start-group $(filter-out %.ld,$(ramstage-objs)) $(ramstage-libs) $(COMPILER_RT_ramstage) --end-group
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
endif # CONFIG_ARCH_RAMSTAGE_X86_32
################################################################################
seabios:
$(MAKE) -C payloads/external/SeaBIOS -f Makefile.inc \
HOSTCC="$(HOSTCC)" \
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
CC="$(CC_x86_32)" LD="$(LD_x86_32)" OBJDUMP="$(OBJDUMP_x86_32)" \
OBJCOPY="$(OBJCOPY_x86_32)" STRIP="$(STRIP_x86_32)" \
AS="$(AS_x86_32)" \
CONFIG_SEABIOS_MASTER=$(CONFIG_SEABIOS_MASTER) \
CONFIG_SEABIOS_STABLE=$(CONFIG_SEABIOS_STABLE) \
CONFIG_SEABIOS_THREAD_OPTIONROMS=$(CONFIG_SEABIOS_THREAD_OPTIONROMS) \
CONFIG_SEABIOS_VGA_COREBOOT=$(CONFIG_SEABIOS_VGA_COREBOOT) \
CONFIG_CONSOLE_SERIAL=$(CONFIG_CONSOLE_SERIAL) \
CONFIG_TTYS0_BASE=$(CONFIG_TTYS0_BASE) \
CONFIG_SEABIOS_MALLOC_UPPERMEMORY=$(CONFIG_SEABIOS_MALLOC_UPPERMEMORY) \
OUT=$(abspath $(obj)) IASL="$(IASL)"
filo:
$(MAKE) -C payloads/external/FILO -f Makefile.inc \
HOSTCC="$(HOSTCC)" \
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
CC="$(CC_x86_32)" LD="$(LD_x86_32)" OBJDUMP="$(OBJDUMP_x86_32)" \
OBJCOPY="$(OBJCOPY_x86_32)" STRIP="$(STRIP_x86_32)" \
CONFIG_FILO_MASTER=$(CONFIG_FILO_MASTER) \
CONFIG_FILO_STABLE=$(CONFIG_FILO_STABLE)
grub2:
$(MAKE) -C payloads/external/GRUB2 -f Makefile.inc \
HOSTCC="$(HOSTCC)" \
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
CC="$(CC_x86_32)" LD="$(LD_x86_32)" OBJDUMP="$(OBJDUMP_x86_32)" \
OBJCOPY="$(OBJCOPY_x86_32)" STRIP="$(STRIP_x86_32)" \
CONFIG_GRUB2_MASTER=$(CONFIG_GRUB2_MASTER)