The count was only incrementing for a wake from S5 and
it was not incrementing in the normal reboot case.
Change-Id: I73bc6db6bd02e6c4677f7e44a5c098c6dcb51747
Signed-off-by: Duncan Laurie <dlaurie@google.com>
Reviewed-on: http://review.coreboot.org/1328
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
MCHBAR 0x5f10[7:0] should be set to 0x30 for ivybridge
and 0x20 for sandybridge. Move this code to ramstage
and set it per-chipset.
Power Aware Interrupt Routing is supported in ivybridge,
enable it and set fixed priority.
Boot on ivybridge device and read MCHBAR 0x5f10:
mmio_read8 0xfed15f10
0x30
And verify PAIR is enabled (bit4=1):
mmio_read8 0xfed15418
0x24
Change-Id: If017d5ce2bd5ab5092c86f657434f2b645ee6613
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1303
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
CPUs with configurable TDP will run the TSC at the max non-turbo
ratio for the maximum TDP value, which can cause issues if another
TDP is desired. To deal with this we set the flex ratio to the
nominal TDP ratio early in the boot and then configure the Soft
Reset Data registers so the PCH can tell the CPU what frequency
to run at after a reset.
This is done very early in the bootblock because it is necessary
to reset the system after setting a flex ratio.
The end result is that the TSC will now increment at the max
non-turbo frequency for the nominal TDP.
On some system with 1.8GHz CPU ensure that the kernel
detects the CPU speed as ~1800mhz rather than ~2300mhz:
> dmesg | grep "MHz processor"
[ 0.004000] Detected 1795.801 MHz processor.
Change-Id: I8436dced9199003b6423186a2b041e3f7b84ab8c
Signed-off-by: Duncan Laurie <dlaurie@google.com>
Reviewed-on: http://review.coreboot.org/1329
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
There are enough differences that it is worth defining the
proper map for the sandybridge/ivybridge CPUs. The state
save map was not being addressed properly for TSEG and
needs to use the right offset instead of pointing in ASEG.
To do this properly add a required southbridge export to
return the TSEG base and use that where appropriate.
Change-Id: Idad153ed6c07d2633cb3d53eddd433a3df490834
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1309
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
- add Kconfig option for CONFIG_SPI_FLASH_SMM
- compile subsystem and chip drivers for smm if enabled
- change mdelay(1) to udelay(500) since mdelay is not defined
in SMM and a 1ms delay is worth avoiding
- make flash chip structure non-const so the probe function
pointers can be relocated for use in TSEG
- Make SMM PCI access possible in southbridge SPI code
Change-Id: Icfcbbe8e4e56658769d46af0b5bf6c79a6432641
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1313
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This is used by the SPI driver and ELOG.
It requires SMM TSEG and a _heap/_eheap region defined in the
linker script. The first time malloc is called in SMM the
start and end pointers to the heap region will be relocated
for the TSEG region.
Enable SPI flash and ELOG in SMM and successfully
allocate memory. The allocated addresses are verified
to be sure they are within the TSEG heap region:
smm.elf:00014000 B _eheap
smm.elf:00010000 B _heap
TSEG base is 0xad000000
Memory allocated in ELOG:
ELOG: MEM @0xad018030
Change-Id: I5cca38e4888d597cbbfcd9983cd6a7ae3600c2a3
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1312
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This is based around the SMBIOS event log specification but
expanded with OEM event types to support more specific and
relevant system events.
It requires flash storage and a minimum 4K block (or flash block
size) that should be allocated in the FMAP.
A copy of the event log is maintained in memory for convenience
and speed and the in-memory copy is written to flash at specific
points.
The log is automatically shunk when it reaches a configurable
full threshold in order to not get stuck with a full log that
needs OS help to clear.
ELOG implements the specification published here:
http://code.google.com/p/firmware-event-log/wiki/FirmwareEventLogDesign
And is similar to what we use in other firmware at Google.
This implementation does not support double-buffered flash
regions. This is done because speed is valued over the log
reliability and it keeps the code simpler for the first version.
This is a large commit and by itself it just provides a new
driver that is made available to coreboot. Without additional
patches it is not very useful, but the end result is an event
log that will contain entries like this:
171 | 2012-06-23 16:02:55 | System boot | 285
172 | 2012-06-23 16:02:55 | EC Event | Power Button
173 | 2012-06-23 16:02:55 | SUS Power Fail
174 | 2012-06-23 16:02:55 | System Reset
175 | 2012-06-23 16:02:55 | ACPI Wake | S5
Change-Id: I985524c67f525c8a268eccbd856c1a4c2a426889
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1311
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
In order to support SPI and ELOG drivers the SMM region
needs to be able to be larger than the previous allocation
below 0x7400. Now that we have support for 4M TSEG we do
not need to live in this region.
This change adds a 16KB heap region abofe the save state area
at TSEG+64KB and moves the C handler above this.
The heap region is then available for malloc and the C handler
can grow to support flash and event log features.
While updating the memory map comment in assembly stub I also
added a pause instruction to the cpu spin lock as this was
added to the C code in latest upstream rebase.
Dump sympbols from smm.elf binary to see the new regions:
00010000 B _heap
00014000 B _eheap
00014000 T _smm_c_handler_start
0001b240 T _smm_c_handler_end
Change-Id: I45f0ab4df1fdef3b626f877094a58587476ac634
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1308
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The BWG says ivybridge current limit for PP1 is 50A.
Verify the PP1 current limit value on link device:
> echo $(( ( $(rdmsr 0 0x602) & 0x1fff ) >> 3 ))
50
Change-Id: I946269d21ef605f2525fe03993f569d69128294b
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1305
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Ivybridge B0+ CPUs are capable of supporting multiple TDP levels.
This complicates the default case because now the registers that
were reporting max non-turbo ratio are reporting that value for
the highest possible TDP level.
For now this change just forces everything to use the Nominal TDP
values instead of the higher (or lower) levels.
- When building P-state tables, determine the P[1] (max non turbo)
ratio based on the Nominal ratio if available.
- Set the turbo activation ratio to the Nominal max ratio.
- Mirror the power level settings in new MCHBAR register after
they are written, which happens after BIOS_RESET_CPL is set.
- Set the current ratio to Nominal ratio at boot.
1) Verify that P-state table is generated properly with
P[0]=1801MHz (ratio 0x1C) and P[1]=1800MHz (ratio 0x12)
PSS: 1801MHz power 17000 control 0x1c00 status 0x1c00
PSS: 1800MHz power 17000 control 0x1200 status 0x1200
2) Verify power limits in MCHBAR match PKG_POWER_LIMIT:
> rdmsr 0 0x610
0x800080aa00dc8088
> mmio_read32 0xfed159a4
0x000080aa
> mmio_read32 0xfed159a0
0x00dc8088
3) Verify turbo activation ratio is set to nominal ratio:
> rdmsr 0 0x64c
0x0000000000000012
4) Check that proper ratio was set at boot on one core only:
> grep 'frequency set to' /sys/firmware/log
model_x06ax: frequency set to 1800
model_x06ax: frequency set to 1800
model_x06ax: frequency set to 1800
model_x06ax: frequency set to 1800
Change-Id: I592e60a7740f31b140986a8269dca91b4adbb270
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1304
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
... and don't require it to specify a cache type.
This function is only used on romcc boards, and should go away
(because all boards should be switched to CAR)
Change-Id: Ic32ca3be1afffc773c72c140e88b338d48a0c8ca
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1288
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Previous patches implemented stack overflow checking for the APs.
This patch builds on the BSP stack poisoning patch to implement
stack overflow checking for the BSP, and also prints out maximum
stack usage. It reveals that our 32K stack is ridiculously oversized,
especially now that the lzma decoder doesn't use a giant 16K on-stack
array.
Break the stack checking out into a separate function, which
we will later use for the APs.
CPU0: stack from 00180000 to 00188000:Lowest stack address 00187ad8
To test failure, change the DEADBEEF stack poison value in c_start.S
to something else. Then we should get an error like this:
Stack overrun on BSP.Increase stack from current 32768 bytes
CPU0: stack from 00180000 to 00188000:Lowest stack address 00180000
Separate the act of loading from the act of starting the payload. This
allows us better error management and reporting of stack use. Now we
see:
CPU0: stack from 00180000 to 00188000:Lowest stack address 00187ad8
Tested for both success and failure on Link. At the same time, feel free
to carefully check my manipulation of _estack.
Change-Id: Ibb09738b15ec6a5510ac81e45dd82756bfa5aac2
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Reviewed-on: http://review.coreboot.org/1286
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The ME needs to be talked to through the PCIe memory mapped config
space.
Change-Id: Ic2c5a572a126722a08a82d95df13d11507586c6b
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1284
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The function acpi_get_vdat_info() was moved to the ChromeOS
vendor code, and is no longer required to be present for each
board. Hence, remove it.
Change-Id: I3dc8dbb6119ceffa057373bad7c0058ac0d40eb8
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1283
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
In the short term there might be devices with Sandy Bridge CPUs
on mainboards with Panther Point PCHes. While this configuration
option is perfectly valid, coreboot currently ties Sandy Bridge to
Cougar Point and Ivy Bridge to Panther Point. One occurence is in
the ME handling code.
To make coreboot most flexible, compile both ME handlers into
coreboot and decide at runtime which one to use.
Change-Id: Icffe2930873f67c99c3f73e37e7a967f4f002b88
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1280
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
- On Cougar Point there may have been stack corruption during the
ME hash verification
- On Panther Point the ME firmware hash was not passed on to the
OS
Change-Id: I73fc10db63ecff939833fb856a6da1e394155043
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1279
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Nothing is yet enabled, this is just a config skeleton change.
The MICROCODE_INCLUDE_PATH definition is going to be used by the
Makefile building the microcode blob for CBFS inclusion.
Change-Id: I7868db3cfd4b181500e361706e5f4dc08ca1c87d
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1292
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The Oxford PCIE Serial card has a hardcoded address at setup,
which may be moved during PCI Init. The driver re-initializes
after PCI init. Add a debug print for the new BAR address.
Initializing Oxford OXPCIe952
OXPCIe952: Class=70002 Revision ID=0
OXPCIe952: 2 UARTs detected.
OXPCIe952: Uart Bar: 0xe0800000
Change-Id: I1858d3eba09749cba3c3869060d00e621dca112a
Signed-off-by: Marc Jones <marc.jones@se-eng.com>
Reviewed-on: http://review.coreboot.org/1327
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
When microcode storage in CBFS is enabled, the make system is supposed
to generate the microcode blob and place it into the generated ROM
image as a CBFS component.
The microcode source representation does not change: it is still an
array of 32 bit constants. This new addition compiles the array into a
separate object file and then strips all sections but data.
The raw data section is then included into CBFS as a file named
'microcode_blob.bin' of type 0x53, which is assigned to microcode
storage.
Change-Id: I84ae040be52f520b106e3471c7e391e64d7847d9
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1295
Tested-by: build bot (Jenkins)
When CONFIG_MICROCODE_IN_CBFS is enabled, find the microcode blob in
CBFS and pass it to intel_update_microcode() instead of using the
compiled in array.
CBFS accesses in pre-RAM and 'normal' environments are provided
through different API.
Change-Id: I35c1480edf87e550a7b88c4aadf079cf3ff86b5d
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1296
Tested-by: build bot (Jenkins)
The PCIe device enable function prints when it disables a device.
The PCIe ports(bridges) use a different routine that didn't print
the message. Add it to be consistent and to provide better debug
output.
Change-Id: I8462c48e7f4930db68703f0bfb710c01c9643a98
Signed-off-by: Marc Jones <marc.jones@se-eng.com>
Reviewed-on: http://review.coreboot.org/1326
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Tested-by: build bot (Jenkins)
It's only used on AMD based boards. Hence drop it, so we don't
accidently start using it by mistake instead of MAX_CPUS
Change-Id: Id8f522f24283129874d56e70bd00df92abe9c3cf
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1325
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Changing CMOS value for power-on-after-power-fail was only honored
after reboot, which is counter intuitive (set from "enable" to
"disable",
power-off, replug device -> device turns on; and similar cases).
Modelled after http://review.coreboot.org/#/c/444
Change-Id: I2b8461dff1ae085c1ea4b4926084268b4da90321
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1323
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
In preparation to support CBFS hosted microcode blobs, this change
renames the wrapper include file containing the microcode to be
independent of CPU model.
Change-Id: If1a4963a52e5037a3a3495b90708ffc08b23f4c1
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1294
Tested-by: build bot (Jenkins)
The function was too eager shifting stuff around, this change corrects
the problem.
Change-Id: I4c13dbe86cb627835dae05bb74af9867c28e143d
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1291
Tested-by: build bot (Jenkins)
On systems with socketed CPUs we want to be able to
drop in a Sandy Bridge or Ivy Bridge CPU without recompiling the
firmware. Hence, detect the north bridge dynamically. In order
for this to work, we need Ivy Bridge MRC and coreboot configured
for Ivy Bridge.
Change-Id: I635bef2c61d47d36a3fdd87f8ecb6e69097ba969
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1281
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
We accomplish this goal by getting rid of the huge auto array in the
ram stage. This will in turn let us reduce CONFIG_STACK_SIZE.
We have to leave it on the stack in CAR as that's the simple way to
keep it private. It does not matter then as there is only one core
that is active.
Change-Id: Ie37a057ccae088b7f3bb4aab6de2713e64d96df6
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Reviewed-on: http://review.coreboot.org/1271
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
There are enough subtle differences in the magic values that
it is easier to make a separate function.
This fixes a reset hang with pantherpoint chipset.
Change-Id: I02b03cb37e5fd5ee2fd62067644f0a62dc2cd26a
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1322
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
The function is empty (a left-over from i945) and should be removed.
Change-Id: I91e573b5e37cb9133ea1037aef7e6daf3c292864
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1290
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
This enable step has been moved to the bd82x6x bootblock.
For Samsung Stumpy and Lumpy mainboards and the
Intel EmeraldLake2 reference board.
Change-Id: I5ce54f57b8e1dd732c8a5ae71d7511703de91a0e
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1307
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Tested-by: build bot (Jenkins)
This makes it available early in romstage without having to
worry when the different romstagse enable it.
Check for extended CMOS to be enabled in early romstage.
This is used by a later commit which uses the extended
CMOS region for stoage.
Change-Id: I9e026d48499c63d6503c2b020d4cc3047126fa93
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1306
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
- Convert all PCI ID lists to new scheme
- Unify code (variable names)
- add missing PCI IDs for Panther Point PCIe root ports.
Change-Id: I6357f6ebce7ddffe45a3ec642b0c594147f6134c
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1301
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
This lets the SPI driver and the LPC driver know about HM70 and NM70.
Change-Id: Id2f1e0e5586a2f7200b2d24785df3f2be890da98
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1300
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
With this patch it is possible to use the smbus in ramstage. The
biggest part of the patch is a simple code split into a general
part (smbus.h) and the concrete users (early_smbus.c and cs5536.c).
After the switch from romstage to ramstage the smb base address
has changed, but that is no problem as the new base address is
stored in bar0 of the ISA bridge. It could also be read via msr,
but via PCI it is simpler. I used the following patch as
reference on how to readout the new base address:
http://lists.laptop.org/pipermail/commits-kernel/2006-November/000178.html
Change-Id: I9f86a1e474368c62f9ed3a95edfb3e63117aa156
Signed-off-by: Christian Gmeiner <christian.gmeiner@gmail.com>
Reviewed-on: http://review.coreboot.org/1243
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marcj303@gmail.com>
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
The oxpcie ramstage code calls uartmem_init after the PCI memory
allocation, but hte function was static and didn't have a prototype.
Change-Id: Iabc1a3d248aeaed29aaaa22504defac97c572326
Signed-off-by: Marc Jones <marc.jones@se-eng.com>
Reviewed-on: http://review.coreboot.org/1285
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
ELOG reads from RTC to build timestamp structure,
the resulting timestamp is decoded when printing events.
Change-Id: If26552074f18de5095b967b875a0ac1d815a5b31
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1302
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Tested-by: build bot (Jenkins)
Right now, if we have an unknown PCH, coreboot will print something like
this:
PCH type: Unknown rev id 4
Instead, it should also print the PCI ID of the device, so we can add it
to the list of known PCHes.
Change-Id: Ib0b96e287c36d2895d1287b1734ca13d75e7985a
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1287
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
This is as per Intel's suggestion on how to display their name strings.
Change-Id: Ie82341305e58baa8041e50a61a11b395fa7d9582
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1298
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Tested-by: build bot (Jenkins)
Dump and disassemble ACPI tables and look in _CST.
In the last entry the state was getting set to 0:
Package (0x04)
{
ResourceTemplate ()
{
Register (FFixedHW,
0x01, // Bit Width
0x02, // Bit Offset
0x0000000000000030, // Address
0x01, // Access Size
)
},
0x00000000, // State
0x0000005A, // Latency
0x000000C8 // Power
}
Now it is properly identifed as state 3:
Package (0x04)
{
ResourceTemplate ()
{
Register (FFixedHW,
0x01, // Bit Width
0x02, // Bit Offset
0x0000000000000030, // Address
0x01, // Access Size
)
},
0x00000003, // State
0x0000005A, // Latency
0x000000C8 // Power
}
Change-Id: Ie0a68606c5a43ac5fb5ba7bb9a3fef933ad67b64
Signed-off-by: Duncan Laurie <dlaurie@google.com>
Reviewed-on: http://review.coreboot.org/1297
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Tested-by: build bot (Jenkins)
Since coreboot is running very short, we don't free memory.
Hence, drop (dummy) free()
Change-Id: I6e2737f07c6b9f73ebfad7d124b97a57cb7454a3
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1274
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This include file needs to be prevented from being included multiple
times.
Change-Id: I42e0cbe38d332b919f22e331eaf7a0251929e1dc
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1293
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
The only difference in this code on all our platforms is the array
describing the GPIOs. Hence, only keep that array in the mainboard
ChromeOS directory and move everything else to generic ChromeOS ACPI
code.
Change-Id: I9fc75842af64530c1255bea1c5f803c5316d6da6
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1278
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
When no valid MRC cache area is found, the mrc_cache data structure
was used without prior initialization. This sometimes caused a long
delay when booting because compute_ip_checksum would checksum up to
4GB of memory.
Change-Id: I6a0ca1aa618838bbc3d042be425700fc34b427f2
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1277
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
There are several reasons for this:
1. It's a core setting, not a platform setting, which is bizarre. But,
we disable vmx via an SMI, and that only happens on core 0.
Hence, the code did not correctly make the same settings on all cores-
one had them disabled, the others were in an unknown state.
When (e.g.) kvm started on a vmx-enabled core, then moved to a
vmx-disabled core, the processor would reset *very* quickly.
Changing this would be messy.
2. On the CPU on link, there is something about trying to set the lock
bit that is getting a GPF.
3. It's the wrong place and time to set it. Once controlled, they can't
be changed in the kernel. The kernel is what should control this
feature, not the BIOS, as we have learned time and time again. If
somebody is in as root and can start a VM, you have a lot more to
worry about than someone starting a guest virtual machine.
Change-Id: I4f36093f1b68207251584066ccb9a6bcfeec767e
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Reviewed-on: http://review.coreboot.org/1276
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This check got in the code when some Linux distros shipped broken linkers
around 1999.
Since then, the code around that check was changed, and it does not make
sense anymore to have this check.
Change-Id: I37c6b690d72f55c18ba4c34e8541a6a441e5e67a
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1275
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
We don't ever free memory in coreboot, hence drop spi_flash_free() and
spi_free_slave()
Change-Id: I0ca3f78574ceb4516e7d33c06ab1a58abfb3b0ec
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1273
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
It's not really useful anymore I guess, and it makes the log files
harder to read. Hence dropping it.
Change-Id: If4c3e8b40ae491ca527ef62f8145206960f6579d
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1272
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Brevity is the soul of wit, except for error messages;
then it's a sign of witlessness. I can say this because
this error message may be my fault, although it is lost
in the 20th century code base so who knows.
Anyway, when memalign dies, it's not a bad idea to have
a lot of information about what went wrong. So instead
of the terse single bit of "something failed" this patch
changes things to be a bit more useful.
Change-Id: I8851502297e0ae9773912839ebfdf4f9574c8087
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Reviewed-on: http://review.coreboot.org/1270
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
- The unneeded poll on non-MT force-wake bit was timing out
and causing the gma_pm_init_pre_vbios() function to exit
early so it was not preparing PM registers properly.
I changed the gtt_poll() calls to not return on timeout
unless it can't proceed so we don't see half-initialized
registers.
- RC6+ (Deep Render Standby) is not working reliably so we
can just enable RC6 in the BIOS and let the kernel decide
if it wants to enable RC6+ later.
This Kernel message is new in kernel 3.4:
[drm] Enabling RC6 states: RC6 on, RC6p off, RC6pp off
Change-Id: I69d005ba56be8c7684a4ea1133a1d761f7c07acc
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1268
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>