coreboot-kgpe-d16/src/soc/intel/skylake/smihandler.c
Shaunak Saha d347680995 soc/intel/skylake: Add support in SKL for PMC common code
Change-Id: I3742f9c22d990edd918713155ae0bb1853663b6f
Signed-off-by: Shaunak Saha <shaunak.saha@intel.com>
Reviewed-on: https://review.coreboot.org/20499
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2017-10-05 21:11:39 +00:00

540 lines
13 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008-2009 coresystems GmbH
* Copyright (C) 2014 Google Inc.
* Copyright (C) 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/hlt.h>
#include <arch/io.h>
#include <console/console.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/smm.h>
#include <device/pci_def.h>
#include <elog.h>
#include <intelblocks/fast_spi.h>
#include <intelblocks/pcr.h>
#include <intelblocks/uart.h>
#include <intelblocks/pmclib.h>
#include <delay.h>
#include <device/pci_def.h>
#include <elog.h>
#include <pc80/mc146818rtc.h>
#include <spi-generic.h>
#include <soc/iomap.h>
#include <soc/nvs.h>
#include <soc/pci_devs.h>
#include <soc/pch.h>
#include <soc/pcr_ids.h>
#include <soc/pm.h>
#include <soc/pmc.h>
#include <soc/smm.h>
#include <types.h>
/* IO Trap PCRs */
/* Trap status Register */
#define PCR_PSTH_TRPST 0x1E00
/* Trapped cycle */
#define PCR_PSTH_TRPC 0x1E10
/* Trapped write data */
#define PCR_PSTH_TRPD 0x1E18
static u8 smm_initialized = 0;
/*
* GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located
* by coreboot.
*/
static global_nvs_t *gnvs;
global_nvs_t *smm_get_gnvs(void)
{
return gnvs;
}
int southbridge_io_trap_handler(int smif)
{
switch (smif) {
case 0x32:
printk(BIOS_DEBUG, "OS Init\n");
/*
* gnvs->smif:
* - On success, the IO Trap Handler returns 0
* - On failure, the IO Trap Handler returns a value != 0
*/
gnvs->smif = 0;
return 1; /* IO trap handled */
}
/* Not handled */
return 0;
}
/* Set the EOS bit */
void southbridge_smi_set_eos(void)
{
pmc_enable_smi(EOS);
}
static void busmaster_disable_on_bus(int bus)
{
int slot, func;
unsigned int val;
unsigned char hdr;
for (slot = 0; slot < 0x20; slot++) {
for (func = 0; func < 8; func++) {
u32 reg32;
device_t dev = PCI_DEV(bus, slot, func);
val = pci_read_config32(dev, PCI_VENDOR_ID);
if (val == 0xffffffff || val == 0x00000000 ||
val == 0x0000ffff || val == 0xffff0000)
continue;
/* Disable Bus Mastering for this one device */
reg32 = pci_read_config32(dev, PCI_COMMAND);
reg32 &= ~PCI_COMMAND_MASTER;
pci_write_config32(dev, PCI_COMMAND, reg32);
/* If this is a bridge, then follow it. */
hdr = pci_read_config8(dev, PCI_HEADER_TYPE);
hdr &= 0x7f;
if (hdr == PCI_HEADER_TYPE_BRIDGE ||
hdr == PCI_HEADER_TYPE_CARDBUS) {
unsigned int buses;
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
busmaster_disable_on_bus((buses >> 8) & 0xff);
}
}
}
}
static void southbridge_smi_sleep(void)
{
u8 reg8;
u32 reg32;
u8 slp_typ;
u8 s5pwr = CONFIG_MAINBOARD_POWER_ON_AFTER_POWER_FAIL;
/* save and recover RTC port values */
u8 tmp70, tmp72;
tmp70 = inb(0x70);
tmp72 = inb(0x72);
get_option(&s5pwr, "power_on_after_fail");
outb(tmp70, 0x70);
outb(tmp72, 0x72);
/* First, disable further SMIs */
pmc_disable_smi(SLP_SMI_EN);
/* Figure out SLP_TYP */
reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT);
printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32);
slp_typ = acpi_sleep_from_pm1(reg32);
/* Do any mainboard sleep handling */
mainboard_smi_sleep(slp_typ);
if (IS_ENABLED(CONFIG_ELOG_GSMI))
/* Log S3, S4, and S5 entry */
if (slp_typ >= ACPI_S3)
elog_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ);
/* Clear pending GPE events */
pmc_clear_gpe_status();
/* Next, do the deed. */
switch (slp_typ) {
case ACPI_S0:
printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n");
break;
case ACPI_S1:
printk(BIOS_DEBUG, "SMI#: Entering S1 (Assert STPCLK#)\n");
break;
case ACPI_S3:
printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n");
gnvs->uior = uart_debug_controller_is_initialized();
/* Invalidate the cache before going to S3 */
wbinvd();
break;
case ACPI_S5:
printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n");
/*TODO: cmos_layout.bin need to verify; cause wrong CMOS setup*/
s5pwr = MAINBOARD_POWER_ON;
/* Disable all GPE */
pmc_disable_all_gpe();
/*
* Always set the flag in case CMOS was changed on runtime. For
* "KEEP", switch to "OFF" - KEEP is software emulated
*/
reg8 = pci_read_config8(PCH_DEV_PMC, GEN_PMCON_B);
if (s5pwr == MAINBOARD_POWER_ON)
reg8 &= ~1;
else
reg8 |= 1;
pci_write_config8(PCH_DEV_PMC, GEN_PMCON_B, reg8);
/* also iterates over all bridges on bus 0 */
busmaster_disable_on_bus(0);
break;
default:
printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n");
break;
}
/*
* Write back to the SLP register to cause the originally intended
* event again. We need to set BIT13 (SLP_EN) though to make the
* sleep happen.
*/
pmc_enable_pm1_control(SLP_EN);
/* Make sure to stop executing code here for S3/S4/S5 */
if (slp_typ >= ACPI_S3)
hlt();
/*
* In most sleep states, the code flow of this function ends at
* the line above. However, if we entered sleep state S1 and wake
* up again, we will continue to execute code in this function.
*/
reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT);
if (reg32 & SCI_EN) {
/* The OS is not an ACPI OS, so we set the state to S0 */
pmc_disable_pm1_control(SLP_EN | SLP_TYP);
}
}
/*
* Look for Synchronous IO SMI and use save state from that
* core in case we are not running on the same core that
* initiated the IO transaction.
*/
static em64t101_smm_state_save_area_t *smi_apmc_find_state_save(u8 cmd)
{
em64t101_smm_state_save_area_t *state;
int node;
/* Check all nodes looking for the one that issued the IO */
for (node = 0; node < CONFIG_MAX_CPUS; node++) {
state = smm_get_save_state(node);
/* Check for Synchronous IO (bit0==1) */
if (!(state->io_misc_info & (1 << 0)))
continue;
/* Make sure it was a write (bit4==0) */
if (state->io_misc_info & (1 << 4))
continue;
/* Check for APMC IO port */
if (((state->io_misc_info >> 16) & 0xff) != APM_CNT)
continue;
/* Check AX against the requested command */
if ((state->rax & 0xff) != cmd)
continue;
return state;
}
return NULL;
}
static void southbridge_smi_gsmi(void)
{
#if IS_ENABLED(CONFIG_ELOG_GSMI)
u32 *ret, *param;
u8 sub_command;
em64t101_smm_state_save_area_t *io_smi =
smi_apmc_find_state_save(ELOG_GSMI_APM_CNT);
if (!io_smi)
return;
/* Command and return value in EAX */
ret = (u32 *)&io_smi->rax;
sub_command = (u8)(*ret >> 8);
/* Parameter buffer in EBX */
param = (u32 *)&io_smi->rbx;
/* drivers/elog/gsmi.c */
*ret = gsmi_exec(sub_command, param);
#endif
}
static void finalize(void)
{
static int finalize_done;
if (finalize_done) {
printk(BIOS_DEBUG, "SMM already finalized.\n");
return;
}
finalize_done = 1;
if (IS_ENABLED(CONFIG_SPI_FLASH_SMM))
/* Re-init SPI driver to handle locked BAR */
fast_spi_init();
}
static void southbridge_smi_apmc(void)
{
u8 reg8;
em64t101_smm_state_save_area_t *state;
/* Emulate B2 register as the FADT / Linux expects it */
reg8 = inb(APM_CNT);
switch (reg8) {
case APM_CNT_PST_CONTROL:
printk(BIOS_DEBUG, "P-state control\n");
break;
case APM_CNT_ACPI_DISABLE:
pmc_disable_pm1_control(SCI_EN);
printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n");
break;
case APM_CNT_ACPI_ENABLE:
pmc_enable_pm1_control(SCI_EN);
printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n");
break;
case APM_CNT_FINALIZE:
finalize();
break;
case APM_CNT_GNVS_UPDATE:
if (smm_initialized) {
printk(BIOS_DEBUG,
"SMI#: SMM structures already initialized!\n");
return;
}
state = smi_apmc_find_state_save(reg8);
if (state) {
/* EBX in the state save contains the GNVS pointer */
gnvs = (global_nvs_t *)((u32)state->rbx);
smm_initialized = 1;
printk(BIOS_DEBUG, "SMI#: Setting GNVS to %p\n", gnvs);
}
break;
case ELOG_GSMI_APM_CNT:
if (IS_ENABLED(CONFIG_ELOG_GSMI))
southbridge_smi_gsmi();
break;
}
mainboard_smi_apmc(reg8);
}
static void southbridge_smi_pm1(void)
{
u16 pm1_sts = pmc_clear_pm1_status();
u16 pm1_en = pmc_read_pm1_enable();
/*
* While OSPM is not active, poweroff immediately on a power button
* event.
*/
if ((pm1_sts & PWRBTN_STS) && (pm1_en & PWRBTN_EN)) {
/* power button pressed */
if (IS_ENABLED(CONFIG_ELOG_GSMI))
elog_add_event(ELOG_TYPE_POWER_BUTTON);
pmc_disable_pm1_control(-1UL);
pmc_enable_pm1_control(SLP_EN | (SLP_TYP_S5 << 10));
}
}
static void southbridge_smi_gpe0(void)
{
pmc_clear_gpe_status();
}
void __attribute__((weak))
mainboard_smi_gpi_handler(const struct gpi_status *sts) { }
static void southbridge_smi_gpi(void)
{
struct gpi_status smi_sts;
gpi_clear_get_smi_status(&smi_sts);
mainboard_smi_gpi_handler(&smi_sts);
/* Clear again after mainboard handler */
gpi_clear_get_smi_status(&smi_sts);
}
void __attribute__((weak)) mainboard_smi_espi_handler(void) { }
static void southbridge_smi_espi(void)
{
mainboard_smi_espi_handler();
}
static void southbridge_smi_mc(void)
{
u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN);
/* Are microcontroller SMIs enabled? */
if ((reg32 & MCSMI_EN) == 0)
return;
printk(BIOS_DEBUG, "Microcontroller SMI.\n");
}
static void southbridge_smi_tco(void)
{
u32 tco_sts = pmc_clear_tco_status();
/* Any TCO event? */
if (!tco_sts)
return;
if (tco_sts & (1 << 8)) { /* BIOSWR */
if (IS_ENABLED(CONFIG_SPI_FLASH_SMM)) {
if (fast_spi_wpd_status()) {
/*
* BWE is RW, so the SMI was caused by a
* write to BWE, not by a write to the BIOS
*
* This is the place where we notice someone
* is trying to tinker with the BIOS. We are
* trying to be nice and just ignore it. A more
* resolute answer would be to power down the
* box.
*/
printk(BIOS_DEBUG, "Switching back to RO\n");
fast_spi_enable_wp();
} /* No else for now? */
}
} else if (tco_sts & (1 << 3)) { /* TIMEOUT */
/* Handle TCO timeout */
printk(BIOS_DEBUG, "TCO Timeout.\n");
}
}
static void southbridge_smi_periodic(void)
{
u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN);
/* Are periodic SMIs enabled? */
if ((reg32 & PERIODIC_EN) == 0)
return;
printk(BIOS_DEBUG, "Periodic SMI.\n");
}
static void southbridge_smi_monitor(void)
{
#define IOTRAP(x) (trap_sts & (1 << x))
u32 trap_cycle;
u32 data, mask = 0;
u8 trap_sts;
int i;
/* TRSR - Trap Status Register */
trap_sts = pcr_read8(PID_PSTH, PCR_PSTH_TRPST);
/* Clear trap(s) in TRSR */
pcr_write8(PID_PSTH, PCR_PSTH_TRPST, trap_sts);
/* TRPC - Trapped cycle */
trap_cycle = pcr_read32(PID_PSTH, PCR_PSTH_TRPC);
for (i = 16; i < 20; i++) {
if (trap_cycle & (1 << i))
mask |= (0xff << ((i - 16) << 2));
}
/* IOTRAP(3) SMI function call */
if (IOTRAP(3)) {
if (gnvs && gnvs->smif)
io_trap_handler(gnvs->smif); /* call function smif */
return;
}
/*
* IOTRAP(2) currently unused
* IOTRAP(1) currently unused
*/
/* IOTRAP(0) SMIC */
if (IOTRAP(0)) {
if (!(trap_cycle & (1 << 24))) { /* It's a write */
printk(BIOS_DEBUG, "SMI1 command\n");
/* Trapped write data */
data = pcr_read32(PID_PSTH, PCR_PSTH_TRPD);
data &= mask;
}
}
printk(BIOS_DEBUG, " trapped io address = 0x%x\n",
trap_cycle & 0xfffc);
for (i = 0; i < 4; i++)
if (IOTRAP(i))
printk(BIOS_DEBUG, " TRAP = %d\n", i);
printk(BIOS_DEBUG, " AHBE = %x\n", (trap_cycle >> 16) & 0xf);
printk(BIOS_DEBUG, " MASK = 0x%08x\n", mask);
printk(BIOS_DEBUG, " read/write: %s\n",
(trap_cycle & (1 << 24)) ? "read" : "write");
if (!(trap_cycle & (1 << 24))) {
/* Write Cycle */
data = pcr_read32(PID_PSTH, PCR_PSTH_TRPD);
printk(BIOS_DEBUG, " iotrap written data = 0x%08x\n", data);
}
#undef IOTRAP
}
typedef void (*smi_handler_t)(void);
static smi_handler_t southbridge_smi[SMI_STS_BITS] = {
[SMI_ON_SLP_EN_STS_BIT] = southbridge_smi_sleep,
[APM_STS_BIT] = southbridge_smi_apmc,
[PM1_STS_BIT] = southbridge_smi_pm1,
[GPE0_STS_BIT] = southbridge_smi_gpe0,
[GPIO_STS_BIT] = southbridge_smi_gpi,
[ESPI_SMI_STS_BIT] = southbridge_smi_espi,
[MCSMI_STS_BIT] = southbridge_smi_mc,
[TCO_STS_BIT] = southbridge_smi_tco,
[PERIODIC_STS_BIT] = southbridge_smi_periodic,
[MONITOR_STS_BIT] = southbridge_smi_monitor,
};
/*
* Interrupt handler for SMI#
*/
void southbridge_smi_handler(void)
{
int i;
u32 smi_sts;
/*
* We need to clear the SMI status registers, or we won't see what's
* happening in the following calls.
*/
smi_sts = pmc_clear_smi_status();
/* Call SMI sub handler for each of the status bits */
for (i = 0; i < ARRAY_SIZE(southbridge_smi); i++) {
if (smi_sts & (1 << i)) {
if (southbridge_smi[i]) {
southbridge_smi[i]();
} else {
printk(BIOS_DEBUG,
"SMI_STS[%d] occurred, but no handler available.\n",
i);
}
}
}
}