coreboot-kgpe-d16/src/soc/intel/skylake/flash_controller.c

415 lines
9.4 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 Google Inc.
* Copyright (C) 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* This file is derived from the flashrom project. */
#include <arch/early_variables.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <bootstate.h>
#include <spi_flash.h>
#include <timer.h>
#include <soc/flash_controller.h>
#include <soc/intel/common/spi.h>
#include <soc/pci_devs.h>
#include <soc/spi.h>
static inline uint16_t spi_read_hsfs(pch_spi_regs * const regs)
{
return readw_(&regs->hsfs);
}
static inline void spi_clear_status(pch_spi_regs * const regs)
{
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
writew_(spi_read_hsfs(regs), &regs->hsfs);
}
static inline uint16_t spi_read_hsfc(pch_spi_regs * const regs)
{
return readw_(&regs->hsfc);
}
static inline uint32_t spi_read_faddr(pch_spi_regs * const regs)
{
return readl_(&regs->faddr) & SPIBAR_FADDR_MASK;
}
/*
* Polls for Cycle Done Status, Flash Cycle Error
* Resets all error flags in HSFS.
* Returns 0 if the cycle completes successfully without errors within
* timeout, 1 on errors.
*/
static int wait_for_completion(pch_spi_regs * const regs, int timeout_ms,
size_t len)
{
uint16_t hsfs;
uint16_t hsfc;
uint32_t addr;
struct stopwatch sw;
int timeout = 0;
stopwatch_init_msecs_expire(&sw, timeout_ms);
do {
hsfs = spi_read_hsfs(regs);
if ((hsfs & (HSFS_FDONE | HSFS_FCERR)))
break;
} while (!(timeout = stopwatch_expired(&sw)));
if (timeout) {
addr = spi_read_faddr(regs);
hsfc = spi_read_hsfc(regs);
printk(BIOS_ERR, "%ld ms Transaction timeout between offset "
"0x%08x and 0x%08zx (= 0x%08x + %zd) HSFC=%x HSFS=%x!\n",
stopwatch_duration_msecs(&sw), addr, addr + len - 1,
addr, len - 1, hsfc, hsfs);
return 1;
}
if (hsfs & HSFS_FCERR) {
addr = spi_read_faddr(regs);
hsfc = spi_read_hsfc(regs);
printk(BIOS_ERR, "Transaction error between offset 0x%08x and "
"0x%08zx (= 0x%08x + %zd) HSFC=%x HSFS=%x!\n",
addr, addr + len - 1, addr, len - 1,
hsfc, hsfs);
return 1;
}
return 0;
}
/* Start operation returning 0 on success, non-zero on error or timeout. */
static int spi_do_operation(int op, size_t offset, size_t size, int timeout_ms)
{
uint16_t hsfc;
pch_spi_regs * const regs = get_spi_bar();
/* Clear status prior to operation. */
spi_clear_status(regs);
/* Set the FADDR */
writel_(offset & SPIBAR_FADDR_MASK, &regs->faddr);
hsfc = readw_(&regs->hsfc);
/* Clear then set the correct op. */
hsfc &= ~HSFC_FCYCLE_MASK;
hsfc |= op;
/* Set the size field */
hsfc &= ~HSFC_FDBC_MASK;
/* Check for sizes of confirming operations. */
if (size && size <= SPI_FDATA_BYTES)
hsfc |= ((size - 1) << HSFC_FDBC_SHIFT) & HSFC_FDBC_MASK;
/* start operation */
hsfc |= HSFC_FGO;
writew_(hsfc, &regs->hsfc);
return wait_for_completion(regs, timeout_ms, size);
}
unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len)
{
return min(SPI_FDATA_BYTES, buf_len);
}
static size_t spi_get_flash_size(pch_spi_regs *spi_bar)
{
uint32_t flcomp;
size_t size;
writel_(SPIBAR_FDOC_COMPONENT, &spi_bar->fdoc);
flcomp = readl_(&spi_bar->fdod);
switch (flcomp & FLCOMP_C0DEN_MASK) {
case FLCOMP_C0DEN_8MB:
size = 8*MiB;
break;
case FLCOMP_C0DEN_16MB:
size = 16*MiB;
break;
case FLCOMP_C0DEN_32MB:
size = 32*MiB;
break;
default:
size = 16*MiB;
}
return size;
}
int spi_xfer(struct spi_slave *slave, const void *dout,
unsigned int bytesout, void *din, unsigned int bytesin)
{
/* TODO: Define xfer for hardware sequencing. */
return -1;
}
void spi_init(void)
{
uint8_t bios_cntl;
device_t dev = PCH_DEV_SPI;
/* Disable the BIOS write protect so write commands are allowed. */
pci_read_config_byte(dev, SPIBAR_BIOS_CNTL, &bios_cntl);
bios_cntl &= ~SPIBAR_BC_EISS;
bios_cntl |= SPIBAR_BC_WPD;
pci_write_config_byte(dev, SPIBAR_BIOS_CNTL, bios_cntl);
}
int spi_claim_bus(struct spi_slave *slave)
{
/* Handled by PCH automatically. */
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Handled by PCH automatically. */
}
int pch_hwseq_erase(struct spi_flash *flash, u32 offset, size_t len)
{
u32 start, end, erase_size;
int ret = 0;
erase_size = flash->sector_size;
if (offset % erase_size || len % erase_size) {
printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n");
return -1;
}
flash->spi->rw = SPI_WRITE_FLAG;
start = offset;
end = start + len;
while (offset < end) {
if (spi_do_operation(HSFC_FCYCLE_4KE, offset, 0, 5000)) {
printk(BIOS_ERR, "SF: Erase failed at %x\n", offset);
ret = -1;
goto out;
}
offset += erase_size;
}
printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n",
len, start);
out:
spi_release_bus(flash->spi);
return ret;
}
static void pch_read_data(uint8_t *data, int len)
{
int i;
pch_spi_regs *spi_bar;
uint32_t temp32 = 0;
spi_bar = get_spi_bar();
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = readl_((uint8_t *)spi_bar->fdata + i);
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
}
}
int pch_hwseq_read(struct spi_flash *flash, u32 addr, size_t len, void *buf)
{
uint8_t block_len;
if (addr + len > spi_get_flash_size(get_spi_bar())) {
printk(BIOS_ERR,
"Attempt to read %x-%x which is out of chip\n",
(unsigned) addr,
(unsigned) addr+(unsigned) len);
return -1;
}
while (len > 0) {
const int timeout_ms = 6;
block_len = min(len, SPI_FDATA_BYTES);
if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1;
if (spi_do_operation(HSFC_FCYCLE_RD, addr, block_len,
timeout_ms))
return -1;
pch_read_data(buf, block_len);
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
/* Fill len bytes from the data array into the fdata/spid registers.
*
* Note that using len > flash->pgm->spi.max_data_write will trash the registers
* following the data registers.
*/
static void pch_fill_data(const uint8_t *data, int len)
{
uint32_t temp32 = 0;
int i;
pch_spi_regs *spi_bar;
spi_bar = get_spi_bar();
if (len <= 0)
return;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = 0;
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
writel_(temp32,
(uint8_t *)spi_bar->fdata + (i - (i % 4)));
}
i--;
if ((i % 4) != 3) /* Write remaining data to regs. */
writel_(temp32, (uint8_t *)spi_bar->fdata + (i - (i % 4)));
}
int pch_hwseq_write(struct spi_flash *flash,
u32 addr, size_t len, const void *buf)
{
uint8_t block_len;
uint32_t start = addr;
pch_spi_regs *spi_bar;
spi_bar = get_spi_bar();
if (addr + len > spi_get_flash_size(spi_bar)) {
printk(BIOS_ERR,
"Attempt to write 0x%x-0x%x which is out of chip\n",
(unsigned)addr, (unsigned) (addr+len));
return -1;
}
while (len > 0) {
const int timeout_ms = 6;
block_len = min(len, sizeof(spi_bar->fdata));
if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1;
pch_fill_data(buf, block_len);
if (spi_do_operation(HSFC_FCYCLE_WR, addr, block_len,
timeout_ms)) {
printk(BIOS_ERR, "SF: write failure at %x\n", addr);
return -1;
}
addr += block_len;
buf += block_len;
len -= block_len;
}
printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n",
(unsigned) (addr - start), start);
return 0;
}
int pch_hwseq_read_status(struct spi_flash *flash, u8 *reg)
{
size_t block_len = SPI_READ_STATUS_LENGTH;
const int timeout_ms = 6;
if (spi_do_operation(HSFC_FCYCLE_RS, 0, block_len, timeout_ms))
return -1;
pch_read_data(reg, block_len);
return 0;
}
static struct spi_slave boot_spi CAR_GLOBAL;
static struct spi_flash boot_flash CAR_GLOBAL;
static struct spi_flash *spi_flash_hwseq_probe(struct spi_slave *spi)
{
struct spi_flash *flash;
flash = car_get_var_ptr(&boot_flash);
/* Ensure writes can take place to the flash. */
spi_init();
flash->spi = spi;
flash->name = "Opaque HW-sequencing";
flash->write = pch_hwseq_write;
flash->erase = pch_hwseq_erase;
flash->read = pch_hwseq_read;
flash->status = pch_hwseq_read_status;
/* The hardware sequencing supports 4KiB or 64KiB erase. Use 4KiB. */
flash->sector_size = 4*KiB;
flash->size = spi_get_flash_size(get_spi_bar());
return flash;
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs)
{
/* This is special hardware. We expect bus 0 and CS line 0 here. */
if ((bus != 0) || (cs != 0))
return NULL;
struct spi_slave *slave = car_get_var_ptr(&boot_spi);
slave->bus = bus;
slave->cs = cs;
slave->force_programmer_specific = 1;
slave->programmer_specific_probe = spi_flash_hwseq_probe;
return slave;
}
int spi_get_fpr_info(struct fpr_info *info)
{
pch_spi_regs *spi_bar = get_spi_bar();
if (!spi_bar)
return -1;
info->base = (uintptr_t)&spi_bar->pr[0];
info->max = SPI_FPR_MAX;
return 0;
}
#if ENV_RAMSTAGE
/*
* spi_init() needs run unconditionally in every boot (including resume) to
* allow write protect to be disabled for eventlog and firmware updates.
*/
static void spi_init_cb(void *unused)
{
spi_init();
}
BOOT_STATE_INIT_ENTRY(BS_PRE_DEVICE, BS_ON_ENTRY, spi_init_cb, NULL);
#endif