coreboot-kgpe-d16/src/arch/x86/boot/tables.c

262 lines
8.5 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2003 Eric Biederman
* Copyright (C) 2005 Steve Magnani
* Copyright (C) 2008-2009 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <console/console.h>
#include <cpu/cpu.h>
#include <boot/tables.h>
#include <boot/coreboot_tables.h>
#include <arch/coreboot_tables.h>
#include <arch/pirq_routing.h>
#include <arch/smp/mpspec.h>
#include <arch/acpi.h>
#include <string.h>
#include <cpu/x86/multiboot.h>
#include <cbmem.h>
#include <lib.h>
#include <smbios.h>
uint64_t high_tables_base = 0;
uint64_t high_tables_size;
void cbmem_arch_init(void)
{
/* defined in gdt.c */
move_gdt();
}
struct lb_memory *write_tables(void)
{
unsigned long low_table_start, low_table_end;
unsigned long rom_table_start, rom_table_end;
/* Even if high tables are configured, some tables are copied both to
* the low and the high area, so payloads and OSes don't need to know
* about the high tables.
*/
unsigned long high_table_pointer;
cbmem: dynamic cbmem support This patch adds a parallel implementation of cbmem that supports dynamic sizing. The original implementation relied on reserving a fixed-size block of memory for adding cbmem entries. In order to allow for more flexibility for adding cbmem allocations the dynamic cbmem infrastructure was developed as an alternative to the fixed block approach. Also, the amount of memory to reserve for cbmem allocations does not need to be known prior to the first allocation. The dynamic cbmem code implements the same API as the existing cbmem code except for cbmem_init() and cbmem_reinit(). The add and find routines behave the same way. The dynamic cbmem infrastructure uses a top down allocator that starts allocating from a board/chipset defined function cbmem_top(). A root pointer lives just below cbmem_top(). In turn that pointer points to the root block which contains the entries for all the large alloctations. The corresponding block for each large allocation falls just below the previous entry. It should be noted that this implementation rounds all allocations up to a 4096 byte granularity. Though a packing allocator could be written for small allocations it was deemed OK to just fragment the memory as there shouldn't be that many small allocations. The result is less code with a tradeoff of some wasted memory. +----------------------+ <- cbmem_top() | +----| root pointer | | | +----------------------+ | | | |--------+ | +--->| root block |-----+ | | +----------------------+ | | | | | | | | | | | | | | alloc N |<----+ | | +----------------------+ | | | | | | | | | \|/ | alloc N + 1 |<-------+ v +----------------------+ In addition to preserving the previous cbmem API, the dynamic cbmem API allows for removing blocks from cbmem. This allows for the boot process to allocate memory that can be discarded after it's been used for performing more complex boot tasks in romstage. In order to plumb this support in there were some issues to work around regarding writing of coreboot tables. There were a few assumptions to how cbmem was layed out which dictated some ifdef guarding and other runtime checks so as not to incorrectly tag the e820 and coreboot memory tables. The example shown below is using dynamic cbmem infrastructure. The reserved memory for cbmem is less than 512KiB. coreboot memory table: 0. 0000000000000000-0000000000000fff: CONFIGURATION TABLES 1. 0000000000001000-000000000002ffff: RAM 2. 0000000000030000-000000000003ffff: RESERVED 3. 0000000000040000-000000000009ffff: RAM 4. 00000000000a0000-00000000000fffff: RESERVED 5. 0000000000100000-0000000000efffff: RAM 6. 0000000000f00000-0000000000ffffff: RESERVED 7. 0000000001000000-000000007bf80fff: RAM 8. 000000007bf81000-000000007bffffff: CONFIGURATION TABLES 9. 000000007c000000-000000007e9fffff: RESERVED 10. 00000000f0000000-00000000f3ffffff: RESERVED 11. 00000000fed10000-00000000fed19fff: RESERVED 12. 00000000fed84000-00000000fed84fff: RESERVED 13. 0000000100000000-00000001005fffff: RAM Wrote coreboot table at: 7bf81000, 0x39c bytes, checksum f5bf coreboot table: 948 bytes. CBMEM ROOT 0. 7bfff000 00001000 MRC DATA 1. 7bffe000 00001000 ROMSTAGE 2. 7bffd000 00001000 TIME STAMP 3. 7bffc000 00001000 ROMSTG STCK 4. 7bff7000 00005000 CONSOLE 5. 7bfe7000 00010000 VBOOT 6. 7bfe6000 00001000 RAMSTAGE 7. 7bf98000 0004e000 GDT 8. 7bf97000 00001000 ACPI 9. 7bf8b000 0000c000 ACPI GNVS 10. 7bf8a000 00001000 SMBIOS 11. 7bf89000 00001000 COREBOOT 12. 7bf81000 00008000 And the corresponding e820 entries: BIOS-e820: [mem 0x0000000000000000-0x0000000000000fff] type 16 BIOS-e820: [mem 0x0000000000001000-0x000000000002ffff] usable BIOS-e820: [mem 0x0000000000030000-0x000000000003ffff] reserved BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable BIOS-e820: [mem 0x00000000000a0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x0000000000efffff] usable BIOS-e820: [mem 0x0000000000f00000-0x0000000000ffffff] reserved BIOS-e820: [mem 0x0000000001000000-0x000000007bf80fff] usable BIOS-e820: [mem 0x000000007bf81000-0x000000007bffffff] type 16 BIOS-e820: [mem 0x000000007c000000-0x000000007e9fffff] reserved BIOS-e820: [mem 0x00000000f0000000-0x00000000f3ffffff] reserved BIOS-e820: [mem 0x00000000fed10000-0x00000000fed19fff] reserved BIOS-e820: [mem 0x00000000fed84000-0x00000000fed84fff] reserved BIOS-e820: [mem 0x0000000100000000-0x00000001005fffff] usable Change-Id: Ie3bca52211800a8652a77ca684140cfc9b3b9a6b Signed-off-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/2848 Tested-by: build bot (Jenkins) Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-13 18:41:44 +01:00
#if !CONFIG_DYNAMIC_CBMEM
if (!high_tables_base) {
printk(BIOS_ERR, "ERROR: High Tables Base is not set.\n");
// Are there any boards without?
// Stepan thinks we should die() here!
}
printk(BIOS_DEBUG, "High Tables Base is %llx.\n", high_tables_base);
cbmem: dynamic cbmem support This patch adds a parallel implementation of cbmem that supports dynamic sizing. The original implementation relied on reserving a fixed-size block of memory for adding cbmem entries. In order to allow for more flexibility for adding cbmem allocations the dynamic cbmem infrastructure was developed as an alternative to the fixed block approach. Also, the amount of memory to reserve for cbmem allocations does not need to be known prior to the first allocation. The dynamic cbmem code implements the same API as the existing cbmem code except for cbmem_init() and cbmem_reinit(). The add and find routines behave the same way. The dynamic cbmem infrastructure uses a top down allocator that starts allocating from a board/chipset defined function cbmem_top(). A root pointer lives just below cbmem_top(). In turn that pointer points to the root block which contains the entries for all the large alloctations. The corresponding block for each large allocation falls just below the previous entry. It should be noted that this implementation rounds all allocations up to a 4096 byte granularity. Though a packing allocator could be written for small allocations it was deemed OK to just fragment the memory as there shouldn't be that many small allocations. The result is less code with a tradeoff of some wasted memory. +----------------------+ <- cbmem_top() | +----| root pointer | | | +----------------------+ | | | |--------+ | +--->| root block |-----+ | | +----------------------+ | | | | | | | | | | | | | | alloc N |<----+ | | +----------------------+ | | | | | | | | | \|/ | alloc N + 1 |<-------+ v +----------------------+ In addition to preserving the previous cbmem API, the dynamic cbmem API allows for removing blocks from cbmem. This allows for the boot process to allocate memory that can be discarded after it's been used for performing more complex boot tasks in romstage. In order to plumb this support in there were some issues to work around regarding writing of coreboot tables. There were a few assumptions to how cbmem was layed out which dictated some ifdef guarding and other runtime checks so as not to incorrectly tag the e820 and coreboot memory tables. The example shown below is using dynamic cbmem infrastructure. The reserved memory for cbmem is less than 512KiB. coreboot memory table: 0. 0000000000000000-0000000000000fff: CONFIGURATION TABLES 1. 0000000000001000-000000000002ffff: RAM 2. 0000000000030000-000000000003ffff: RESERVED 3. 0000000000040000-000000000009ffff: RAM 4. 00000000000a0000-00000000000fffff: RESERVED 5. 0000000000100000-0000000000efffff: RAM 6. 0000000000f00000-0000000000ffffff: RESERVED 7. 0000000001000000-000000007bf80fff: RAM 8. 000000007bf81000-000000007bffffff: CONFIGURATION TABLES 9. 000000007c000000-000000007e9fffff: RESERVED 10. 00000000f0000000-00000000f3ffffff: RESERVED 11. 00000000fed10000-00000000fed19fff: RESERVED 12. 00000000fed84000-00000000fed84fff: RESERVED 13. 0000000100000000-00000001005fffff: RAM Wrote coreboot table at: 7bf81000, 0x39c bytes, checksum f5bf coreboot table: 948 bytes. CBMEM ROOT 0. 7bfff000 00001000 MRC DATA 1. 7bffe000 00001000 ROMSTAGE 2. 7bffd000 00001000 TIME STAMP 3. 7bffc000 00001000 ROMSTG STCK 4. 7bff7000 00005000 CONSOLE 5. 7bfe7000 00010000 VBOOT 6. 7bfe6000 00001000 RAMSTAGE 7. 7bf98000 0004e000 GDT 8. 7bf97000 00001000 ACPI 9. 7bf8b000 0000c000 ACPI GNVS 10. 7bf8a000 00001000 SMBIOS 11. 7bf89000 00001000 COREBOOT 12. 7bf81000 00008000 And the corresponding e820 entries: BIOS-e820: [mem 0x0000000000000000-0x0000000000000fff] type 16 BIOS-e820: [mem 0x0000000000001000-0x000000000002ffff] usable BIOS-e820: [mem 0x0000000000030000-0x000000000003ffff] reserved BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable BIOS-e820: [mem 0x00000000000a0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x0000000000efffff] usable BIOS-e820: [mem 0x0000000000f00000-0x0000000000ffffff] reserved BIOS-e820: [mem 0x0000000001000000-0x000000007bf80fff] usable BIOS-e820: [mem 0x000000007bf81000-0x000000007bffffff] type 16 BIOS-e820: [mem 0x000000007c000000-0x000000007e9fffff] reserved BIOS-e820: [mem 0x00000000f0000000-0x00000000f3ffffff] reserved BIOS-e820: [mem 0x00000000fed10000-0x00000000fed19fff] reserved BIOS-e820: [mem 0x00000000fed84000-0x00000000fed84fff] reserved BIOS-e820: [mem 0x0000000100000000-0x00000001005fffff] usable Change-Id: Ie3bca52211800a8652a77ca684140cfc9b3b9a6b Signed-off-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/2848 Tested-by: build bot (Jenkins) Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-13 18:41:44 +01:00
#endif
rom_table_start = 0xf0000;
rom_table_end = 0xf0000;
/* Start low addr at 0x500, so we don't run into conflicts with the BDA
* in case our data structures grow beyound 0x400. Only multiboot, GDT
* and the coreboot table use low_tables.
*/
low_table_start = 0;
low_table_end = 0x500;
#if CONFIG_GENERATE_PIRQ_TABLE
#define MAX_PIRQ_TABLE_SIZE (4 * 1024)
post_code(0x9a);
/* This table must be between 0x0f0000 and 0x100000 */
rom_table_end = write_pirq_routing_table(rom_table_end);
rom_table_end = ALIGN(rom_table_end, 1024);
/* And add a high table version for those payloads that
* want to live in the F segment
*/
high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_PIRQ, MAX_PIRQ_TABLE_SIZE);
if (high_table_pointer) {
unsigned long new_high_table_pointer;
new_high_table_pointer = write_pirq_routing_table(high_table_pointer);
// FIXME make pirq table code intelligent enough to know how
// much space it's going to need.
if (new_high_table_pointer > (high_table_pointer + MAX_PIRQ_TABLE_SIZE)) {
printk(BIOS_ERR, "ERROR: Increase PIRQ size.\n");
}
printk(BIOS_DEBUG, "PIRQ table: %ld bytes.\n",
new_high_table_pointer - high_table_pointer);
}
#endif
#if CONFIG_GENERATE_MP_TABLE
#define MAX_MP_TABLE_SIZE (4 * 1024)
post_code(0x9b);
/* The smp table must be in 0-1K, 639K-640K, or 960K-1M */
rom_table_end = write_smp_table(rom_table_end);
rom_table_end = ALIGN(rom_table_end, 1024);
high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_MPTABLE, MAX_MP_TABLE_SIZE);
if (high_table_pointer) {
unsigned long new_high_table_pointer;
new_high_table_pointer = write_smp_table(high_table_pointer);
// FIXME make mp table code intelligent enough to know how
// much space it's going to need.
if (new_high_table_pointer > (high_table_pointer + MAX_MP_TABLE_SIZE)) {
printk(BIOS_ERR, "ERROR: Increase MP table size.\n");
}
printk(BIOS_DEBUG, "MP table: %ld bytes.\n",
new_high_table_pointer - high_table_pointer);
}
#endif /* CONFIG_GENERATE_MP_TABLE */
#if CONFIG_GENERATE_ACPI_TABLES
#define MAX_ACPI_SIZE (45 * 1024)
post_code(0x9c);
/* Write ACPI tables to F segment and high tables area */
/* Ok, this is a bit hacky still, because some day we want to have this
* completely dynamic. But right now we are setting fixed sizes.
* It's probably still better than the old high_table_base code because
* now at least we know when we have an overflow in the area.
*
* We want to use 1MB - 64K for Resume backup. We use 512B for TOC and
* 512 byte for GDT, 4K for PIRQ and 4K for MP table and 8KB for the
* coreboot table. This leaves us with 47KB for all of ACPI. Let's see
* how far we get.
*/
high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_ACPI, MAX_ACPI_SIZE);
if (high_table_pointer) {
unsigned long acpi_start = high_table_pointer;
unsigned long new_high_table_pointer;
rom_table_end = ALIGN(rom_table_end, 16);
new_high_table_pointer = write_acpi_tables(high_table_pointer);
if (new_high_table_pointer > ( high_table_pointer + MAX_ACPI_SIZE)) {
printk(BIOS_ERR, "ERROR: Increase ACPI size\n");
}
printk(BIOS_DEBUG, "ACPI tables: %ld bytes.\n",
new_high_table_pointer - high_table_pointer);
/* Now we need to create a low table copy of the RSDP. */
/* First we look for the high table RSDP */
while (acpi_start < new_high_table_pointer) {
if (memcmp(((acpi_rsdp_t *)acpi_start)->signature, RSDP_SIG, 8) == 0) {
break;
}
acpi_start++;
}
/* Now, if we found the RSDP, we take the RSDT and XSDT pointer
* from it in order to write the low RSDP
*/
if (acpi_start < new_high_table_pointer) {
acpi_rsdp_t *low_rsdp = (acpi_rsdp_t *)rom_table_end,
*high_rsdp = (acpi_rsdp_t *)acpi_start;
acpi_write_rsdp(low_rsdp,
(acpi_rsdt_t *)(high_rsdp->rsdt_address),
(acpi_xsdt_t *)((unsigned long)high_rsdp->xsdt_address));
} else {
printk(BIOS_ERR, "ERROR: Didn't find RSDP in high table.\n");
}
rom_table_end = ALIGN(rom_table_end + sizeof(acpi_rsdp_t), 16);
} else {
rom_table_end = write_acpi_tables(rom_table_end);
rom_table_end = ALIGN(rom_table_end, 1024);
}
#endif
#define MAX_SMBIOS_SIZE 2048
#if CONFIG_GENERATE_SMBIOS_TABLES
high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_SMBIOS, MAX_SMBIOS_SIZE);
if (high_table_pointer) {
unsigned long new_high_table_pointer;
new_high_table_pointer = smbios_write_tables(high_table_pointer);
rom_table_end = ALIGN(rom_table_end, 16);
memcpy((void *)rom_table_end, (void *)high_table_pointer, sizeof(struct smbios_entry));
rom_table_end += sizeof(struct smbios_entry);
if (new_high_table_pointer > ( high_table_pointer + MAX_SMBIOS_SIZE)) {
printk(BIOS_ERR, "ERROR: Increase SMBIOS size\n");
}
printk(BIOS_DEBUG, "SMBIOS tables: %ld bytes.\n",
new_high_table_pointer - high_table_pointer);
} else {
unsigned long new_rom_table_end = smbios_write_tables(rom_table_end);
printk(BIOS_DEBUG, "SMBIOS size %ld bytes\n", new_rom_table_end - rom_table_end);
rom_table_end = ALIGN(new_rom_table_end, 16);
}
#endif
#define MAX_COREBOOT_TABLE_SIZE (32 * 1024)
post_code(0x9d);
high_table_pointer = (unsigned long)cbmem_add(CBMEM_ID_CBTABLE, MAX_COREBOOT_TABLE_SIZE);
if (high_table_pointer) {
unsigned long new_high_table_pointer;
/* Also put a forwarder entry into 0-4K */
new_high_table_pointer = write_coreboot_table(low_table_start, low_table_end,
high_tables_base, high_table_pointer);
if (new_high_table_pointer > (high_table_pointer +
MAX_COREBOOT_TABLE_SIZE))
printk(BIOS_ERR, "%s: coreboot table didn't fit (%lx)\n",
__func__, new_high_table_pointer -
high_table_pointer);
printk(BIOS_DEBUG, "coreboot table: %ld bytes.\n",
new_high_table_pointer - high_table_pointer);
} else {
/* The coreboot table must be in 0-4K or 960K-1M */
rom_table_end = write_coreboot_table(
low_table_start, low_table_end,
rom_table_start, rom_table_end);
}
post_code(0x9e);
#if CONFIG_HAVE_ACPI_RESUME
/* Only add CBMEM_ID_RESUME when the ramstage isn't relocatable. */
#if !CONFIG_RELOCATABLE_RAMSTAGE
/* Let's prepare the ACPI S3 Resume area now already, so we can rely on
* it begin there during reboot time. We don't need the pointer, nor
* the result right now. If it fails, ACPI resume will be disabled.
*/
2010-11-22 23:00:52 +01:00
cbmem_add(CBMEM_ID_RESUME, HIGH_MEMORY_SAVE);
#endif
#if CONFIG_NORTHBRIDGE_AMD_AGESA_FAMILY14 || CONFIG_NORTHBRIDGE_AMD_AGESA_FAMILY15_TN
cbmem_add(CBMEM_ID_RESUME_SCRATCH, CONFIG_HIGH_SCRATCH_MEMORY_SIZE);
#endif
#endif
#if CONFIG_MULTIBOOT
post_code(0x9d);
/* The Multiboot information structure */
write_multiboot_info(rom_table_end);
#endif
// Remove before sending upstream
cbmem_list();
return get_lb_mem();
}