coreboot-kgpe-d16/src/soc/mediatek/mt8173/spi.c

328 lines
8.1 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright 2015 MediaTek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/io.h>
#include <assert.h>
#include <console/console.h>
#include <delay.h>
#include <endian.h>
#include <spi_flash.h>
#include <stdlib.h>
#include <string.h>
#include <timer.h>
#include <soc/addressmap.h>
#include <soc/flash_controller.h>
#include <soc/gpio.h>
#include <soc/pinmux.h>
#include <soc/pll.h>
#include <soc/spi.h>
enum {
MTK_FIFO_DEPTH = 32,
MTK_TXRX_TIMEOUT_US = 1000 * 1000,
MTK_ARBITRARY_VALUE = 0xdeaddead
};
enum {
MTK_SPI_IDLE = 0,
MTK_SPI_PAUSE_IDLE = 1
};
enum {
MTK_SPI_BUSY_STATUS = 1,
MTK_SPI_PAUSE_FINISH_INT_STATUS = 3
};
static struct mtk_spi_bus spi_bus[1] = {
{
.regs = (void *)SPI_BASE,
.state = MTK_SPI_IDLE,
}
};
static inline struct mtk_spi_bus *to_mtk_spi(const struct spi_slave *slave)
{
assert(slave->bus < ARRAY_SIZE(spi_bus));
return &spi_bus[slave->bus];
}
static void spi_sw_reset(struct mtk_spi_regs *regs)
{
setbits_le32(&regs->spi_cmd_reg, SPI_CMD_RST_EN);
clrbits_le32(&regs->spi_cmd_reg, SPI_CMD_RST_EN);
}
static void mtk_spi_set_gpio_pinmux(enum spi_pad_mask pad_select)
{
/* TODO: implement support for other pads when needed */
assert(pad_select == SPI_PAD1_MASK);
gpio_set_mode(PAD_MSDC2_DAT2, PAD_MSDC2_DAT2_FUNC_SPI_CK_1);
gpio_set_mode(PAD_MSDC2_DAT3, PAD_MSDC2_DAT3_FUNC_SPI_MI_1);
gpio_set_mode(PAD_MSDC2_CLK, PAD_MSDC2_CLK_FUNC_SPI_MO_1);
gpio_set_mode(PAD_MSDC2_CMD, PAD_MSDC2_CMD_FUNC_SPI_CS_1);
}
void mtk_spi_init(unsigned int bus, unsigned int pad_select,
unsigned int speed_hz)
{
u32 div, sck_ticks, cs_ticks, reg_val;
/* mtk spi HW just supports bus 0 */
if (bus != 0)
die("Error: Only SPI bus 0 is supported.\n");
struct mtk_spi_bus *slave = &spi_bus[bus];
struct mtk_spi_regs *regs = slave->regs;
if (speed_hz < SPI_HZ / 2)
div = div_round_up(SPI_HZ, speed_hz);
else
div = 1;
sck_ticks = div_round_up(div, 2);
cs_ticks = sck_ticks * 2;
printk(BIOS_DEBUG, "SPI%u initialized at %u Hz",
pad_select, SPI_HZ / (sck_ticks * 2));
/* set the timing */
write32(&regs->spi_cfg0_reg,
((sck_ticks - 1) << SPI_CFG0_SCK_HIGH_SHIFT) |
((sck_ticks - 1) << SPI_CFG0_SCK_LOW_SHIFT) |
((cs_ticks - 1) << SPI_CFG0_CS_HOLD_SHIFT) |
((cs_ticks - 1) << SPI_CFG0_CS_SETUP_SHIFT));
clrsetbits_le32(&regs->spi_cfg1_reg, SPI_CFG1_CS_IDLE_MASK,
((cs_ticks - 1) << SPI_CFG1_CS_IDLE_SHIFT));
reg_val = read32(&regs->spi_cmd_reg);
reg_val &= ~SPI_CMD_CPHA_EN;
reg_val &= ~SPI_CMD_CPOL_EN;
/* set the mlsbx and mlsbtx */
reg_val |= SPI_CMD_TXMSBF_EN;
reg_val |= SPI_CMD_RXMSBF_EN;
/* set the tx/rx endian */
#ifdef __LITTLE_ENDIAN
reg_val &= ~SPI_CMD_TX_ENDIAN_EN;
reg_val &= ~SPI_CMD_RX_ENDIAN_EN;
#else
reg_val |= SPI_CMD_TX_ENDIAN_EN;
reg_val |= SPI_CMD_RX_ENDIAN_EN;
#endif
/* clear pause mode */
reg_val &= ~SPI_CMD_PAUSE_EN;
/* set finish interrupt always enable */
reg_val |= SPI_CMD_FINISH_IE_EN;
/* set pause interrupt always enable */
reg_val |= SPI_CMD_PAUSE_IE_EN;
/* disable dma mode */
reg_val &= ~(SPI_CMD_TX_DMA_EN | SPI_CMD_RX_DMA_EN);
/* set deassert mode */
reg_val &= ~SPI_CMD_DEASSERT_EN;
write32(&regs->spi_cmd_reg, reg_val);
mtk_spi_set_gpio_pinmux(pad_select);
/* pad select */
clrsetbits_le32(&regs->spi_pad_macro_sel_reg, SPI_PAD_SEL_MASK,
pad_select);
}
static void mtk_spi_dump_data(const char *name, const uint8_t *data,
int size)
{
#ifdef MTK_SPI_DEBUG
int i;
printk(BIOS_DEBUG, "%s: 0x ", name);
for (i = 0; i < size; i++)
printk(BIOS_INFO, "%#x ", data[i]);
printk(BIOS_DEBUG, "\n");
#endif
}
static int spi_ctrlr_claim_bus(const struct spi_slave *slave)
{
struct mtk_spi_bus *mtk_slave = to_mtk_spi(slave);
struct mtk_spi_regs *regs = mtk_slave->regs;
setbits_le32(&regs->spi_cmd_reg, 1 << SPI_CMD_PAUSE_EN_SHIFT);
mtk_slave->state = MTK_SPI_IDLE;
return 0;
}
static int mtk_spi_fifo_transfer(const struct spi_slave *slave, void *in,
const void *out, size_t size)
{
struct mtk_spi_bus *mtk_slave = to_mtk_spi(slave);
struct mtk_spi_regs *regs = mtk_slave->regs;
uint8_t *inb = (uint8_t *)in;
const uint32_t *outb = (const uint32_t *)out;
uint32_t reg_val = 0;
uint32_t i, word_count;
struct stopwatch sw;
if (!size || size > MTK_FIFO_DEPTH)
return -1;
clrsetbits_le32(&regs->spi_cfg1_reg,
SPI_CFG1_PACKET_LENGTH_MASK | SPI_CFG1_PACKET_LOOP_MASK,
((size - 1) << SPI_CFG1_PACKET_LENGTH_SHIFT) |
(0 << SPI_CFG1_PACKET_LOOP_SHIFT));
word_count = div_round_up(size, sizeof(u32));
if (inb) {
/* The SPI controller will transmit in full-duplex for RX,
* therefore we need arbitrary data on MOSI which the slave
* must ignore.
*/
for (i = 0; i < word_count; i++)
write32(&regs->spi_tx_data_reg, MTK_ARBITRARY_VALUE);
}
if (outb) {
for (i = 0; i < word_count; i++)
write32(&regs->spi_tx_data_reg, outb[i]);
mtk_spi_dump_data("the outb data is",
(const uint8_t *)outb, size);
}
if (mtk_slave->state == MTK_SPI_IDLE) {
setbits_le32(&regs->spi_cmd_reg, SPI_CMD_ACT_EN);
mtk_slave->state = MTK_SPI_PAUSE_IDLE;
} else if (mtk_slave->state == MTK_SPI_PAUSE_IDLE) {
setbits_le32(&regs->spi_cmd_reg, SPI_CMD_RESUME_EN);
}
stopwatch_init_usecs_expire(&sw, MTK_TXRX_TIMEOUT_US);
while ((read32(&regs->spi_status1_reg) & MTK_SPI_BUSY_STATUS) == 0) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR,
"Timeout waiting for status1 status.\n");
goto error;
}
}
stopwatch_init_usecs_expire(&sw, MTK_TXRX_TIMEOUT_US);
while ((read32(&regs->spi_status0_reg) &
MTK_SPI_PAUSE_FINISH_INT_STATUS) == 0) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR,
"Timeout waiting for status0 status.\n");
goto error;
}
}
if (inb) {
for (i = 0; i < size; i++) {
if (i % 4 == 0)
reg_val = read32(&regs->spi_rx_data_reg);
*(inb + i) = (reg_val >> ((i % 4) * 8)) & 0xff;
}
mtk_spi_dump_data("the inb data is", inb, size);
}
return 0;
error:
spi_sw_reset(regs);
mtk_slave->state = MTK_SPI_IDLE;
return -1;
}
static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
size_t bytes_out, void *din, size_t bytes_in)
{
size_t min_size = 0;
int ret;
while (bytes_out || bytes_in) {
if (bytes_in && bytes_out)
min_size = MIN(MIN(bytes_out, bytes_in), MTK_FIFO_DEPTH);
else if (bytes_out)
min_size = MIN(bytes_out, MTK_FIFO_DEPTH);
else if (bytes_in)
min_size = MIN(bytes_in, MTK_FIFO_DEPTH);
ret = mtk_spi_fifo_transfer(slave, din, dout, min_size);
if (ret != 0)
return ret;
if (bytes_out) {
bytes_out -= min_size;
dout = (const uint8_t *)dout + min_size;
}
if (bytes_in) {
bytes_in -= min_size;
din = (uint8_t *)din + min_size;
}
}
return 0;
}
static void spi_ctrlr_release_bus(const struct spi_slave *slave)
{
struct mtk_spi_bus *mtk_slave = to_mtk_spi(slave);
struct mtk_spi_regs *regs = mtk_slave->regs;
clrbits_le32(&regs->spi_cmd_reg, SPI_CMD_PAUSE_EN);
spi_sw_reset(regs);
mtk_slave->state = MTK_SPI_IDLE;
}
static int spi_ctrlr_setup(const struct spi_slave *slave)
{
struct mtk_spi_bus *eslave = to_mtk_spi(slave);
assert(read32(&eslave->regs->spi_cfg0_reg) != 0);
spi_sw_reset(eslave->regs);
return 0;
}
static const struct spi_ctrlr spi_flash_ctrlr = {
.max_xfer_size = 65535,
.flash_probe = mtk_spi_flash_probe,
};
static const struct spi_ctrlr spi_ctrlr = {
.setup = spi_ctrlr_setup,
.claim_bus = spi_ctrlr_claim_bus,
.release_bus = spi_ctrlr_release_bus,
.xfer = spi_ctrlr_xfer,
spi: Get rid of SPI_ATOMIC_SEQUENCING SPI_ATOMIC_SEQUENCING was added to accomodate spi flash controllers with the ability to perform tx and rx of flash command and response at the same time. Instead of introducing this notion at SPI flash driver layer, clean up the interface to SPI used by flash. Flash uses a command-response kind of communication. Thus, even though SPI is duplex, flash command needs to be sent out on SPI bus and then flash response should be received on the bus. Some specialized x86 flash controllers are capable of handling command and response in a single transaction. In order to support all the varied cases: 1. Add spi_xfer_vector that takes as input a vector of SPI operations and calls back into SPI controller driver to process these operations. 2. In order to accomodate flash command-response model, use two vectors while calling into spi_xfer_vector -- one with dout set to non-NULL(command) and other with din set to non-NULL(response). 3. For specialized SPI flash controllers combine two successive vectors if the transactions look like a command-response pair. 4. Provide helper functions for common cases like supporting only 2 vectors at a time, supporting n vectors at a time, default vector operation to cycle through all SPI op vectors one by one. BUG=chrome-os-partner:59832 BRANCH=None TEST=Compiles successfully Change-Id: I4c9e78c585ad95c40c0d5af078ff8251da286236 Signed-off-by: Furquan Shaikh <furquan@chromium.org> Reviewed-on: https://review.coreboot.org/17681 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2016-11-30 07:07:42 +01:00
.xfer_vector = spi_xfer_two_vectors,
.max_xfer_size = 65535,
};
const struct spi_ctrlr_buses spi_ctrlr_bus_map[] = {
{
.ctrlr = &spi_ctrlr,
.bus_start = 0,
.bus_end = 0,
},
{
.ctrlr = &spi_flash_ctrlr,
.bus_start = CONFIG_BOOT_DEVICE_SPI_FLASH_BUS,
.bus_end = CONFIG_BOOT_DEVICE_SPI_FLASH_BUS,
},
};
const size_t spi_ctrlr_bus_map_count = ARRAY_SIZE(spi_ctrlr_bus_map);