coreboot-kgpe-d16/src/devices/pci_device.c

1249 lines
36 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* It was originally based on the Linux kernel (drivers/pci/pci.c).
*
* Modifications are:
* Copyright (C) 2003-2004 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2003-2006 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
* Copyright (C) 2005-2009 coresystems GmbH
* (Written by Stefan Reinauer <stepan@coresystems.de> for coresystems GmbH)
*/
/*
* PCI Bus Services, see include/linux/pci.h for further explanation.
*
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
* David Mosberger-Tang
*
* Copyright 1997 -- 1999 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
*/
#include <console/console.h>
#include <stdlib.h>
#include <stdint.h>
#include <bitops.h>
#include <string.h>
#include <arch/io.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <delay.h>
#if CONFIG_HYPERTRANSPORT_PLUGIN_SUPPORT == 1
#include <device/hypertransport.h>
#endif
#if CONFIG_PCIX_PLUGIN_SUPPORT == 1
#include <device/pcix.h>
#endif
#if CONFIG_PCIEXP_PLUGIN_SUPPORT == 1
#include <device/pciexp.h>
#endif
#if CONFIG_AGP_PLUGIN_SUPPORT == 1
#include <device/agp.h>
#endif
#if CONFIG_CARDBUS_PLUGIN_SUPPORT == 1
#include <device/cardbus.h>
#endif
#define CONFIG_PC80_SYSTEM 1
#if CONFIG_PC80_SYSTEM == 1
#include <pc80/i8259.h>
#endif
u8 pci_moving_config8(struct device *dev, unsigned int reg)
{
u8 value, ones, zeroes;
value = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0xff);
ones = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0x00);
zeroes = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, value);
return ones ^ zeroes;
}
u16 pci_moving_config16(struct device * dev, unsigned int reg)
{
u16 value, ones, zeroes;
value = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0xffff);
ones = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0x0000);
zeroes = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, value);
return ones ^ zeroes;
}
u32 pci_moving_config32(struct device * dev, unsigned int reg)
{
u32 value, ones, zeroes;
value = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0xffffffff);
ones = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0x00000000);
zeroes = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, value);
return ones ^ zeroes;
}
/**
* Given a device, a capability type, and a last position, return the next
* matching capability. Always start at the head of the list.
*
* @param dev Pointer to the device structure.
* @param cap_type PCI_CAP_LIST_ID of the PCI capability we're looking for.
* @param last Location of the PCI capability register to start from.
*/
unsigned pci_find_next_capability(struct device *dev, unsigned cap,
unsigned last)
{
unsigned pos = 0;
unsigned status;
unsigned reps = 48;
status = pci_read_config16(dev, PCI_STATUS);
if (!(status & PCI_STATUS_CAP_LIST)) {
return 0;
}
switch (dev->hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
case PCI_HEADER_TYPE_CARDBUS:
pos = PCI_CB_CAPABILITY_LIST;
break;
default:
return 0;
}
pos = pci_read_config8(dev, pos);
while (reps-- && (pos >= 0x40)) { /* Loop through the linked list. */
int this_cap;
pos &= ~3;
this_cap = pci_read_config8(dev, pos + PCI_CAP_LIST_ID);
printk(BIOS_SPEW, "Capability: type 0x%02x @ 0x%02x\n", this_cap,
pos);
if (this_cap == 0xff) {
break;
}
if (!last && (this_cap == cap)) {
return pos;
}
if (last == pos) {
last = 0;
}
pos = pci_read_config8(dev, pos + PCI_CAP_LIST_NEXT);
}
return 0;
}
/**
* Given a device, and a capability type, return the next matching
* capability. Always start at the head of the list.
*
* @param dev Pointer to the device structure.
* @param cap_type PCI_CAP_LIST_ID of the PCI capability we're looking for.
*/
unsigned pci_find_capability(device_t dev, unsigned cap)
{
return pci_find_next_capability(dev, cap, 0);
}
/**
* Given a device and register, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
*/
struct resource *pci_get_resource(struct device *dev, unsigned long index)
{
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
struct resource *resource;
unsigned long value, attr;
resource_t moving, limit;
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Initialize attr to the bits that do not move. */
attr = value & ~moving;
/* If it is a 64bit resource look at the high half as well. */
if (((attr & PCI_BASE_ADDRESS_SPACE_IO) == 0) &&
((attr & PCI_BASE_ADDRESS_MEM_LIMIT_MASK) ==
PCI_BASE_ADDRESS_MEM_LIMIT_64)) {
/* Find the high bits that move. */
moving |=
((resource_t) pci_moving_config32(dev, index + 4)) << 32;
}
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
limit = 0;
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = limit = moving | (resource->size - 1);
}
/* Some broken hardware has read-only registers that do not
* really size correctly.
* Example: the Acer M7229 has BARs 1-4 normally read-only.
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
* by writing 0xffffffff to it, it will read back as 0x1f1 -- a
* violation of the spec.
* We catch this case and ignore it by observing which bits move,
* This also catches the common case unimplemented registers
* that always read back as 0.
*/
if (moving == 0) {
if (value != 0) {
printk(BIOS_DEBUG, "%s register %02lx(%08lx), read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
} else if (attr & PCI_BASE_ADDRESS_SPACE_IO) {
/* An I/O mapped base address. */
attr &= PCI_BASE_ADDRESS_IO_ATTR_MASK;
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
resource->flags |= IORESOURCE_IO;
/* I don't want to deal with 32bit I/O resources. */
resource->limit = 0xffff;
} else {
/* A Memory mapped base address. */
attr &= PCI_BASE_ADDRESS_MEM_ATTR_MASK;
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
resource->flags |= IORESOURCE_MEM;
if (attr & PCI_BASE_ADDRESS_MEM_PREFETCH) {
resource->flags |= IORESOURCE_PREFETCH;
}
attr &= PCI_BASE_ADDRESS_MEM_LIMIT_MASK;
if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_32) {
/* 32bit limit. */
resource->limit = 0xffffffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_1M) {
/* 1MB limit. */
resource->limit = 0x000fffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_64) {
/* 64bit limit. */
resource->limit = 0xffffffffffffffffULL;
resource->flags |= IORESOURCE_PCI64;
} else {
/* Invalid value. */
printk(BIOS_ERR, "Broken BAR with value %lx\n", attr);
printk(BIOS_ERR, " on dev %s at index %02lx\n",
dev_path(dev), index);
resource->flags = 0;
}
}
/* Don't let the limit exceed which bits can move. */
if (resource->limit > limit) {
resource->limit = limit;
}
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
return resource;
}
/**
* Given a device and an index, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
*/
static void pci_get_rom_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value;
resource_t moving;
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Clear the Enable bit. */
moving = moving & ~PCI_ROM_ADDRESS_ENABLE;
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = moving | (resource->size - 1);
resource->flags |= IORESOURCE_MEM | IORESOURCE_READONLY;
} else {
if (value != 0) {
printk(BIOS_DEBUG, "%s register %02lx(%08lx), read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
}
compact_resources(dev);
}
/**
* Read the base address registers for a given device.
*
* @param dev Pointer to the dev structure.
* @param howmany How many registers to read (6 for device, 2 for bridge).
*/
static void pci_read_bases(struct device *dev, unsigned int howmany)
{
unsigned long index;
for (index = PCI_BASE_ADDRESS_0;
(index < PCI_BASE_ADDRESS_0 + (howmany << 2));) {
struct resource *resource;
resource = pci_get_resource(dev, index);
index += (resource->flags & IORESOURCE_PCI64) ? 8 : 4;
}
compact_resources(dev);
}
static void pci_record_bridge_resource(struct device *dev, resource_t moving,
unsigned index, unsigned long type)
{
/* Initialize the constraints on the current bus. */
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
struct resource *resource;
resource = NULL;
if (moving) {
unsigned long gran;
resource_t step;
resource = new_resource(dev, index);
resource->size = 0;
gran = 0;
step = 1;
while ((moving & step) == 0) {
gran += 1;
step <<= 1;
}
resource->gran = gran;
resource->align = gran;
resource->limit = moving | (step - 1);
resource->flags = type | IORESOURCE_PCI_BRIDGE |
IORESOURCE_BRIDGE;
}
return;
}
static void pci_bridge_read_bases(struct device *dev)
{
resource_t moving_base, moving_limit, moving;
/* See if the bridge I/O resources are implemented. */
moving_base = ((u32) pci_moving_config8(dev, PCI_IO_BASE)) << 8;
moving_base |=
((u32) pci_moving_config16(dev, PCI_IO_BASE_UPPER16)) << 16;
moving_limit = ((u32) pci_moving_config8(dev, PCI_IO_LIMIT)) << 8;
moving_limit |=
((u32) pci_moving_config16(dev, PCI_IO_LIMIT_UPPER16)) << 16;
moving = moving_base & moving_limit;
/* Initialize the I/O space constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_IO_BASE, IORESOURCE_IO);
/* See if the bridge prefmem resources are implemented. */
moving_base =
((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_BASE)) << 16;
moving_base |=
((resource_t) pci_moving_config32(dev, PCI_PREF_BASE_UPPER32)) <<
32;
moving_limit =
((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_LIMIT)) <<
16;
moving_limit |=
((resource_t) pci_moving_config32(dev, PCI_PREF_LIMIT_UPPER32)) <<
32;
moving = moving_base & moving_limit;
/* Initialize the prefetchable memory constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_PREF_MEMORY_BASE,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
/* See if the bridge mem resources are implemented. */
moving_base = ((u32) pci_moving_config16(dev, PCI_MEMORY_BASE)) << 16;
moving_limit = ((u32) pci_moving_config16(dev, PCI_MEMORY_LIMIT)) << 16;
moving = moving_base & moving_limit;
/* Initialize the memory resources on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_MEMORY_BASE,
IORESOURCE_MEM);
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
compact_resources(dev);
}
void pci_dev_read_resources(struct device *dev)
{
pci_read_bases(dev, 6);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS);
}
void pci_bus_read_resources(struct device *dev)
{
pci_bridge_read_bases(dev);
pci_read_bases(dev, 2);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS1);
}
void pci_domain_read_resources(struct device *dev)
{
struct resource *res;
/* Initialize the system-wide I/O space constraints. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(0, 0));
res->limit = 0xffffUL;
res->flags = IORESOURCE_IO | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED;
/* Initialize the system-wide memory resources constraints. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(1, 0));
res->limit = 0xffffffffULL;
res->flags = IORESOURCE_MEM | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED;
}
static void pci_set_resource(struct device *dev, struct resource *resource)
{
resource_t base, end;
/* Make certain the resource has actually been assigned a value. */
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
if (!(resource->flags & IORESOURCE_ASSIGNED)) {
printk(BIOS_ERR, "ERROR: %s %02lx %s size: 0x%010llx not assigned\n",
dev_path(dev), resource->index,
resource_type(resource), resource->size);
return;
}
/* If this resource is fixed don't worry about it. */
if (resource->flags & IORESOURCE_FIXED) {
return;
}
/* If I have already stored this resource don't worry about it. */
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
if (resource->flags & IORESOURCE_STORED) {
return;
}
/* If the resource is subtractive don't worry about it. */
if (resource->flags & IORESOURCE_SUBTRACTIVE) {
return;
}
/* Only handle PCI memory and I/O resources for now. */
if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
return;
/* Enable the resources in the command register. */
if (resource->size) {
if (resource->flags & IORESOURCE_MEM) {
dev->command |= PCI_COMMAND_MEMORY;
}
if (resource->flags & IORESOURCE_IO) {
dev->command |= PCI_COMMAND_IO;
}
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
dev->command |= PCI_COMMAND_MASTER;
}
}
/* Get the base address. */
base = resource->base;
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
/* Get the end. */
end = resource_end(resource);
/* Now store the resource. */
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
resource->flags |= IORESOURCE_STORED;
/* PCI Bridges have no enable bit. They are disabled if the base of
* the range is greater than the limit. If the size is zero, disable
* by setting the base = limit and end = limit - 2^gran.
*/
if (resource->size == 0 && (resource->flags & IORESOURCE_PCI_BRIDGE)) {
base = resource->limit;
end = resource->limit - (1 << resource->gran);
resource->base = base;
}
if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
unsigned long base_lo, base_hi;
/* Some chipsets allow us to set/clear the I/O bit
* (e.g. VIA 82c686a). So set it to be safe.
*/
base_lo = base & 0xffffffff;
base_hi = (base >> 32) & 0xffffffff;
if (resource->flags & IORESOURCE_IO) {
base_lo |= PCI_BASE_ADDRESS_SPACE_IO;
}
pci_write_config32(dev, resource->index, base_lo);
if (resource->flags & IORESOURCE_PCI64) {
pci_write_config32(dev, resource->index + 4, base_hi);
}
} else if (resource->index == PCI_IO_BASE) {
/* Set the I/O ranges. */
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
pci_write_config16(dev, PCI_IO_BASE_UPPER16, base >> 16);
pci_write_config8(dev, PCI_IO_LIMIT, end >> 8);
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, end >> 16);
} else if (resource->index == PCI_MEMORY_BASE) {
/* Set the memory range. */
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
pci_write_config16(dev, PCI_MEMORY_LIMIT, end >> 16);
} else if (resource->index == PCI_PREF_MEMORY_BASE) {
/* Set the prefetchable memory range. */
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, base >> 32);
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, end >> 16);
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, end >> 32);
} else {
/* Don't let me think I stored the resource. */
- Moved hlt() to it's own header. - Reworked pnp superio device support. Now complete superio support is less than 100 lines. - Added support for hard coding resource assignments in Config.lb - Minor bug fixes to romcc - Initial support for catching the x86 processor BIST error codes. I've only seen this trigger once in production during a very suspcious reset but... - added raminit_test to test the code paths in raminit.c for the Opteron - Removed the IORESOURCE_SET bit and added IORESOURCE_ASSIGNED and IORESOURCE_STORED so we can tell what we have really done. - Added generic AGP/IOMMU setting code to x86 - Added an implementation of memmove and removed reserved identifiers from memcpy - Added minimal support for booting on pre b3 stepping K8 cores - Moved the checksum on amd8111 boards because our default location was on top of extended RTC registers - On the Hdama added support for enabling i2c hub so we can get at the temperature sensors. Not that i2c bus was implemented well enough to make that useful. - Redid the Opteron port so we should only need one reset and most of memory initialization is done in cpu_fixup. This is much, much faster. - Attempted to make the VGA IO region assigment work. The code seems to work now... - Redid the error handling in amdk8/raminit.c to distinguish between a bad value and a smbus error, and moved memory clearing out to cpufixup. - Removed CONFIG_KEYBOARD as it was useless. See pc87360/superio.c for how to setup a legacy keyboard properly. - Reworked the register values for standard hardware, moving the defintions from chip.h into the headers of the initialization routines. This is much saner and is actually implemented. - Made the hdama port an under clockers BIOS. I debuged so many interesting problems. - On amd8111_lpc added setup of architectural/legacy hardware - Enabled PCI error reporting as much as possible. - Enhanded build_opt_tbl to generate a header of the cmos option locations so that romcc compiled code can query the cmos options. - In romcc gracefully handle function names that degenerate into function pointers - Bumped the version to 1.1.6 as we are getting closer to 2.0 TODO finish optimizing the HT links of non dual boards TODO make all Opteron board work again TODO convert all superio devices to use the new helpers TODO convert the via/epia to freebios2 conventions TODO cpu fixup/setup by cpu type git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1390 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-03-11 16:01:31 +01:00
resource->flags &= ~IORESOURCE_STORED;
printk(BIOS_ERR, "ERROR: invalid resource->index %lx\n",
resource->index);
}
report_resource_stored(dev, resource, "");
return;
}
void pci_dev_set_resources(struct device *dev)
{
struct resource *res;
struct bus *bus;
u8 line;
for (res = dev->resource_list; res; res = res->next) {
pci_set_resource(dev, res);
}
for (bus = dev->link_list; bus; bus = bus->next) {
if (bus->children) {
assign_resources(bus);
}
}
/* Set a default latency timer. */
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
/* Set a default secondary latency timer. */
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE) {
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
}
/* Zero the IRQ settings. */
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (line) {
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
}
/* Set the cache line size, so far 64 bytes is good for everyone. */
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
}
void pci_dev_enable_resources(struct device *dev)
{
const struct pci_operations *ops;
u16 command;
/* Set the subsystem vendor and device id for mainboard devices. */
ops = ops_pci(dev);
if (dev->on_mainboard && ops && ops->set_subsystem) {
printk(BIOS_DEBUG, "%s subsystem <- %02x/%02x\n",
dev_path(dev),
CONFIG_MAINBOARD_PCI_SUBSYSTEM_VENDOR_ID,
CONFIG_MAINBOARD_PCI_SUBSYSTEM_DEVICE_ID);
ops->set_subsystem(dev,
CONFIG_MAINBOARD_PCI_SUBSYSTEM_VENDOR_ID,
CONFIG_MAINBOARD_PCI_SUBSYSTEM_DEVICE_ID);
}
command = pci_read_config16(dev, PCI_COMMAND);
command |= dev->command;
/* v3 has
* command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); // Error check.
*/
printk(BIOS_DEBUG, "%s cmd <- %02x\n", dev_path(dev), command);
pci_write_config16(dev, PCI_COMMAND, command);
}
void pci_bus_enable_resources(struct device *dev)
{
u16 ctrl;
/* Enable I/O in command register if there is VGA card
* connected with (even it does not claim I/O resource).
*/
if (dev->link_list->bridge_ctrl & PCI_BRIDGE_CTL_VGA)
dev->command |= PCI_COMMAND_IO;
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
ctrl |= dev->link_list->bridge_ctrl;
ctrl |= (PCI_BRIDGE_CTL_PARITY + PCI_BRIDGE_CTL_SERR); /* Error check. */
printk(BIOS_DEBUG, "%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
pci_dev_enable_resources(dev);
}
void pci_bus_reset(struct bus *bus)
{
unsigned ctl;
ctl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
ctl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
mdelay(10);
ctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
delay(1);
}
void pci_dev_set_subsystem(struct device *dev, unsigned vendor, unsigned device)
{
pci_write_config32(dev, PCI_SUBSYSTEM_VENDOR_ID,
((device & 0xffff) << 16) | (vendor & 0xffff));
}
/** default handler: only runs the relevant pci bios. */
void pci_dev_init(struct device *dev)
{
#if CONFIG_PCI_ROM_RUN == 1 || CONFIG_VGA_ROM_RUN == 1
struct rom_header *rom, *ram;
if (CONFIG_PCI_ROM_RUN != 1 && /* Only execute VGA ROMs. */
((dev->class >> 8) != PCI_CLASS_DISPLAY_VGA))
return;
if (CONFIG_VGA_ROM_RUN != 1 && /* Only execute non-VGA ROMs. */
((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA))
return;
rom = pci_rom_probe(dev);
if (rom == NULL)
return;
ram = pci_rom_load(dev, rom);
if (ram == NULL)
return;
run_bios(dev, (unsigned long)ram);
#if CONFIG_CONSOLE_VGA == 1
if ((dev->class>>8) == PCI_CLASS_DISPLAY_VGA)
vga_console_init();
#endif /* CONFIG_CONSOLE_VGA */
#endif /* CONFIG_PCI_ROM_RUN || CONFIG_VGA_ROM_RUN */
}
/** Default device operation for PCI devices */
static struct pci_operations pci_dev_ops_pci = {
.set_subsystem = pci_dev_set_subsystem,
};
struct device_operations default_pci_ops_dev = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = pci_dev_init,
.scan_bus = 0,
.enable = 0,
.ops_pci = &pci_dev_ops_pci,
};
/** Default device operations for PCI bridges */
static struct pci_operations pci_bus_ops_pci = {
.set_subsystem = 0,
};
struct device_operations default_pci_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.init = 0,
.scan_bus = pci_scan_bridge,
.enable = 0,
.reset_bus = pci_bus_reset,
.ops_pci = &pci_bus_ops_pci,
};
/**
* @brief Detect the type of downstream bridge
*
* This function is a heuristic to detect which type of bus is downstream
* of a PCI-to-PCI bridge. This functions by looking for various capability
* blocks to figure out the type of downstream bridge. PCI-X, PCI-E, and
* Hypertransport all seem to have appropriate capabilities.
*
* When only a PCI-Express capability is found the type
* is examined to see which type of bridge we have.
*
* @param dev Pointer to the device structure of the bridge.
* @return Appropriate bridge operations.
*/
static struct device_operations *get_pci_bridge_ops(device_t dev)
{
unsigned pos;
#if CONFIG_PCIX_PLUGIN_SUPPORT == 1
pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (pos) {
printk(BIOS_DEBUG, "%s subordinate bus PCI-X\n", dev_path(dev));
return &default_pcix_ops_bus;
}
#endif
#if CONFIG_AGP_PLUGIN_SUPPORT == 1
/* How do I detect an PCI to AGP bridge? */
#endif
#if CONFIG_HYPERTRANSPORT_PLUGIN_SUPPORT == 1
pos = 0;
while ((pos = pci_find_next_capability(dev, PCI_CAP_ID_HT, pos))) {
unsigned flags;
flags = pci_read_config16(dev, pos + PCI_CAP_FLAGS);
if ((flags >> 13) == 1) {
/* Host or Secondary Interface */
printk(BIOS_DEBUG, "%s subordinate bus Hypertransport\n",
dev_path(dev));
return &default_ht_ops_bus;
}
}
#endif
#if CONFIG_PCIEXP_PLUGIN_SUPPORT == 1
pos = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (pos) {
unsigned flags;
flags = pci_read_config16(dev, pos + PCI_EXP_FLAGS);
switch ((flags & PCI_EXP_FLAGS_TYPE) >> 4) {
case PCI_EXP_TYPE_ROOT_PORT:
case PCI_EXP_TYPE_UPSTREAM:
case PCI_EXP_TYPE_DOWNSTREAM:
printk(BIOS_DEBUG, "%s subordinate bus PCI Express\n",
dev_path(dev));
return &default_pciexp_ops_bus;
case PCI_EXP_TYPE_PCI_BRIDGE:
printk(BIOS_DEBUG, "%s subordinate PCI\n", dev_path(dev));
return &default_pci_ops_bus;
default:
break;
}
}
#endif
return &default_pci_ops_bus;
}
/**
* Set up PCI device operation. Check if it already has a driver. If not, use
* find_device_operations, or set to a default based on type.
*
* @param dev Pointer to the device whose pci_ops you want to set.
* @see pci_drivers
*/
static void set_pci_ops(struct device *dev)
{
struct pci_driver *driver;
if (dev->ops) {
return;
}
/* Look through the list of setup drivers and find one for
* this PCI device.
*/
for (driver = &pci_drivers[0]; driver != &epci_drivers[0]; driver++) {
if ((driver->vendor == dev->vendor) &&
(driver->device == dev->device)) {
dev->ops = (struct device_operations *)driver->ops;
printk(BIOS_SPEW, "%s [%04x/%04x] %sops\n",
dev_path(dev),
driver->vendor, driver->device,
(driver->ops->scan_bus ? "bus " : ""));
return;
}
}
/* If I don't have a specific driver use the default operations */
switch (dev->hdr_type & 0x7f) { /* header type */
case PCI_HEADER_TYPE_NORMAL: /* standard header */
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = &default_pci_ops_dev;
break;
case PCI_HEADER_TYPE_BRIDGE:
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = get_pci_bridge_ops(dev);
break;
#if CONFIG_CARDBUS_PLUGIN_SUPPORT == 1
case PCI_HEADER_TYPE_CARDBUS:
dev->ops = &default_cardbus_ops_bus;
break;
#endif
default:
bad:
if (dev->enabled) {
printk(BIOS_ERR, "%s [%04x/%04x/%06x] has unknown header "
"type %02x, ignoring.\n",
dev_path(dev),
dev->vendor, dev->device,
dev->class >> 8, dev->hdr_type);
}
}
return;
}
/**
* @brief See if we have already allocated a device structure for a given devfn.
*
* Given a linked list of PCI device structures and a devfn number, find the
* device structure correspond to the devfn, if present. This function also
* removes the device structure from the linked list.
*
* @param list The device structure list.
* @param devfn A device/function number.
*
* @return Pointer to the device structure found or NULL if we have not
* allocated a device for this devfn yet.
*/
static struct device *pci_scan_get_dev(struct device **list, unsigned int devfn)
{
struct device *dev;
dev = 0;
for (; *list; list = &(*list)->sibling) {
if ((*list)->path.type != DEVICE_PATH_PCI) {
printk(BIOS_ERR, "child %s not a pci device\n",
dev_path(*list));
continue;
}
if ((*list)->path.pci.devfn == devfn) {
/* Unlink from the list. */
dev = *list;
*list = (*list)->sibling;
dev->sibling = NULL;
break;
}
}
/* Just like alloc_dev() add the device to the list of devices on the
* bus. When the list of devices was formed we removed all of the
* parents children, and now we are interleaving static and dynamic
* devices in order on the bus.
*/
if (dev) {
struct device *child;
/* Find the last child of our parent. */
for (child = dev->bus->children; child && child->sibling;) {
child = child->sibling;
}
/* Place the device on the list of children of its parent. */
if (child) {
child->sibling = dev;
} else {
dev->bus->children = dev;
}
}
return dev;
}
/**
* @brief Scan a PCI bus.
*
* Determine the existence of a given PCI device. Allocate a new struct device
* if dev==NULL was passed in and the device exists in hardware.
*
* @param bus pointer to the bus structure
* @param devfn to look at
*
* @return The device structure for hte device (if found)
* or the NULL if no device is found.
*/
device_t pci_probe_dev(device_t dev, struct bus * bus, unsigned devfn)
{
u32 id, class;
u8 hdr_type;
/* Detect if a device is present. */
if (!dev) {
struct device dummy;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* Have we found something?
* Some broken boards return 0 if a slot is empty, but
* the expected answer is 0xffffffff
*/
if (id == 0xffffffff) {
return NULL;
}
if ((id == 0x00000000) || (id == 0x0000ffff) ||
(id == 0xffff0000)) {
printk(BIOS_SPEW, "%s, bad id 0x%x\n", dev_path(&dummy), id);
return NULL;
}
dev = alloc_dev(bus, &dummy.path);
} else {
/* Enable/disable the device. Once we have found the device-
* specific operations this operations we will disable the
* device with those as well.
*
* This is geared toward devices that have subfunctions
* that do not show up by default.
*
* If a device is a stuff option on the motherboard
* it may be absent and enable_dev() must cope.
*/
/* Run the magic enable sequence for the device. */
if (dev->chip_ops && dev->chip_ops->enable_dev) {
dev->chip_ops->enable_dev(dev);
}
/* Now read the vendor and device ID. */
id = pci_read_config32(dev, PCI_VENDOR_ID);
/* If the device does not have a PCI ID disable it. Possibly
* this is because we have already disabled the device. But
* this also handles optional devices that may not always
* show up.
*/
/* If the chain is fully enumerated quit */
if ((id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000)) {
if (dev->enabled) {
printk(BIOS_INFO, "PCI: Static device %s not found, disabling it.\n",
dev_path(dev));
dev->enabled = 0;
}
return dev;
}
}
/* Read the rest of the PCI configuration information. */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
/* Store the interesting information in the device structure. */
dev->vendor = id & 0xffff;
dev->device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* Class code, the upper 3 bytes of PCI_CLASS_REVISION. */
dev->class = class >> 8;
/* Architectural/System devices always need to be bus masters. */
if ((dev->class >> 16) == PCI_BASE_CLASS_SYSTEM) {
dev->command |= PCI_COMMAND_MASTER;
}
/* Look at the vendor and device ID, or at least the header type and
* class and figure out which set of configuration methods to use.
* Unless we already have some PCI ops.
*/
set_pci_ops(dev);
/* Now run the magic enable/disable sequence for the device. */
if (dev->ops && dev->ops->enable) {
dev->ops->enable(dev);
}
/* Display the device. */
printk(BIOS_DEBUG, "%s [%04x/%04x] %s%s\n",
dev_path(dev),
dev->vendor, dev->device,
dev->enabled ? "enabled" : "disabled",
dev->ops ? "" : " No operations");
return dev;
}
/**
* @brief Scan a PCI bus.
*
* Determine the existence of devices and bridges on a PCI bus. If there are
* bridges on the bus, recursively scan the buses behind the bridges.
*
* This function is the default scan_bus() method for the root device
* 'dev_root'.
*
* @param bus pointer to the bus structure
* @param min_devfn minimum devfn to look at in the scan usually 0x00
* @param max_devfn maximum devfn to look at in the scan usually 0xff
* @param max current bus number
*
* @return The maximum bus number found, after scanning all subordinate busses
*/
unsigned int pci_scan_bus(struct bus *bus,
unsigned min_devfn, unsigned max_devfn,
unsigned int max)
{
unsigned int devfn;
struct device *old_devices;
struct device *child;
#if CONFIG_PCI_BUS_SEGN_BITS
printk(BIOS_DEBUG, "PCI: pci_scan_bus for bus %04x:%02x\n",
bus->secondary >> 8, bus->secondary & 0xff);
#else
printk(BIOS_DEBUG, "PCI: pci_scan_bus for bus %02x\n", bus->secondary);
#endif
old_devices = bus->children;
bus->children = NULL;
post_code(0x24);
/* Probe all devices/functions on this bus with some optimization for
* non-existence and single function devices.
*/
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
struct device *dev;
/* First thing setup the device structure */
dev = pci_scan_get_dev(&old_devices, devfn);
/* See if a device is present and setup the device structure. */
dev = pci_probe_dev(dev, bus, devfn);
/* If this is not a multi function device, or the device is
* not present don't waste time probing another function.
* Skip to next device.
*/
if ((PCI_FUNC(devfn) == 0x00) &&
(!dev
|| (dev->enabled && ((dev->hdr_type & 0x80) != 0x80)))) {
devfn += 0x07;
}
}
post_code(0x25);
/* Warn if any leftover static devices are are found.
* There's probably a problem in the Config.lb.
*/
if (old_devices) {
device_t left;
printk(BIOS_WARNING, "PCI: Left over static devices:\n");
for (left = old_devices; left; left = left->sibling) {
printk(BIOS_WARNING, "%s\n", dev_path(left));
}
printk(BIOS_WARNING, "PCI: Check your mainboard Config.lb.\n");
}
/* For all children that implement scan_bus() (i.e. bridges)
* scan the bus behind that child.
*/
for (child = bus->children; child; child = child->sibling) {
max = scan_bus(child, max);
}
/* We've scanned the bus and so we know all about what's on the other
* side of any bridges that may be on this bus plus any devices.
* Return how far we've got finding sub-buses.
*/
printk(BIOS_DEBUG, "PCI: pci_scan_bus returning with max=%03x\n", max);
post_code(0x55);
return max;
}
/**
* @brief Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
* @param max The highest bus number assigned up to now.
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int do_pci_scan_bridge(struct device *dev, unsigned int max,
unsigned int (*do_scan_bus) (struct bus * bus,
unsigned min_devfn,
unsigned max_devfn,
unsigned int max))
{
struct bus *bus;
u32 buses;
u16 cr;
printk(BIOS_SPEW, "%s for %s\n", __func__, dev_path(dev));
if (dev->link_list == NULL) {
struct bus *link;
link = malloc(sizeof(*link));
if (link == NULL)
die("Couldn't allocate a link!\n");
memset(link, 0, sizeof(*link));
link->dev = dev;
dev->link_list = link;
}
bus = dev->link_list;
/* Set up the primary, secondary and subordinate bus numbers. We have
* no idea how many buses are behind this bridge yet, so we set the
* subordinate bus number to 0xff for the moment.
*/
bus->secondary = ++max;
bus->subordinate = 0xff;
/* Clear all status bits and turn off memory, I/O and master enables. */
cr = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, 0x0000);
pci_write_config16(dev, PCI_STATUS, 0xffff);
/* Read the existing primary/secondary/subordinate bus
* number configuration.
*/
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
/* Configure the bus numbers for this bridge: the configuration
* transactions will not be propagated by the bridge if it is not
* correctly configured.
*/
buses &= 0xff000000;
buses |= (((unsigned int)(dev->bus->secondary) << 0) |
((unsigned int)(bus->secondary) << 8) |
((unsigned int)(bus->subordinate) << 16));
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
/* Now we can scan all subordinate buses
* i.e. the bus behind the bridge.
*/
max = do_scan_bus(bus, 0x00, 0xff, max);
/* We know the number of buses behind this bridge. Set the subordinate
* bus number to its real value.
*/
bus->subordinate = max;
buses = (buses & 0xff00ffff) | ((unsigned int)(bus->subordinate) << 16);
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
pci_write_config16(dev, PCI_COMMAND, cr);
printk(BIOS_SPEW, "%s returns max %d\n", __func__, max);
return max;
}
/**
* @brief Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
* @param max The highest bus number assigned up to now.
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int pci_scan_bridge(struct device *dev, unsigned int max)
{
return do_pci_scan_bridge(dev, max, pci_scan_bus);
}
/**
* @brief Scan a PCI domain.
*
* This function is the default scan_bus() method for PCI domains.
*
* @param dev pointer to the domain
* @param max the highest bus number assgined up to now
*
* @return The maximum bus number found, after scanning all subordinate busses
*/
unsigned int pci_domain_scan_bus(device_t dev, unsigned int max)
{
max = pci_scan_bus(dev->link_list, PCI_DEVFN(0, 0), 0xff, max);
return max;
}
#if CONFIG_PC80_SYSTEM == 1
/**
*
* @brief Assign IRQ numbers
*
* This function assigns IRQs for all functions contained within the indicated
* device address. If the device does not exist or does not require interrupts
* then this function has no effect.
*
* This function should be called for each PCI slot in your system.
*
* @param bus
* @param slot
* @param pIntAtoD is an array of IRQ #s that are assigned to PINTA through
* PINTD of this slot. The particular irq #s that are passed in
* depend on the routing inside your southbridge and on your
* motherboard.
*/
void pci_assign_irqs(unsigned bus, unsigned slot,
const unsigned char pIntAtoD[4])
{
unsigned int funct;
device_t pdev;
u8 line;
u8 irq;
/* Each slot may contain up to eight functions */
for (funct = 0; funct < 8; funct++) {
pdev = dev_find_slot(bus, (slot << 3) + funct);
if (!pdev)
continue;
line = pci_read_config8(pdev, PCI_INTERRUPT_PIN);
// PCI spec says all values except 1..4 are reserved.
if ((line < 1) || (line > 4))
continue;
irq = pIntAtoD[line - 1];
printk(BIOS_DEBUG, "Assigning IRQ %d to %d:%x.%d\n",
irq, bus, slot, funct);
pci_write_config8(pdev, PCI_INTERRUPT_LINE,
pIntAtoD[line - 1]);
#ifdef PARANOID_IRQ_ASSIGNMENTS
irq = pci_read_config8(pdev, PCI_INTERRUPT_LINE);
printk(BIOS_DEBUG, " Readback = %d\n", irq);
#endif
// Change to level triggered
i8259_configure_irq_trigger(pIntAtoD[line - 1], IRQ_LEVEL_TRIGGERED);
}
}
#endif