Commit Graph

662 Commits

Author SHA1 Message Date
Aaron Durbin 7e35efa83c ramstage: introduce boot state machine
The boot flow currently has a fixed ordering. The ordering
is dictated by the device tree and on x86 the PCI device ordering
for when actions are performed. Many of the new machines and
configurations have dependencies that do not follow the device
ordering.

In order to be more flexible the concept of a boot state machine
is introduced. At the boundaries (entry and exit) of each state there
is opportunity to run callbacks. This ability allows one to schedule
actions to be performed without adding board-specific code to
the shared boot flow.

Change-Id: I757f406c97445f6d9b69c003bb9610b16b132aa6
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3132
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-05-01 07:04:47 +02:00
Aaron Durbin ac4b00e230 string: Add STRINGIFY macro
STRINGIFY makes a string from a token. It is generally useful.
Even though STRINGIFY is not defined to be in the C library it's
placed in string.h because it does make a string.

Change-Id: I368e14792a90d1fdce2a3d4d7a48b5d400623160
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3144
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-05-01 03:25:04 +02:00
Stefan Reinauer 642b1db733 Eliminate use of pointers in coreboot table
Because pointers can be 32bit or 64bit big,
using them in the coreboot table requires the
OS and the firmware to operate in the same mode
which is not always the case. Hence, use 64bit
for all pointers stored in the coreboot table.
Guess we'll have to fix this up once we port to
the first 128bit machines.

Change-Id: I46fc1dad530e5230986f7aa5740595428ede4f93
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/3115
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@google.com>
2013-04-20 05:18:15 +02:00
Vladimir Serbinenko 45988dab6b spkmodem console
Change-Id: Ie497e4c8da05001ffe67c4a541bd24aa859ac0e2
Signed-off-by: Vladimir Serbinenko <phcoder@gmail.com>
Reviewed-on: http://review.coreboot.org/2987
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-04-18 22:47:59 +02:00
Ronald G. Minnich c0b972f60d Exynos5250: add a microsecond timer
Add a microsecond timer, its declaration, the function to start it,
and its usage.  To start it, one calls timer_start().  From that point
on, one can call timer_us() to find microseconds since the timer was
started.

We show its use in the bootblock. You want it started very early.

Finally, the delay.h change having been (ironically) delayed, we
create time.h and have it hold one declaration, for the timer_us() and
timer_start() prototype.

We feel that these two functions should become the hardware specific
functions, allowing us to finally move udelay() into src/lib where it
belongs.

Change-Id: I19cbc2bb0089a3de88cfb94276266af38b9363c5
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: http://review.coreboot.org/3073
Tested-by: build bot (Jenkins)
2013-04-13 00:47:27 +02:00
Nico Huber 8ecec215be Revert "siemens/sitemp_g1p1: Make ACPI report the right mmconf region"
This reverts commit 1fde22c54cacb15493bbde8835ec9e20f1d39bf5:

    commit 1fde22c54c
    Author: Patrick Georgi <patrick.georgi@secunet.com>
    Date:   Tue Apr 9 15:41:23 2013 +0200

        siemens/sitemp_g1p1: Make ACPI report the right mmconf region

        ACPI reported the entire space between top-of-memory and some
        (relatively) arbitrary limit as useful for MMIO. Unfortunately
        the HyperTransport configuration disagreed. Make them match up.

        Other boards are not affected since they don't report any region
        for that purpose at all (it seems).

        Change-Id: I432a679481fd1c271f14ecd6fe74f0b7a15a698e
        Signed-off-by: Patrick Georgi <patrick.georgi@secunet.com>
        Reviewed-on: http://review.coreboot.org/3047
        Tested-by: build bot (Jenkins)
        Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>

It sneaked in without it's dependencies and, therefore, broke the build for
all amdk8 targets. Paul Menzel already commented on the issue in [1]. It
also doesn't look like the dependencies would be pulled soon [2].

[1] http://review.coreboot.org/#/c/3047/
[2] http://review.coreboot.org/#/c/2662/

Change-Id: Ica89563aae4af3f0f35cacfe37fb608782329523
Signed-off-by: Nico Huber <nico.h@gmx.de>
Reviewed-on: http://review.coreboot.org/3063
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
2013-04-12 11:48:15 +02:00
Patrick Georgi 1fde22c54c siemens/sitemp_g1p1: Make ACPI report the right mmconf region
ACPI reported the entire space between top-of-memory and some
(relatively) arbitrary limit as useful for MMIO. Unfortunately
the HyperTransport configuration disagreed. Make them match up.

Other boards are not affected since they don't report any region
for that purpose at all (it seems).

Change-Id: I432a679481fd1c271f14ecd6fe74f0b7a15a698e
Signed-off-by: Patrick Georgi <patrick.georgi@secunet.com>
Reviewed-on: http://review.coreboot.org/3047
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-04-10 17:40:49 +02:00
David Hendricks b959fbb87a exynos5: Re-factor I2C code
This re-factors the Exynos5 I2C code to be simpler and use the
new API, and updates users accordingly.

- i2c_read() and i2c_write() functions updated to take bus number
  as an argument.

- Get rid of the EEPROM_ADDR_OVERFLOW stuff in i2c_read() and
  i2c_write(). If a chip needs special handling we should take care
  of it elsewhere, not in every low-level i2c driver.

- All the confusing bus config functions eliminated. No more
  i2c_set_early_config() or i2c_set_bus() or i2c_get_bus(). All this
  is handled automatically when the caller does a transaction and
  specifies the desired bus number.

- i2c_probe() eliminated. We're not a command-line utility.

- Let the compiler place static variables automatically. We don't need
  any of this fancy manual data placement.

- Remove dead code while we're at it. This stuff was ported early on
  and much of it was left commented out in case we needed it. Some
  also includes nested macros which caused gcc to complain.

- Clean up #includes (no more common.h, woohoo!), replace debug() with
  printk().

Change-Id: I8e1f974ea4c6c7db9f33b77bbc4fb16008ed0d2a
Signed-off-by: David Hendricks <dhendrix@chromium.org>
Reviewed-on: http://review.coreboot.org/3044
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-04-10 00:01:02 +02:00
David Hendricks cfb73607be replace device/i2c.h with simpler version
The existing header was imported along with the Exynos code and left
mostly unchanged. This is the first patch in a series intended to
replace the imported u-boot I2C API with a much simpler and cleaner
interface:

- We only need to expose i2c_read() and i2c_write() in our public API.
  Everything else is board/chip-dependent and should remain hidden
  away.

- i2c_read and i2c_write functions will take bus number as an arg
  and we'll eliminate i2c_get_bus and i2c_set_bus. Those are prone to
  error and end up cluttering the code since the user needs to save
  the old bus number, set the new one, do the read/write, and restore
  the old value (3 added steps to do a simple transaction).

- Stop setting default values for board-specific things like SPD
  and RTC bus numbers (as if we always have an SPD or RTC on I2C).

- Death to all the trivial inline wrappers. And in case there was any
  doubt, we really don't care about the MPC8xx. Though if we did then
  we would not pollute the public API with its idiosyncrasies.

Change-Id: I4410a3c82ed5a6b2e80e3d8c0163464a9ca7c3b0
Signed-off-by: David Hendricks <dhendrix@chromium.org>
Reviewed-on: http://review.coreboot.org/3043
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-04-09 23:59:34 +02:00
Aaron Durbin 6ccb1abfd4 mtrr: add rom caching comment about hyperthreads
Explicitly call out the effects of hyperthreads running the
MTRR code and its impact on the enablement of ROM caching.

Change-Id: I14b8f3fdc112340b8f483f2e554c5680576a8a7c
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3018
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-04-05 21:57:38 +02:00
Kyösti Mälkki 190011e47c AMD: Drop six copies of wrmsr_amd and rdmsr_amd
Based on comments in cpu/x86/msr.h for wrmsr/rdmsr, and for symmetry,
I have added __attribute__((always_inline)) for these.

Change-Id: Ia0a34c15241f9fbc8c78763386028ddcbe6690b1
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/2898
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
2013-04-04 04:52:18 +02:00
Paul Menzel d46161e9ea intel/microcode.h: Fix typo in comment: micr*o*code
Introduced in commit »intel microcode: split up microcode loading
stages« (98ffb426) [1].

[1] http://review.coreboot.org/2778

Change-Id: I626508b10f3998b43aaabd49853090b36f5d3eb0
Signed-off-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-on: http://review.coreboot.org/2992
Reviewed-by: Aaron Durbin <adurbin@google.com>
Tested-by: build bot (Jenkins)
2013-04-03 19:19:09 +02:00
Duncan Laurie 9c07c8f53d lynxpoint: Move ACPI NVS into separate CBMEM table
The ACPI NVS region was setup in place and there was a CBMEM
table that pointed to it.  In order to be able to use NVS
earlier the CBMEM region is allocated for NVS itself during
the LPC device init and the ACPI tables point to it in CBMEM.

The current cbmem region is renamed to ACPI_GNVS_PTR to
indicate that it is really a pointer to the GNVS and does
not actually contain the GNVS.

Change-Id: I31ace432411c7f825d86ca75c63dd79cd658e891
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/2970
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-04-01 23:35:48 +02:00
Aaron Durbin ebf142a12c boot: add disable_cache_rom() function
On certain architectures such as x86 the bootstrap processor
does most of the work. When CACHE_ROM is employed it's appropriate
to ensure that the caching enablement of the ROM is disabled so that
the caching settings are symmetric before booting the payload or OS.

Tested this on an x86 machine that turned on ROM caching. Linux did not
complain about asymmetric MTRR settings nor did the ROM show up as
cached in the MTRR settings.

Change-Id: Ia32ff9fdb1608667a0e9a5f23b9c8af27d589047
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2980
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-04-01 23:29:11 +02:00
Aaron Durbin f6f6e13c46 memrange: add 2 new range_entry routines
Two convenience functions are added to operate on a range_entry:
- range_entry_update_tag() - update the entry's tag
- memranges_next_entry() - get the next entry after the one provide

These functions will be used by a follow on patch to the MTRR code
to allow hole punching in WB region when the default MTRR type is
UC.

Change-Id: I3c2be19c8ea1bbbdf7736c867e4a2aa82df2d611
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2924
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-29 20:11:28 +01:00
Aaron Durbin bc07f5d935 x86: add rom cache variable MTRR index to tables
Downstream payloads may need to take advantage of caching the
ROM for performance reasons. Add the ability to communicate the
variable range MTRR index to use to perform the caching enablement.

An example usage implementation would be to obtain the variable MTRR
index that covers the ROM from the coreboot tables. Then one would
disable caching and change the MTRR type from uncacheable to
write-protect and enable caching. The opposite sequence is required
to tearn down the caching.

Change-Id: I4d486cfb986629247ab2da7818486973c6720ef5
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2919
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-29 20:09:36 +01:00
Aaron Durbin 77a5b4046a x86: mtrr: add CONFIG_CACHE_ROM support
The CONFIG_CACHE_ROM support in the MTRR code allocates an MTRR
specifically for setting up write-protect cachine of the ROM. It is
assumed that CONFIG_ROM_SIZE is the size of the ROM and the whole
area should be cached just under 4GiB. If enabled, the MTRR code
will allocate but not enable rom caching. It is up to the callers
of the MTRR code to explicitly enable (and disable afterwards) through
the use of 2 new functions:
- x86_mtrr_enable_rom_caching()
- x86_mtrr_disable_rom_caching()

Additionally, the CACHE_ROM option is exposed to the config menu so
that it is not just selected by the chipset or board. The reasoning
is that through a multitude of options CACHE_ROM may not be appropriate
for enabling.

Change-Id: I4483df850f442bdcef969ffeaf7608ed70b88085
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2918
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-29 19:59:53 +01:00
Aaron Durbin a05a8522ce lib: add memrange infrastructure
The memrange infrastructure allows for keeping track of the
machine's physical address space. Each memory_range entry in
a memory_ranges structure can be tagged with an arbitrary value.
It supports merging and deleting ranges as well as filling in
holes in the address space with a particular tag.

The memrange infrastructure will serve as a shared implementation
for address tracking by the MTRR and coreboot mem table code.

Change-Id: Id5bea9d2a419114fca55c59af0fdca063551110e
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2888
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-29 19:55:48 +01:00
Aaron Durbin 3ece5ac40c stdlib: add ALIGN_UP and ALIGN_DOWN macros
There wasn't an equivalent to align down so add ALIGN_DOWN.
For symmetry provide an ALIGN_UP macro as well.

Change-Id: I7033109311eeb15c8c69c649878785378790feb9
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2951
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-29 19:54:47 +01:00
Aaron Durbin 4fa5fa5088 resources: introduce IORESOURCE_WRCOMB
Certain MMIO resources can be set to a write-combining cacheable
mode to increase performance. Typical resources that use this would
be graphics memory.

Change-Id: Icd96c720f86f7e2f19a6461bb23cb323124eb68e
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2891
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-29 19:54:08 +01:00
Aaron Durbin a75561415e resources: remove IORESOURCE_[UMA_FB|IGNORE_MTRR]
The IORESOURCE_UMA_FB and IORESOURCE_IGNORE_MTRR attributes
on a resource provided hints to the MTRR algorithm. The
IORESOURCE_UMA_FB directed the MTRR algorithm to setup a uncacheable
space for the resource. The IORESOURCE_IGNORE_MTRR directed
the MTRR algorithm to ignore this resource as it was used reserving
RAM space.

Now that the optimizing MTRR algorithm is in place there isn't a need
for these flags. All IORESOURCE_IGNORE_MTRR users are handled by the
MTRR code merging resources of the same cacheable type. The users
of the IORESOURCE_UMA_FB will find that the default MTRR type
calculation means there isn't a need for this flag any more.

Change-Id: I4f62192edd9a700cb80fa7569caf49538f9b83b7
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2890
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-29 19:54:00 +01:00
Aaron Durbin bb4e79a332 x86: add new mtrr implementation
The old MTRR code had issues using too many variable
MTRRs depending on the physical address space layout dictated
by the device resources. This new implementation calculates
the default MTRR type by comparing the number of variable MTRRs
used for each type. This avoids the need for IORESOURE_UMA_FB
because in many of those situations setting the default type to WB
frees up the variable MTTRs to set that space to UC.

Additionally, it removes the need for IORESOURCE_IGNORE_MTRR
becuase the new mtrr uses the memrange library which does merging
of resources.

Lastly, the sandybridge gma has its speedup optimization removed
for the graphics memory by writing a pre-determined MTRR index.
That will be fixed in an upcoming patch once write-combining support
is added to the resources.

Slight differences from previous MTRR code:
- The number of reserved OS MTRRs is not a hard limit. It's now advisory
  as PAT can be used by the OS to setup the regions to the caching
  policy desired.
- The memory types are calculated once by the first CPU to run the code.
  After that all other CPUs use that value.
- CONFIG_CACHE_ROM support was dropped. It will be added back in its own
  change.

A pathological case that was previously fixed by changing vendor code
to adjust the IO hole location looked like the following:

MTRR: Physical address space:
0x0000000000000000 - 0x00000000000a0000 size 0x000a0000 type 6
0x00000000000a0000 - 0x00000000000c0000 size 0x00020000 type 0
0x00000000000c0000 - 0x00000000ad800000 size 0xad740000 type 6
0x00000000ad800000 - 0x00000000d0000000 size 0x22800000 type 0
0x00000000d0000000 - 0x00000000e0000000 size 0x10000000 type 1
0x00000000e0000000 - 0x0000000100000000 size 0x20000000 type 0
0x0000000100000000 - 0x000000014f600000 size 0x4f600000 type 6

As noted by the output below it's impossible to accomodate those
ranges even with 10 variable MTRRS. However, because the code
can select WB as the default MTRR type it can be done in 6 MTRRs:

MTRR: default type WB/UC MTRR counts: 6/14.
MTRR: WB selected as default type.
MTRR: 0 base 0x00000000ad800000 mask 0x0000007fff800000 type 0
MTRR: 1 base 0x00000000ae000000 mask 0x0000007ffe000000 type 0
MTRR: 2 base 0x00000000b0000000 mask 0x0000007ff0000000 type 0
MTRR: 3 base 0x00000000c0000000 mask 0x0000007ff0000000 type 0
MTRR: 4 base 0x00000000d0000000 mask 0x0000007ff0000000 type 1
MTRR: 5 base 0x00000000e0000000 mask 0x0000007fe0000000 type 0

Change-Id: Idfcc78d9afef9d44c769a676716aae3ff2bd79de
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2889
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-29 19:53:43 +01:00
Aaron Durbin c965076c3e resources: introduce reserved_ram_resource()
mmio_resource() was previously being used for reserving
RAM from the OS by using IORESOURCE_IGNORE_MTRR atrribute.
Instead, be more explicit for those uses with
reserved_ram_resource(). bad_ram_resource() now calls
reserved_ram_resource(). Those resources are marked as cacheable
but reserved.

The sandybridge and haswell code were relying on the implementation
fo the MTRR algorithm's interaction for reserved regions. Instead
be explicit about what ranges are MMIO reserved and what are RAM
reserved.

Change-Id: I1e47026970fb37c0305e4d49a12c98b0cdd1abe5
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2886
Tested-by: build bot (Jenkins)
Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-23 19:40:36 +01:00
Aaron Durbin 1989b4bd56 x86: expose console_tx_flush in romstage
The vboot module relied on being able to flush the console
after it called vtxprintf() from its log wrapper function.
Expose the console_tx_flush() function in romstage so the
vboot module can ensure messages are flushed.

Change-Id: I578053df4b88c2068bd9cc90eea5573069a0a4e8
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2882
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-23 19:36:36 +01:00
Aaron Durbin 57686f8485 x86: unify amd and non-amd MTRR routines
The amd_mtrr.c file contains a copy of the fixed MTRR algorithm.
However, the AMD code needs to handle the RdMem and WrMem attribute
bits in the fixed MTRR MSRs. Instead of duplicating the code
with the one slight change introduce a Kconfig option,
X86_AMD_FIXED_MTRRS, which indicates that the RdMem and WrMem fields
need to be handled for writeback fixed MTRR ranges.

The order of how the AMD MTRR setup routine is maintained by providing
a x86_setup_fixed_mtrrs_no_enable() function which does not enable
the fixed MTRRs after setting them up. All Kconfig files which had a
Makefile that included amd/mtrr in the subdirs-y now have a default
X86_AMD_FIXED_MTRRS selection. There may be some overlap with the
agesa and socket code, but I didn't know the best way to tease out
the interdependency.

Change-Id: I256d0210d1eb3004e2043b46374dcc0337432767
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2866
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Tested-by: build bot (Jenkins)
2013-03-22 04:06:42 +01:00
Stefan Reinauer 3e4e303858 Unify coreboot table generation
coreboot tables are, unlike general system tables, a platform
independent concept. Hence, use the same code for coreboot table
generation on all platforms. lib/coreboot_tables.c is based
on the x86 version of the file, because some important fixes
were missed on the ARMv7 version lately.

Change-Id: Icc38baf609f10536a320d21ac64408bef44bb77d
Signed-off-by: Stefan Reinauer <reinauer@coreboot.org>
Reviewed-on: http://review.coreboot.org/2863
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-by: Aaron Durbin <adurbin@google.com>
Tested-by: build bot (Jenkins)
2013-03-22 00:17:55 +01:00
Aaron Durbin dd32a31fba coreboot: add vboot_handoff to coreboot tables
The vboot_handoff structure contians the VbInitParams as well as the
shared vboot data. In order for the boot loader to find it, the
structure address and size needs to be obtained from the coreboot
tables.

Change-Id: I6573d479009ccbf373a7325f861bebe8dc9f5cf8
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2857
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-22 00:16:14 +01:00
Aaron Durbin c0650894f8 rmodule: add vboot rmodule type
For completeness add a vboot rmodule type since vboot will be
built as an rmodule.

Change-Id: I4b9b1e6f6077f811cafbb81effd4d082c91d4300
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2853
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-22 00:14:50 +01:00
Aaron Durbin 22919ce62c timestamp: add vboot check points
It's desirable to measure the vboot firmware selection time.
Therefore add vboot check points to the timestamp ids.

Change-Id: Ib103a9e91652cf96abcacebf0f211300e03f71fd
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2852
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
2013-03-22 00:14:18 +01:00
Aaron Durbin 0c6946db3f cbmem: add vboot cmbem id
The vboot firmware selection from romstage will need to
pass the resulting vboot data to other consumers. This will
be done using a cbmem entry.

Change-Id: I497caba53f9f3944513382f3929d21b04bf3ba9e
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2851
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-22 00:14:07 +01:00
Aaron Durbin dd4a6d2357 coreboot: dynamic cbmem requirement
Dynamic cbmem is now a requirement for relocatable ramstage.
This patch replaces the reserve_* fields in the romstage_handoff
structure by using the dynamic cbmem library.

The haswell code is not moved over in this commit, but it should be
safe because there is a hard requirement for DYNAMIC_CBMEM when using
a reloctable ramstage.

Change-Id: I59ab4552c3ae8c2c3982df458cd81a4a9b712cc2
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2849
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-22 00:13:42 +01:00
Stefan Reinauer 24d1d4b472 x86: Unify arch/io.h and arch/romcc_io.h
Here's the great news: From now on you don't have to worry about
hitting the right io.h include anymore. Just forget about romcc_io.h
and use io.h instead. This cleanup has a number of advantages, like
you don't have to guard device/ includes for SMM and pre RAM
anymore. This allows to get rid of a number of ifdefs and will
generally make the code more readable and understandable.

Potentially in the future some of the code in the io.h __PRE_RAM__
path should move to device.h or other device/ includes instead,
but that's another incremental change.

Change-Id: I356f06110e2e355e9a5b4b08c132591f36fec7d9
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2872
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-22 00:00:09 +01:00
Aaron Durbin df3a109b72 cbmem: dynamic cbmem support
This patch adds a parallel implementation of cbmem that supports
dynamic sizing. The original implementation relied on reserving
a fixed-size block of memory for adding cbmem entries. In order to
allow for more flexibility for adding cbmem allocations the dynamic
cbmem infrastructure was developed as an alternative to the fixed block
approach. Also, the amount of memory to reserve for cbmem allocations
does not need to be known prior to the first allocation.

The dynamic cbmem code implements the same API as the existing cbmem
code except for cbmem_init() and cbmem_reinit(). The add and find
routines behave the same way. The dynamic cbmem infrastructure
uses a top down allocator that starts allocating from a board/chipset
defined function cbmem_top(). A root pointer lives just below
cbmem_top(). In turn that pointer points to the root block which
contains the entries for all the large alloctations. The corresponding
block for each large allocation falls just below the previous entry.

It should be noted that this implementation rounds all allocations
up to a 4096 byte granularity. Though a packing allocator could
be written for small allocations it was deemed OK to just fragment
the memory as there shouldn't be that many small allocations. The
result is less code with a tradeoff of some wasted memory.

           +----------------------+ <- cbmem_top()
  |   +----|   root pointer       |
  |   |    +----------------------+
  |   |    |                      |--------+
  |   +--->|   root block         |-----+  |
  |        +----------------------+     |  |
  |        |                      |     |  |
  |        |                      |     |  |
  |        |   alloc N            |<----+  |
  |        +----------------------+        |
  |        |                      |        |
  |        |                      |        |
 \|/       |   alloc N + 1        |<-------+
  v        +----------------------+

In addition to preserving the previous cbmem API, the dynamic
cbmem API allows for removing blocks from cbmem. This allows for
the boot process to allocate memory that can be discarded after
it's been used for performing more complex boot tasks in romstage.

In order to plumb this support in there were some issues to work
around regarding writing of coreboot tables. There were a few
assumptions to how cbmem was layed out which dictated some ifdef
guarding and other runtime checks so as not to incorrectly
tag the e820 and coreboot memory tables.

The example shown below is using dynamic cbmem infrastructure.
The reserved memory for cbmem is less than 512KiB.

coreboot memory table:
 0. 0000000000000000-0000000000000fff: CONFIGURATION TABLES
 1. 0000000000001000-000000000002ffff: RAM
 2. 0000000000030000-000000000003ffff: RESERVED
 3. 0000000000040000-000000000009ffff: RAM
 4. 00000000000a0000-00000000000fffff: RESERVED
 5. 0000000000100000-0000000000efffff: RAM
 6. 0000000000f00000-0000000000ffffff: RESERVED
 7. 0000000001000000-000000007bf80fff: RAM
 8. 000000007bf81000-000000007bffffff: CONFIGURATION TABLES
 9. 000000007c000000-000000007e9fffff: RESERVED
10. 00000000f0000000-00000000f3ffffff: RESERVED
11. 00000000fed10000-00000000fed19fff: RESERVED
12. 00000000fed84000-00000000fed84fff: RESERVED
13. 0000000100000000-00000001005fffff: RAM
Wrote coreboot table at: 7bf81000, 0x39c bytes, checksum f5bf
coreboot table: 948 bytes.
CBMEM ROOT  0. 7bfff000 00001000
MRC DATA    1. 7bffe000 00001000
ROMSTAGE    2. 7bffd000 00001000
TIME STAMP  3. 7bffc000 00001000
ROMSTG STCK 4. 7bff7000 00005000
CONSOLE     5. 7bfe7000 00010000
VBOOT       6. 7bfe6000 00001000
RAMSTAGE    7. 7bf98000 0004e000
GDT         8. 7bf97000 00001000
ACPI        9. 7bf8b000 0000c000
ACPI GNVS  10. 7bf8a000 00001000
SMBIOS     11. 7bf89000 00001000
COREBOOT   12. 7bf81000 00008000

And the corresponding e820 entries:
BIOS-e820: [mem 0x0000000000000000-0x0000000000000fff] type 16
BIOS-e820: [mem 0x0000000000001000-0x000000000002ffff] usable
BIOS-e820: [mem 0x0000000000030000-0x000000000003ffff] reserved
BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable
BIOS-e820: [mem 0x00000000000a0000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x0000000000efffff] usable
BIOS-e820: [mem 0x0000000000f00000-0x0000000000ffffff] reserved
BIOS-e820: [mem 0x0000000001000000-0x000000007bf80fff] usable
BIOS-e820: [mem 0x000000007bf81000-0x000000007bffffff] type 16
BIOS-e820: [mem 0x000000007c000000-0x000000007e9fffff] reserved
BIOS-e820: [mem 0x00000000f0000000-0x00000000f3ffffff] reserved
BIOS-e820: [mem 0x00000000fed10000-0x00000000fed19fff] reserved
BIOS-e820: [mem 0x00000000fed84000-0x00000000fed84fff] reserved
BIOS-e820: [mem 0x0000000100000000-0x00000001005fffff] usable

Change-Id: Ie3bca52211800a8652a77ca684140cfc9b3b9a6b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2848
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 23:24:19 +01:00
Duncan Laurie d604090b28 lynxpoint: Fix ELOG logging of power management events
This is updated to handle LynxPoint-H and LynxPoint-LP
and a new wake event is added for the power button.

Boot, suspend/resume, reboot, etc on WTM2
and then check the event log to see if expected events
have been added.

Change-Id: I15cbc3901d81f4fd77cc04de37ff5fa048f9d3e8
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/2817
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 23:12:11 +01:00
Aaron Durbin de1f890186 coreboot: add caching loaded ramstage interface
Instead of hard coding the policy for how a relocated ramstage
image is saved add an interface. The interface consists of two
functions.  cache_loaded_ramstage() and load_cached_ramstage()
are the functions to cache and load the relocated ramstage,
respectively. There are default implementations which cache and
load the relocated ramstage just below where the ramstage runs.

Change-Id: I4346e873d8543e7eee4c1cd484847d846f297bb0
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2805
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 22:59:40 +01:00
Aaron Durbin 159f2ef03a ramstage: cache relocated ramstage in RAM
Accessing the flash part where the ramstage resides can be slow
when loading it. In order to save time in the S3 resume path a copy
of the relocated ramstage is saved just below the location the ramstage
was loaded. Then on S3 resume the cached version of the relocated
ramstage is copied back to the loaded address.

This is achieved by saving the ramstage entry point in the
romstage_handoff structure as reserving double the amount of memory
required for ramstage. This approach saves the engineering time to make
the ramstage reentrant.

The fast path in this change will only be taken when the chipset's
romstage code properly initializes the s3_resume field in the
romstage_handoff structure. If that is never set up properly then the
fast path will never be taken.

e820 entries from Linux:
BIOS-e820: [mem 0x000000007bf21000-0x000000007bfbafff] reserved
BIOS-e820: [mem 0x000000007bfbb000-0x000000007bffffff] type 16

The type 16 is the cbmem table and the reserved section contains the two
copies of the ramstage; one has been executed already and one is
the cached relocated program.

With this change the S3 resume path on the basking ridge CRB shows
to be ~200ms to hand off to the kernel:

13 entries total:

   1:95,965
   2:97,191 (1,225)
   3:131,755 (34,564)
   4:132,890 (1,135)
   8:135,165 (2,274)
   9:135,840 (675)
  10:135,973 (132)
  30:136,016 (43)
  40:136,581 (564)
  50:138,280 (1,699)
  60:138,381 (100)
  70:204,538 (66,157)
  98:204,615 (77)

Change-Id: I9c7a6d173afc758eef560e09d2aef5f90a25187a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2800
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 22:54:23 +01:00
Aaron Durbin 25fe2d04d5 ramstage: Add cbmem_get_table_location()
When CONFIG_EARLY_CBMEM_INIT is selected romstage is supposed to have
initialized cbmem. Therefore provide a weak function for the chipset
to implement named cbmem_get_table_location(). When
CONFIG_EARLY_CBMEM_INIT is selected cbmem_get_table_location() will be
called to get the cbmem location and size. After that cbmem_initialize()
is called.

Change-Id: Idc45a95f9d4b1d83eb3c6d4977f7a8c80c1ffe76
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2797
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 22:51:05 +01:00
Aaron Durbin c00457d065 romstage_handoff: add s3_resume field
Provide a field in the romstage_handoff structure to indicate if the
current boot is an ACPI S3 wake boot. There are currently quite a few
non-standardized ways of passing this knowledge to ramstage from
romstage. Many utilize stashing magic numbers in device-specific
registers. The addition of this field adds a more formalized method
passing along this information. However, it still requires the romstage
chipset code to initialize this field. In short, this change does not
make this a hard requirement for ramstage.

Change-Id: Ia819c0ceed89ed427ef576a036fa870eb7cf57bc
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2796
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 22:49:49 +01:00
Aaron Durbin f2b20d898a romstage_handoff: provide common logic for setup
The romstage_handoff structure can be utilized from different components
of the romstage -- some in the chipset code, some in coreboot's core
libarary. To ensure that all users handle initialization of a newly
added romstage_handoff structure properly, provide a common function to
handle structure initialization.

Change-Id: I3998c6bb228255f4fd93d27812cf749560b06e61
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2795
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 22:49:18 +01:00
Aaron Durbin ef4275bc2e x86: protect against abi assumptions from compiler
Some of the functions called from assembly assume the standard
x86 32-bit ABI of passing all arguments on the stack. However,
that calling ABI can be changed by compiler flags. In order to
protect against the current implicit calling convention annotate
the functions called from assembly with the cdecl function
attribute. That tells the compiler to use the stack based parameter
calling convention.

Change-Id: I83625e1f92c6821a664b191b6ce1250977cf037a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2794
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 22:47:42 +01:00
Aaron Durbin 8e4a355773 coreboot: introduce CONFIG_RELOCATABLE_RAMSTAGE
This patch adds an option to build the ramstage as a reloctable binary.
It uses the rmodule library for the relocation. The main changes
consist of the following:

1. The ramstage is loaded just under the cmbem space.
2. Payloads cannot be loaded over where ramstage is loaded. If a payload
   is attempted to load where the relocatable ramstage resides the load
   is aborted.
3. The memory occupied by the ramstage is reserved from the OS's usage
   using the romstage_handoff structure stored in cbmem. This region is
   communicated to ramstage by an CBMEM_ID_ROMSTAGE_INFO entry in cbmem.
4. There is no need to reserve cbmem space for the OS controlled memory for
   the resume path because the ramsage region has been reserved in #3.
5. Since no memory needs to be preserved in the wake path, the loading
   and begin of execution of a elf payload is straight forward.

Change-Id: Ia66cf1be65c29fa25ca7bd9ea6c8f11d7eee05f5
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2792
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@google.com>
2013-03-21 22:28:28 +01:00
Aaron Durbin cddcc80048 coreboot: introduce romstage_handoff structure
The romstage_handoff structure is intended to be a way for romstage and
ramstage to communicate with one another instead of using sideband
signals such as stuffing magic values in pci config or memory
scratch space. Initially this structure just contains a single region
that indicates to ramstage that it should reserve a memory region used
by the romstage. Ramstage looks for a romstage_handoff structure in cbmem
with an id of CBMEM_ID_ROMSTAGE_INFO. If found, it will honor reserving
the region defined in the romstage_handoff structure.

Change-Id: I9274ea5124e9bd6584f6977d8280b7e9292251f0
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2791
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 18:04:56 +01:00
Aaron Durbin a1db81b47a cbmem: add CBMEM_ID_ROMSTAGE_INFO id
Introduce a new cbmem id to indicate romstage information. Proper
coordination with ramstage and romstage can use this cbmem entity
to communicate between one another.

Change-Id: Id785f429eeff5b015188c36eb932e6a6ce122da8
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2790
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
2013-03-21 18:02:34 +01:00
Aaron Durbin e8c866ad45 rmodule: add ability to calculate module placement
There is a need to calculate the proper placement for an rmodule
in memory. e.g. loading a compressed rmodule from flash into ram
can be an issue. Determining the placement is hard since the header
is not readable until it is decompressed so choosing the wrong location
may require a memmove() after decompression. This patch provides
a function to perform this calculation by finding region below a given
address while making an assumption on the size of the rmodule header..

Change-Id: I2703438f58ae847ed6e80b58063ff820fbcfcbc0
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2788
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-21 17:53:20 +01:00
Ronald G. Minnich b3b72f350e link/graphics: Add support for EDID
This code is taken from an EDID reader written at Red Hat.

The key function is
int decode_edid(unsigned char *edid, int size, struct edid *out)

Which takes a pointer to an EDID blob, and a size, and decodes it into
a machine-independent format in out, which may be used for driving
chipsets. The EDID blob might come for IO, or a compiled-in EDID
BLOB, or CBFS.

Also included are the changes needed to use the EDID code on Link.

Change-Id: I66b275b8ed28fd77cfa5978bdec1eeef9e9425f1
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: http://review.coreboot.org/2837
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-03-20 05:35:50 +01:00
Aaron Durbin d466d750d7 x86: provide more C standard environment
There are some external libraries that are built within
coreboot's environment that expect a more common C standard
environment. That includes things like inttypes.h and UINTx_MAX
macros. This provides the minimal amount of #defines and files
to build vboot_reference.

Change-Id: I95b1f38368747af7b63eaca3650239bb8119bb13
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2859
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-20 04:20:25 +01:00
Aaron Durbin f7c6d489ae rmodule: add ramstage support
Coreboot's ramstage defines certain sections/symbols in its fixed
static linker script. It uses these sections/symbols for locating the
drivers as well as its own program information.  Add these sections
and symbols to the rmodule linker script so that ramstage can be
linked as an rmodule. These sections and symbols are a noop for other
rmodule-linked programs, but they are vital to the ramstage.

Also add a comment in coreboot_ram.ld to mirror any changes made there
to the rmodule linker script.

Change-Id: Ib9885a00e987aef0ee1ae34f1d73066e15bca9b1
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2786
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
2013-03-19 20:31:41 +01:00
Aaron Durbin 98ffb426f4 intel microcode: split up microcode loading stages
This patch only applies to CONFIG_MICROCODE_IN_CBFS. The intel microcode
update routine would always walk the CBFS for the microcode file. Then
it would loop through the whole file looking for a match then load the
microcode. This process was maintained for intel_update_microcode_from_cbfs(),
however 2 new functions were exported:
	1.  const void *intel_microcode_find(void)
	2.  void intel_microcode_load_unlocked(const void *microcode_patch)

The first locates a matching microcode while the second loads that
mircocode. These new functions can then be used to cache the found
microcode blob w/o having to re-walk the CBFS.

Booted baskingridge board to Linux and noted that all microcode
revisions match on all the CPUs.

Change-Id: Ifde3f3e5c100911c4f984dd56d36664a8acdf7d5
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2778
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-19 05:11:50 +01:00
Aaron Durbin 9be4c470bc rmodule: add rmodules class and new type
Add an rmodules class so that there are default rules for compiling
files that will be linked by the rmodule linker. Also, add a new type
for SIPI vectors.

Change-Id: Ided9e15577b34aff34dc23e5e16791c607caf399
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2751
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-18 20:46:40 +01:00
Aaron Durbin 3bf0ce79b9 rmodule: add 16 bytes of padding
There is a plan to utlize rmodules for loading ramstage as a
relocatable module. However, the rmodule header may change.
In order to provide some wiggle room for changing the contents
of the rmodule header add some padding. This won't stop the need
for coordinating properly between the romstage loader that may be
in readonly flash and rmodule header fields.  But it will provide
for a way to make certain assumptions about alignment of the
rmodule's program when the rmodule is compressed in the flash.

Change-Id: I9ac5cf495c0bce494e7eaa3bd2f2bd39889b4c52
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2749
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-03-18 18:51:20 +01:00