coreboot-kgpe-d16/src/cpu/x86/mp_init.c

1037 lines
27 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <stdint.h>
#include <rmodule.h>
#include <arch/cpu.h>
#include <cpu/cpu.h>
#include <cpu/intel/microcode.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/gdt.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/name.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <cpu/x86/mp.h>
#include <delay.h>
#include <device/device.h>
#include <device/path.h>
#include <lib.h>
#include <smp/atomic.h>
#include <smp/spinlock.h>
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#include <symbols.h>
#include <thread.h>
#define MAX_APIC_IDS 256
typedef void (*mp_callback_t)(void);
/*
* A mp_flight_record details a sequence of calls for the APs to perform
* along with the BSP to coordinate sequencing. Each flight record either
* provides a barrier for each AP before calling the callback or the APs
* are allowed to perform the callback without waiting. Regardless, each
* record has the cpus_entered field incremented for each record. When
* the BSP observes that the cpus_entered matches the number of APs
* the bsp_call is called with bsp_arg and upon returning releases the
* barrier allowing the APs to make further progress.
*
* Note that ap_call() and bsp_call() can be NULL. In the NULL case the
* callback will just not be called.
*/
struct mp_flight_record {
atomic_t barrier;
atomic_t cpus_entered;
mp_callback_t ap_call;
mp_callback_t bsp_call;
} __attribute__((aligned(CACHELINE_SIZE)));
#define _MP_FLIGHT_RECORD(barrier_, ap_func_, bsp_func_) \
{ \
.barrier = ATOMIC_INIT(barrier_), \
.cpus_entered = ATOMIC_INIT(0), \
.ap_call = ap_func_, \
.bsp_call = bsp_func_, \
}
#define MP_FR_BLOCK_APS(ap_func_, bsp_func_) \
_MP_FLIGHT_RECORD(0, ap_func_, bsp_func_)
#define MP_FR_NOBLOCK_APS(ap_func_, bsp_func_) \
_MP_FLIGHT_RECORD(1, ap_func_, bsp_func_)
/* The mp_params structure provides the arguments to the mp subsystem
* for bringing up APs. */
struct mp_params {
int num_cpus; /* Total cpus include BSP */
int parallel_microcode_load;
const void *microcode_pointer;
/* adjust_apic_id() is called for every potential APIC id in the
* system up from 0 to CONFIG_MAX_CPUS. Return adjusted apic_id. */
int (*adjust_apic_id)(int index, int apic_id);
/* Flight plan for APs and BSP. */
struct mp_flight_record *flight_plan;
int num_records;
};
/* This needs to match the layout in the .module_parametrs section. */
struct sipi_params {
uint16_t gdtlimit;
uint32_t gdt;
uint16_t unused;
uint32_t idt_ptr;
uint32_t stack_top;
uint32_t stack_size;
uint32_t microcode_lock; /* 0xffffffff means parallel loading. */
uint32_t microcode_ptr;
uint32_t msr_table_ptr;
uint32_t msr_count;
uint32_t c_handler;
atomic_t ap_count;
} __attribute__((packed));
/* This also needs to match the assembly code for saved MSR encoding. */
struct saved_msr {
uint32_t index;
uint32_t lo;
uint32_t hi;
} __attribute__((packed));
/* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */
extern char _binary_sipi_vector_start[];
/* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is at the
* memory range is already reserved so the OS cannot use it. That region is
* free to use for AP bringup before SMM is initialized. */
static const uint32_t sipi_vector_location = SMM_DEFAULT_BASE;
static const int sipi_vector_location_size = SMM_DEFAULT_SIZE;
struct mp_flight_plan {
int num_records;
struct mp_flight_record *records;
};
static int global_num_aps;
static struct mp_flight_plan mp_info;
struct cpu_map {
struct device *dev;
int apic_id;
};
/* Keep track of APIC and device structure for each CPU. */
static struct cpu_map cpus[CONFIG_MAX_CPUS];
inline void barrier_wait(atomic_t *b)
{
while (atomic_read(b) == 0)
asm ("pause");
mfence();
}
/* Returns 1 if timeout occurs before barier is released.
* returns 0 if barrier is released before timeout. */
int barrier_wait_timeout(atomic_t *b, uint32_t timeout_ms)
{
int timeout = 0;
struct mono_time current, end;
timer_monotonic_get(&current);
end = current;
mono_time_add_msecs(&end, timeout_ms);
while ((atomic_read(b) == 0) && (!mono_time_after(&current, &end))) {
timer_monotonic_get(&current);
asm ("pause");
}
mfence();
if (mono_time_after(&current, &end))
timeout = 1;
return timeout;
}
inline void release_barrier(atomic_t *b)
{
mfence();
atomic_set(b, 1);
}
/* Returns 1 if timeout waiting for APs. 0 if target aps found. */
static int wait_for_aps(atomic_t *val, int target, int total_delay,
int delay_step)
{
int timeout = 0;
int delayed = 0;
while (atomic_read(val) != target) {
udelay(delay_step);
delayed += delay_step;
if (delayed >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static void ap_do_flight_plan(void)
{
int i;
for (i = 0; i < mp_info.num_records; i++) {
struct mp_flight_record *rec = &mp_info.records[i];
atomic_inc(&rec->cpus_entered);
barrier_wait(&rec->barrier);
if (rec->ap_call != NULL)
rec->ap_call();
}
}
static void park_this_cpu(void)
{
stop_this_cpu();
}
/* By the time APs call ap_init() caching has been setup, and microcode has
* been loaded. */
static void asmlinkage ap_init(unsigned int cpu)
{
struct cpu_info *info;
int apic_id;
/* Ensure the local APIC is enabled */
enable_lapic();
info = cpu_info();
info->index = cpu;
info->cpu = cpus[cpu].dev;
thread_init_cpu_info_non_bsp(info);
apic_id = lapicid();
info->cpu->path.apic.apic_id = apic_id;
cpus[cpu].apic_id = apic_id;
printk(BIOS_INFO, "AP: slot %d apic_id %x.\n", cpu, apic_id);
/* Walk the flight plan */
ap_do_flight_plan();
/* Park the AP. */
park_this_cpu();
}
static void setup_default_sipi_vector_params(struct sipi_params *sp)
{
sp->gdt = (uint32_t)&gdt;
sp->gdtlimit = (uint32_t)&gdt_end - (u32)&gdt - 1;
sp->idt_ptr = (uint32_t)&idtarg;
sp->stack_size = CONFIG_STACK_SIZE;
sp->stack_top = (uint32_t)&_estack;
/* Adjust the stack top to take into account cpu_info. */
sp->stack_top -= sizeof(struct cpu_info);
}
#define NUM_FIXED_MTRRS 11
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
MTRR_FIX_64K_00000, MTRR_FIX_16K_80000, MTRR_FIX_16K_A0000,
MTRR_FIX_4K_C0000, MTRR_FIX_4K_C8000, MTRR_FIX_4K_D0000,
MTRR_FIX_4K_D8000, MTRR_FIX_4K_E0000, MTRR_FIX_4K_E8000,
MTRR_FIX_4K_F0000, MTRR_FIX_4K_F8000,
};
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
{
msr_t msr;
msr = rdmsr(index);
entry->index = index;
entry->lo = msr.lo;
entry->hi = msr.hi;
/* Return the next entry. */
entry++;
return entry;
}
static int save_bsp_msrs(char *start, int size)
{
int msr_count;
int num_var_mtrrs;
struct saved_msr *msr_entry;
int i;
msr_t msr;
/* Determine number of MTRRs need to be saved. */
msr = rdmsr(MTRR_CAP_MSR);
num_var_mtrrs = msr.lo & 0xff;
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
if ((msr_count * sizeof(struct saved_msr)) > size) {
printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count);
return -1;
}
msr_entry = (void *)start;
for (i = 0; i < NUM_FIXED_MTRRS; i++)
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
for (i = 0; i < num_var_mtrrs; i++) {
msr_entry = save_msr(MTRR_PHYS_BASE(i), msr_entry);
msr_entry = save_msr(MTRR_PHYS_MASK(i), msr_entry);
}
msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
return msr_count;
}
static atomic_t *load_sipi_vector(struct mp_params *mp_params)
{
struct rmodule sipi_mod;
int module_size;
int num_msrs;
struct sipi_params *sp;
char *mod_loc = (void *)sipi_vector_location;
const int loc_size = sipi_vector_location_size;
atomic_t *ap_count = NULL;
if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to parse sipi module.\n");
return ap_count;
}
if (rmodule_entry_offset(&sipi_mod) != 0) {
printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n");
return ap_count;
}
if (rmodule_load_alignment(&sipi_mod) != 4096) {
printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n",
rmodule_load_alignment(&sipi_mod));
return ap_count;
}
module_size = rmodule_memory_size(&sipi_mod);
/* Align to 4 bytes. */
module_size = ALIGN(module_size, 4);
if (module_size > loc_size) {
printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n",
module_size, loc_size);
return ap_count;
}
num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size);
if (num_msrs < 0) {
printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n");
return ap_count;
}
if (rmodule_load(mod_loc, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to load SIPI module.\n");
return ap_count;
}
sp = rmodule_parameters(&sipi_mod);
if (sp == NULL) {
printk(BIOS_CRIT, "SIPI module has no parameters.\n");
return ap_count;
}
setup_default_sipi_vector_params(sp);
/* Setup MSR table. */
sp->msr_table_ptr = (uint32_t)&mod_loc[module_size];
sp->msr_count = num_msrs;
/* Provide pointer to microcode patch. */
sp->microcode_ptr = (uint32_t)mp_params->microcode_pointer;
/* Pass on abiility to load microcode in parallel. */
if (mp_params->parallel_microcode_load)
sp->microcode_lock = 0;
else
sp->microcode_lock = ~0;
sp->c_handler = (uint32_t)&ap_init;
ap_count = &sp->ap_count;
atomic_set(ap_count, 0);
return ap_count;
}
static int allocate_cpu_devices(struct bus *cpu_bus, struct mp_params *p)
{
int i;
int max_cpus;
struct cpu_info *info;
max_cpus = p->num_cpus;
if (max_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n",
max_cpus, CONFIG_MAX_CPUS);
max_cpus = CONFIG_MAX_CPUS;
}
info = cpu_info();
for (i = 1; i < max_cpus; i++) {
struct device_path cpu_path;
struct device *new;
int apic_id;
/* Build the CPU device path */
cpu_path.type = DEVICE_PATH_APIC;
/* Assuming linear APIC space allocation. */
apic_id = info->cpu->path.apic.apic_id + i;
if (p->adjust_apic_id != NULL)
apic_id = p->adjust_apic_id(i, apic_id);
cpu_path.apic.apic_id = apic_id;
/* Allocate the new CPU device structure */
new = alloc_find_dev(cpu_bus, &cpu_path);
if (new == NULL) {
printk(BIOS_CRIT, "Could not allocate CPU device\n");
max_cpus--;
}
cpus[i].dev = new;
}
return max_cpus;
}
/* Returns 1 for timeout. 0 on success. */
static int apic_wait_timeout(int total_delay, int delay_step)
{
int total = 0;
int timeout = 0;
while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
udelay(delay_step);
total += delay_step;
if (total >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static int start_aps(struct bus *cpu_bus, int ap_count, atomic_t *num_aps)
{
int sipi_vector;
/* Max location is 4KiB below 1MiB */
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
if (ap_count == 0)
return 0;
/* The vector is sent as a 4k aligned address in one byte. */
sipi_vector = sipi_vector_location >> 12;
if (sipi_vector > max_vector_loc) {
printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n",
sipi_vector);
return -1;
}
printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count);
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
}
printk(BIOS_DEBUG, "done.\n");
}
/* Send INIT IPI to all but self. */
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_INIT);
printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n");
mdelay(10);
/* Send 1st SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
}
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
printk(BIOS_DEBUG, "Waiting for 1st SIPI to complete...");
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "timed out.\n");
return -1;
}
printk(BIOS_DEBUG, "done.\n");
/* Wait for CPUs to check in up to 200 us. */
wait_for_aps(num_aps, ap_count, 200 /* us */, 15 /* us */);
/* Send 2nd SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
}
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
printk(BIOS_DEBUG, "Waiting for 2nd SIPI to complete...");
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "timed out.\n");
return -1;
}
printk(BIOS_DEBUG, "done.\n");
/* Wait for CPUs to check in. */
if (wait_for_aps(num_aps, ap_count, 10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "Not all APs checked in: %d/%d.\n",
atomic_read(num_aps), ap_count);
return -1;
}
return 0;
}
static int bsp_do_flight_plan(struct mp_params *mp_params)
{
int i;
int ret = 0;
const int timeout_us = 100000;
const int step_us = 100;
int num_aps = mp_params->num_cpus - 1;
for (i = 0; i < mp_params->num_records; i++) {
struct mp_flight_record *rec = &mp_params->flight_plan[i];
/* Wait for APs if the record is not released. */
if (atomic_read(&rec->barrier) == 0) {
/* Wait for the APs to check in. */
if (wait_for_aps(&rec->cpus_entered, num_aps,
timeout_us, step_us)) {
printk(BIOS_ERR, "MP record %d timeout.\n", i);
ret = -1;
}
}
if (rec->bsp_call != NULL)
rec->bsp_call();
release_barrier(&rec->barrier);
}
return ret;
}
static void init_bsp(struct bus *cpu_bus)
{
struct device_path cpu_path;
struct cpu_info *info;
char processor_name[49];
/* Print processor name */
fill_processor_name(processor_name);
printk(BIOS_INFO, "CPU: %s.\n", processor_name);
/* Ensure the local APIC is enabled */
enable_lapic();
/* Set the device path of the boot CPU. */
cpu_path.type = DEVICE_PATH_APIC;
cpu_path.apic.apic_id = lapicid();
/* Find the device structure for the boot CPU. */
info = cpu_info();
info->cpu = alloc_find_dev(cpu_bus, &cpu_path);
if (info->index != 0)
printk(BIOS_CRIT, "BSP index(%d) != 0!\n", info->index);
/* Track BSP in cpu_map structures. */
cpus[info->index].dev = info->cpu;
cpus[info->index].apic_id = cpu_path.apic.apic_id;
}
/*
* mp_init() will set up the SIPI vector and bring up the APs according to
* mp_params. Each flight record will be executed according to the plan. Note
* that the MP infrastructure uses SMM default area without saving it. It's
* up to the chipset or mainboard to either e820 reserve this area or save this
* region prior to calling mp_init() and restoring it after mp_init returns.
*
* At the time mp_init() is called the MTRR MSRs are mirrored into APs then
* caching is enabled before running the flight plan.
*
* The MP initialization has the following properties:
* 1. APs are brought up in parallel.
* 2. The ordering of coreboot CPU number and APIC ids is not deterministic.
* Therefore, one cannot rely on this property or the order of devices in
* the device tree unless the chipset or mainboard know the APIC ids
* a priori.
*
* mp_init() returns < 0 on error, 0 on success.
*/
static int mp_init(struct bus *cpu_bus, struct mp_params *p)
{
int num_cpus;
atomic_t *ap_count;
init_bsp(cpu_bus);
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
printk(BIOS_CRIT, "Invalid MP parameters\n");
return -1;
}
/* Default to currently running CPU. */
num_cpus = allocate_cpu_devices(cpu_bus, p);
if (num_cpus < p->num_cpus) {
printk(BIOS_CRIT,
"ERROR: More cpus requested (%d) than supported (%d).\n",
p->num_cpus, num_cpus);
return -1;
}
/* Copy needed parameters so that APs have a reference to the plan. */
mp_info.num_records = p->num_records;
mp_info.records = p->flight_plan;
/* Load the SIPI vector. */
ap_count = load_sipi_vector(p);
if (ap_count == NULL)
return -1;
/* Make sure SIPI data hits RAM so the APs that come up will see
* the startup code even if the caches are disabled. */
wbinvd();
/* Start the APs providing number of APs and the cpus_entered field. */
global_num_aps = p->num_cpus - 1;
if (start_aps(cpu_bus, global_num_aps, ap_count) < 0) {
mdelay(1000);
printk(BIOS_DEBUG, "%d/%d eventually checked in?\n",
atomic_read(ap_count), global_num_aps);
return -1;
}
/* Walk the flight plan for the BSP. */
return bsp_do_flight_plan(p);
}
/* Calls cpu_initialize(info->index) which calls the coreboot CPU drivers. */
static void mp_initialize_cpu(void)
{
/* Call back into driver infrastructure for the AP initialization. */
struct cpu_info *info = cpu_info();
cpu_initialize(info->index);
}
/* Returns APIC id for coreboot CPU number or < 0 on failure. */
static int mp_get_apic_id(int cpu_slot)
{
if (cpu_slot >= CONFIG_MAX_CPUS || cpu_slot < 0)
return -1;
return cpus[cpu_slot].apic_id;
}
void smm_initiate_relocation_parallel(void)
{
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return;
}
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(lapicid()));
lapic_write_around(LAPIC_ICR, LAPIC_INT_ASSERT | LAPIC_DM_SMI);
if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */))
printk(BIOS_DEBUG, "SMI Relocation timed out.\n");
else
printk(BIOS_DEBUG, "Relocation complete.\n");
}
DECLARE_SPIN_LOCK(smm_relocation_lock);
/* Send SMI to self with single user serialization. */
void smm_initiate_relocation(void)
{
spin_lock(&smm_relocation_lock);
smm_initiate_relocation_parallel();
spin_unlock(&smm_relocation_lock);
}
struct mp_state {
struct mp_ops ops;
int cpu_count;
uintptr_t perm_smbase;
size_t perm_smsize;
size_t smm_save_state_size;
int do_smm;
} mp_state;
static int is_smm_enabled(void)
{
return IS_ENABLED(CONFIG_HAVE_SMI_HANDLER) && mp_state.do_smm;
}
static void smm_disable(void)
{
mp_state.do_smm = 0;
}
static void smm_enable(void)
{
if (IS_ENABLED(CONFIG_HAVE_SMI_HANDLER))
mp_state.do_smm = 1;
}
static void asmlinkage smm_do_relocation(void *arg)
{
const struct smm_module_params *p;
const struct smm_runtime *runtime;
int cpu;
uintptr_t curr_smbase;
uintptr_t perm_smbase;
p = arg;
runtime = p->runtime;
cpu = p->cpu;
curr_smbase = runtime->smbase;
if (cpu >= CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
return;
}
/*
* The permanent handler runs with all cpus concurrently. Precalculate
* the location of the new SMBASE. If using SMM modules then this
* calculation needs to match that of the module loader.
*/
perm_smbase = mp_state.perm_smbase;
perm_smbase -= cpu * runtime->save_state_size;
printk(BIOS_DEBUG, "New SMBASE 0x%08lx\n", perm_smbase);
/* Setup code checks this callback for validity. */
mp_state.ops.relocation_handler(cpu, curr_smbase, perm_smbase);
}
static void adjust_smm_apic_id_map(struct smm_loader_params *smm_params)
{
int i;
struct smm_runtime *runtime = smm_params->runtime;
for (i = 0; i < CONFIG_MAX_CPUS; i++)
runtime->apic_id_to_cpu[i] = mp_get_apic_id(i);
}
static int install_relocation_handler(int num_cpus, size_t save_state_size)
{
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = 1,
.handler = smm_do_relocation,
};
/* Allow callback to override parameters. */
if (mp_state.ops.adjust_smm_params != NULL)
mp_state.ops.adjust_smm_params(&smm_params, 0);
if (smm_setup_relocation_handler(&smm_params))
return -1;
adjust_smm_apic_id_map(&smm_params);
return 0;
}
static int install_permanent_handler(int num_cpus, uintptr_t smbase,
size_t smsize, size_t save_state_size)
{
/* There are num_cpus concurrent stacks and num_cpus concurrent save
* state areas. Lastly, set the stack size to the save state size. */
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = num_cpus,
};
/* Allow callback to override parameters. */
if (mp_state.ops.adjust_smm_params != NULL)
mp_state.ops.adjust_smm_params(&smm_params, 1);
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08lx\n", smbase);
if (smm_load_module((void *)smbase, smsize, &smm_params))
return -1;
adjust_smm_apic_id_map(&smm_params);
return 0;
}
/* Load SMM handlers as part of MP flight record. */
static void load_smm_handlers(void)
{
size_t smm_save_state_size = mp_state.smm_save_state_size;
/* Do nothing if SMM is disabled.*/
if (!is_smm_enabled())
return;
/* Install handlers. */
if (install_relocation_handler(mp_state.cpu_count,
smm_save_state_size) < 0) {
printk(BIOS_ERR, "Unable to install SMM relocation handler.\n");
smm_disable();
}
if (install_permanent_handler(mp_state.cpu_count, mp_state.perm_smbase,
mp_state.perm_smsize, smm_save_state_size) < 0) {
printk(BIOS_ERR, "Unable to install SMM permanent handler.\n");
smm_disable();
}
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
wbinvd();
/*
* Indicate that the SMM handlers have been loaded and MP
* initialization is about to start.
*/
if (is_smm_enabled() && mp_state.ops.pre_mp_smm_init != NULL)
mp_state.ops.pre_mp_smm_init();
}
/* Trigger SMM as part of MP flight record. */
static void trigger_smm_relocation(void)
{
/* Do nothing if SMM is disabled.*/
if (!is_smm_enabled() || mp_state.ops.per_cpu_smm_trigger == NULL)
return;
/* Trigger SMM mode for the currently running processor. */
mp_state.ops.per_cpu_smm_trigger();
}
static mp_callback_t ap_callbacks[CONFIG_MAX_CPUS];
static mp_callback_t read_callback(mp_callback_t *slot)
{
return *(volatile mp_callback_t *)slot;
}
static void store_callback(mp_callback_t *slot, mp_callback_t value)
{
*(volatile mp_callback_t *)slot = value;
}
static int run_ap_work(mp_callback_t func, long expire_us)
{
int i;
int cpus_accepted;
struct stopwatch sw;
int cur_cpu = cpu_index();
if (!IS_ENABLED(CONFIG_PARALLEL_MP_AP_WORK)) {
printk(BIOS_ERR, "APs already parked. PARALLEL_MP_AP_WORK not selected.\n");
return -1;
}
/* Signal to all the APs to run the func. */
for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) {
if (cur_cpu == i)
continue;
store_callback(&ap_callbacks[i], func);
}
mfence();
/* Wait for all the APs to signal back that call has been accepted. */
stopwatch_init_usecs_expire(&sw, expire_us);
while (1) {
cpus_accepted = 0;
for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) {
if (cur_cpu == i)
continue;
if (read_callback(&ap_callbacks[i]) == NULL)
cpus_accepted++;
}
if (cpus_accepted == global_num_aps)
return 0;
if (stopwatch_expired(&sw))
break;
}
printk(BIOS_ERR, "AP call expired. %d/%d CPUs accepted.\n",
cpus_accepted, global_num_aps);
return -1;
}
static void ap_wait_for_instruction(void)
{
int cur_cpu = cpu_index();
if (!IS_ENABLED(CONFIG_PARALLEL_MP_AP_WORK))
return;
while (1) {
mp_callback_t func = read_callback(&ap_callbacks[cur_cpu]);
if (func == NULL) {
asm ("pause");
continue;
}
store_callback(&ap_callbacks[cur_cpu], NULL);
mfence();
func();
}
}
int mp_run_on_aps(void (*func)(void), long expire_us)
{
return run_ap_work(func, expire_us);
}
int mp_run_on_all_cpus(void (*func)(void), long expire_us)
{
/* Run on BSP first. */
func();
return mp_run_on_aps(func, expire_us);
}
int mp_park_aps(void)
{
return mp_run_on_aps(park_this_cpu, 10 * USECS_PER_MSEC);
}
static struct mp_flight_record mp_steps[] = {
/* Once the APs are up load the SMM handlers. */
MP_FR_BLOCK_APS(NULL, load_smm_handlers),
/* Perform SMM relocation. */
MP_FR_NOBLOCK_APS(trigger_smm_relocation, trigger_smm_relocation),
/* Initialize each CPU through the driver framework. */
MP_FR_BLOCK_APS(mp_initialize_cpu, mp_initialize_cpu),
/* Wait for APs to finish then optionally start looking for work. */
MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL),
};
static void fill_mp_state(struct mp_state *state, const struct mp_ops *ops)
{
/*
* Make copy of the ops so that defaults can be set in the non-const
* structure if needed.
*/
memcpy(&state->ops, ops, sizeof(*ops));
if (ops->get_cpu_count != NULL)
state->cpu_count = ops->get_cpu_count();
if (ops->get_smm_info != NULL)
ops->get_smm_info(&state->perm_smbase, &state->perm_smsize,
&state->smm_save_state_size);
/*
* Default to smm_initiate_relocation() if trigger callback isn't
* provided.
*/
if (IS_ENABLED(CONFIG_HAVE_SMI_HANDLER) &&
ops->per_cpu_smm_trigger == NULL)
mp_state.ops.per_cpu_smm_trigger = smm_initiate_relocation;
}
int mp_init_with_smm(struct bus *cpu_bus, const struct mp_ops *mp_ops)
{
int ret;
void *default_smm_area;
struct mp_params mp_params;
if (mp_ops->pre_mp_init != NULL)
mp_ops->pre_mp_init();
fill_mp_state(&mp_state, mp_ops);
memset(&mp_params, 0, sizeof(mp_params));
if (mp_state.cpu_count <= 0) {
printk(BIOS_ERR, "Invalid cpu_count: %d\n", mp_state.cpu_count);
return -1;
}
/* Sanity check SMM state. */
if (mp_state.perm_smsize != 0 && mp_state.smm_save_state_size != 0 &&
mp_state.ops.relocation_handler != NULL)
smm_enable();
if (is_smm_enabled())
printk(BIOS_INFO, "Will perform SMM setup.\n");
mp_params.num_cpus = mp_state.cpu_count;
/* Gather microcode information. */
if (mp_state.ops.get_microcode_info != NULL)
mp_state.ops.get_microcode_info(&mp_params.microcode_pointer,
&mp_params.parallel_microcode_load);
mp_params.adjust_apic_id = mp_state.ops.adjust_cpu_apic_entry;
mp_params.flight_plan = &mp_steps[0];
mp_params.num_records = ARRAY_SIZE(mp_steps);
/* Perform backup of default SMM area. */
default_smm_area = backup_default_smm_area();
ret = mp_init(cpu_bus, &mp_params);
restore_default_smm_area(default_smm_area);
/* Signal callback on success if it's provided. */
if (ret == 0 && mp_state.ops.post_mp_init != NULL)
mp_state.ops.post_mp_init();
return ret;
}