coreboot-kgpe-d16/src/lib/imd_cbmem.c

279 lines
5.9 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <boot/coreboot_tables.h>
#include <bootstate.h>
#include <bootmem.h>
#include <console/console.h>
#include <cbmem.h>
#include <imd.h>
#include <lib.h>
#include <stdlib.h>
/* The program loader passes on cbmem_top and the program entry point
has to fill in the _cbmem_top_ptr symbol based on the calling arguments. */
uintptr_t _cbmem_top_ptr;
void *cbmem_top(void)
{
if (ENV_ROMSTAGE) {
MAYBE_STATIC_BSS void *top = NULL;
if (top)
return top;
top = cbmem_top_chipset();
return top;
}
if (ENV_POSTCAR || ENV_RAMSTAGE)
return (void *)_cbmem_top_ptr;
dead_code();
}
static struct imd imd_cbmem;
static inline const struct cbmem_entry *imd_to_cbmem(const struct imd_entry *e)
{
return (const struct cbmem_entry *)e;
}
static inline const struct imd_entry *cbmem_to_imd(const struct cbmem_entry *e)
{
return (const struct imd_entry *)e;
}
void cbmem_initialize_empty(void)
{
cbmem_initialize_empty_id_size(0, 0);
}
static void cbmem_top_init_once(void)
{
/* Call one-time hook on expected cbmem init during boot. This sequence
assumes first init call is in romstage. */
if (!ENV_ROMSTAGE)
return;
/* The test is only effective on X86 and when address hits UC memory. */
if (ENV_X86)
quick_ram_check_or_die((uintptr_t)cbmem_top() - sizeof(u32));
}
void cbmem_initialize_empty_id_size(u32 id, u64 size)
{
struct imd *imd = &imd_cbmem;
const int no_recovery = 0;
cbmem_top_init_once();
imd_handle_init(imd, cbmem_top());
printk(BIOS_DEBUG, "CBMEM:\n");
if (imd_create_tiered_empty(imd, CBMEM_ROOT_MIN_SIZE, CBMEM_LG_ALIGN,
CBMEM_SM_ROOT_SIZE, CBMEM_SM_ALIGN)) {
printk(BIOS_DEBUG, "failed.\n");
return;
}
/* Add the specified range first */
if (size)
cbmem_add(id, size);
/* Complete migration to CBMEM. */
cbmem_run_init_hooks(no_recovery);
}
int cbmem_initialize(void)
{
return cbmem_initialize_id_size(0, 0);
}
int cbmem_initialize_id_size(u32 id, u64 size)
{
struct imd *imd = &imd_cbmem;
const int recovery = 1;
cbmem_top_init_once();
imd_handle_init(imd, cbmem_top());
if (imd_recover(imd))
return 1;
/*
* Lock the imd in romstage on a recovery. The assumption is that
* if the imd area was recovered in romstage then S3 resume path
* is being taken.
*/
if (ENV_ROMSTAGE)
imd_lockdown(imd);
/* Add the specified range first */
if (size)
cbmem_add(id, size);
/* Complete migration to CBMEM. */
cbmem_run_init_hooks(recovery);
/* Recovery successful. */
return 0;
}
int cbmem_recovery(int is_wakeup)
{
int rv = 0;
if (!is_wakeup)
cbmem_initialize_empty();
else
rv = cbmem_initialize();
return rv;
}
const struct cbmem_entry *cbmem_entry_add(u32 id, u64 size64)
{
struct imd *imd = &imd_cbmem;
const struct imd_entry *e;
e = imd_entry_find_or_add(imd, id, size64);
return imd_to_cbmem(e);
}
void *cbmem_add(u32 id, u64 size)
{
struct imd *imd = &imd_cbmem;
const struct imd_entry *e;
e = imd_entry_find_or_add(imd, id, size);
if (e == NULL)
return NULL;
return imd_entry_at(imd, e);
}
/* Retrieve a region provided a given id. */
const struct cbmem_entry *cbmem_entry_find(u32 id)
{
struct imd *imd = &imd_cbmem;
const struct imd_entry *e;
e = imd_entry_find(imd, id);
return imd_to_cbmem(e);
}
void *cbmem_find(u32 id)
{
struct imd *imd = &imd_cbmem;
const struct imd_entry *e;
e = imd_entry_find(imd, id);
if (e == NULL)
return NULL;
return imd_entry_at(imd, e);
}
/* Remove a reserved region. Returns 0 on success, < 0 on error. Note: A region
* cannot be removed unless it was the last one added. */
int cbmem_entry_remove(const struct cbmem_entry *entry)
{
struct imd *imd = &imd_cbmem;
return imd_entry_remove(imd, cbmem_to_imd(entry));
}
u64 cbmem_entry_size(const struct cbmem_entry *entry)
{
struct imd *imd = &imd_cbmem;
return imd_entry_size(imd, cbmem_to_imd(entry));
}
void *cbmem_entry_start(const struct cbmem_entry *entry)
{
struct imd *imd = &imd_cbmem;
return imd_entry_at(imd, cbmem_to_imd(entry));
}
void cbmem_add_bootmem(void)
{
void *baseptr = NULL;
size_t size = 0;
cbmem_get_region(&baseptr, &size);
bootmem_add_range((uintptr_t)baseptr, size, BM_MEM_TABLE);
}
void cbmem_get_region(void **baseptr, size_t *size)
{
imd_region_used(&imd_cbmem, baseptr, size);
}
#if ENV_PAYLOAD_LOADER || (CONFIG(EARLY_CBMEM_LIST) \
&& (ENV_POSTCAR || ENV_ROMSTAGE))
/*
* -fdata-sections doesn't work so well on read only strings. They all
* get put in the same section even though those strings may never be
* referenced in the final binary.
*/
void cbmem_list(void)
{
static const struct imd_lookup lookup[] = { CBMEM_ID_TO_NAME_TABLE };
struct imd *imd = &imd_cbmem;
imd_print_entries(imd, lookup, ARRAY_SIZE(lookup));
}
#endif
void cbmem_add_records_to_cbtable(struct lb_header *header)
{
struct imd_cursor cursor;
struct imd *imd;
imd = &imd_cbmem;
if (imd_cursor_init(imd, &cursor))
return;
while (1) {
const struct imd_entry *e;
struct lb_cbmem_entry *lbe;
uint32_t id;
e = imd_cursor_next(&cursor);
if (e == NULL)
break;
id = imd_entry_id(imd, e);
/* Don't add these metadata entries. */
if (id == CBMEM_ID_IMD_ROOT || id == CBMEM_ID_IMD_SMALL)
continue;
lbe = (struct lb_cbmem_entry *)lb_new_record(header);
lbe->tag = LB_TAG_CBMEM_ENTRY;
lbe->size = sizeof(*lbe);
lbe->address = (uintptr_t)imd_entry_at(imd, e);
lbe->entry_size = imd_entry_size(imd, e);
lbe->id = id;
}
}