Not all x86 architectures support the mm register set. The default
routine that saves BIST in mm0 and a "weak" routine that saves the TSC
value in mm2:mm1. Select the Kconfig value
BOOTBLOCK_SAVE_BIST_AND_TIMESTAMP to provide a replacement routine to
save the BIST and timestamp values.
TEST=Build and run on Amenia and Galileo Gen2.
Change-Id: I8119e74664ac3522c011767d424d441cd62545ce
Signed-off-by: Lee Leahy <leroy.p.leahy@intel.com>
Reviewed-on: https://review.coreboot.org/15126
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Use Kconfig values to enable debug spinloops in assembly_entry.S. This
makes it easy to debug the assembly code.
TEST=Build and run on Galileo Gen2
Change-Id: Ic56bf2260b8e3181403623961874c9289f3ca945
Signed-off-by: Lee Leahy <Leroy.P.Leahy@intel.com>
Reviewed-on: https://review.coreboot.org/15135
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Conditionally add a debug spinloop to enable easy connection of JTAG
debuggers.
TEST=Build and run on Galileo Gen2 with a JTAG debugger.
Change-Id: I7a21f9e6bfb10912d06ce48447c61202553630d0
Signed-off-by: Lee Leahy <leroy.p.leahy@intel.com>
Reviewed-on: https://review.coreboot.org/15127
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Support ROM_SIZE greater than 16 MiB. Work around SMBIOS rom size
limitation of 16 MiB by specifying 16 MiB as the ROM size.
TEST=Build and run on neoncity
Change-Id: I3f464599cd8a1b6482db8b9deab03126c8b92128
Signed-off-by: Lee Leahy <Leroy.P.Leahy@intel.com>
Reviewed-on: https://review.coreboot.org/15108
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
Don't write reserved bits in the Quark platform. Follow the previous
boot behavior and just enable SSE.
TEST=Build and run on Galileo Gen2
Change-Id: Ib3143eff02b2610b595bd666c10d70e43103ccda
Signed-off-by: Lee Leahy <leroy.p.leahy@intel.com>
Reviewed-on: https://review.coreboot.org/15128
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Leave it for the platform to fill in the string.
Change-Id: I7b4fe585f8d1efc8c9743f0d8b38de1f98124aab
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: https://review.coreboot.org/14996
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-by: Philipp Deppenwiese <zaolin.daisuki@googlemail.com>
The recent ACPI specification extensions have formally defined a
method for describing device information with a key=value format that
is modeled after the Devicetree/DTS format using a special crafted
object named _DSD with a specific UUID for this format.
There are three defined Device Property types: Integers, Strings, and
References. It is also possible to have arrays of these properties
under one key=value pair. Strings and References are both represented
as character arrays but result in different generated ACPI OpCodes.
Various helpers are provided for writing the Device Property header
(to fill in the object name and UUID) and footer (to fill in the
property count and device length values) as well as for writing the
different Device Property types. A specific helper is provided for
writing the defined GPIO binding Device Property that is used to allow
GPIOs to be referred to by name rather than resource index.
This is all documented in the _DSD Device Properties UUID document:
http://uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
This will be used by device drivers to provide device properties that
are consumed by the operating system. Devicetree bindings are often
described in the linux kernel at Documentation/devicetree/bindings/
A sample driver here has an input GPIO that it needs to describe to
the kernel driver:
chip.h:
struct drivers_generic_sample_config {
struct acpi_gpio mode_gpio;
};
sample.c:
static void acpi_fill_ssdt_generator(struct device *dev) {
struct drivers_generic_sample_config *config = dev->chip_info;
const char *path = acpi_device_path(dev);
...
acpi_device_write_gpio(&config->mode_gpio);
...
acpi_dp_write_header();
acpi_dp_write_gpio("mode-gpio", path, 0, 0, 0);
acpi_dp_write_footer();
...
}
devicetree.cb:
device pci 1f.0 on
chip drivers/generic/sample
register "mode_gpio" = "ACPI_GPIO_INPUT(GPP_B1)"
device generic 0 on end
end
end
SSDT.dsl:
Name (_CRS, ResourceTemplate () {
GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionInputOnly,
"\\_SB.PCI0.GPIO", 0, ResourceConsumer) { 25 }
})
Name (_DSD, Package () {
ToUUID ("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {
Package () {"mode-gpio", Package () { \_SB.PCI0.LPCB, 0, 0, 1 }}
}
})
Change-Id: I93ffd09e59d05c09e38693e221a87085469be3ad
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14937
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Add required definitions to describe an ACPI SPI bus and a method to
write the SpiSerialBus() descriptor to the SSDT.
This will be used by device drivers to describe their SPI resources to
the OS. SPI devices are not currently enumerated in the devicetree but
can be enumerated by device drivers directly.
generic.c:
void acpi_fill_ssdt_generator(struct device *dev) {
struct acpi_spi spi = {
.device_select = dev->path->generic.device.id,
.device_select_polarity = SPI_POLARITY_LOW,
.spi_wire_mode = SPI_4_WIRE_MODE,
.speed = 1000 * 1000; /* 1 mHz */
.data_bit_length = 8,
.clock_phase = SPI_CLOCK_PHASE_FIRST,
.clock_polarity = SPI_POLARITY_LOW,
.resource = acpi_device_path(dev->bus->dev)
};
...
acpi_device_write_spi(&spi);
...
}
devicetree.cb:
device pci 1e.2 on
chip drivers/spi/generic
device generic 0 on end
end
end
SSDT.dsl:
SpiSerialBus (0, PolarityLow, FourWireMode, 8, ControllerInitiated,
1000000, ClockPolarityLow, ClockPhaseFirst,
"\\_SB.PCI0.SPI0", 0, ResourceConsumer)
Change-Id: I0ef83dc111ac6c19d68872ab64e1e5e3a7756cae
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14936
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Add required definitions to describe an ACPI I2C bus and a method to
write the I2cSerialBus() descriptor to the SSDT.
This will be used by device drivers to describe their I2C resources to
the OS. The devicetree i2c device can supply the address and 7 or 10
bit mode as well as indicate the GPIO controller device, and the bus
speed can be fixed or configured by the driver.
chip.h:
struct drivers_i2c_generic_config {
enum i2c_speed bus_speed;
};
generic.c:
void acpi_fill_ssdt_generator(struct device *dev) {
struct drivers_i2c_generic_config *config = dev->chip_info;
struct acpi_i2c i2c = {
.address = dev->path->i2c.device,
.mode_10bit = dev->path.i2c.mode_10bit,
.speed = config->bus_speed ? : I2C_SPEED_FAST,
.resource = acpi_device_path(dev->bus->dev)
};
...
acpi_device_write_i2c(&i2c);
...
}
devicetree.cb:
device pci 15.0 on
chip drivers/i2c/generic
device i2c 10.0 on end
end
end
SSDT.dsl:
I2cSerialBus (0x10, ControllerInitiated, 400000, AddressingMode7Bit,
"\\_SB.PCI0.I2C0", 0, ResourceConsumer)
Change-Id: I598401ac81a92c72f19da0271af1e218580a6c49
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14935
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Add definitions to describe GPIOs in generated ACPI objects and a
method to write a GpioIo() or GpioInt() descriptor to the SSDT.
ACPI GPIOs have many possible configuration options and a structure
is created to describe it accurately in ACPI terms. There are many
shared descriptor fields between GpioIo() and GpioInt() so the same
function can write both types.
GpioInt shares many properties with ACPI Interrupts and the same types
are re-used here where possible. One addition is that GpioInt can be
configured to trigger on both low and high edge transitions.
One descriptor can describe multiple GPIO pins (limited to 8 in this
implementation) that all share configuration and controller and are
used by the same device scope.
Accurately referring to the GPIO controller that this pin is connected
to requires the SoC/board to implement a function handler for
acpi_gpio_path(), or for the caller to provide this directly as a
string in the acpi_gpio->reference variable.
This will get used by device drivers to describe their resources in
the SSDT. Here is a sample for a Maxim 98357A I2S codec which has a
GPIO for power and channel selection called "sdmode".
chip.h:
struct drivers_generic_max98357a_config {
struct acpi_gpio sdmode_gpio;
};
max98357a.c:
void acpi_fill_ssdt_generator(struct device *dev) {
struct drivers_generic_max98357a_config *config = dev->chip_info;
...
acpi_device_write_gpio(&config->sdmode_gpio);
...
}
devicetree.cb:
device pci 1f.3 on
chip drivers/generic/max98357a
register "sdmode_gpio" = "ACPI_GPIO_OUTPUT(GPP_C5)"
device generic 0 on end
end
end
SSDT.dsl:
GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly,
"\\_SB.PCI0.GPIO", 0, ResourceConsumer, ,) { 53 }
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Change-Id: Ibf5bab9c4bf6f21252373fb013e78f872550b167
Reviewed-on: https://review.coreboot.org/14934
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Add definitions for ACPI device extended interrupts and a method to
write an Interrupt() descriptor to the SSDT output stream.
Interrupts are often tied together with other resources and some
configuration items are shared (though not always compatibly) with
other constructs like GPIOs and GPEs.
These will get used by device drivers to write _CRS sections for
devices into the SSDT. One usage is to include a "struct acpi_irq"
inside a config struct for a device so it can be initialized based
on settings in devicetree.
Example usage:
chip.h:
struct drivers_i2c_generic_config {
struct acpi_irq irq;
};
generic.c:
void acpi_fill_ssdt_generator(struct device *dev) {
struct drivers_i2c_generic_config *config = dev->chip_info;
...
acpi_device_write_interrupt(&config->irq);
...
}
devicetree.cb:
device pci 15.0 on
chip drivers/i2c/generic
register "irq" = "IRQ_EDGE_LOW(GPP_E7_IRQ)"
device i2c 10 on end
end
end
SSDT.dsl:
Interrupt (ResourceConsumer, Edge, ActiveLow, Exclusive,,,) { 31 }
Change-Id: I3b64170cc2ebac178e7a17df479eda7670a42703
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14933
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
When CONFIG_C_ENVIRONMENT_BOOTBLOCK is employed there's no need for
a chipset specific verstage entry point because cache-as-ram has
already been initialized. Therefore, provide a default entry point
for verstage in that environment.
Change-Id: Idd8f45bd58d3e5b251d1e38cca7ae794b8b77a28
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14971
Tested-by: build bot (Jenkins)
Reviewed-by: Furquan Shaikh <furquan@google.com>
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
Some exceptions (like from calling a NULL function pointer) are easier
to narrow down with a dump of the call stack. Let's take a page out of
ARM32's book and add that feature to ARM64 as well. Also change the
output format to two register columns, to make it easier to fit a whole
exception dump on one screen.
Applying to both coreboot and libpayload and syncing the output format
between both back up.
Change-Id: I19768d13d8fa8adb84f0edda2af12f20508eb2db
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/14931
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Add a function to "struct device_operations" to return the ACPI name
for the device, and helper functions to find this name (either from
the device or its parent) and to build a fully qualified ACPI path
from the root device.
This addition will allow device drivers to generate their ACPI AML in
the SSDT at boot, with customization supplied by devicetree.cb,
instead of needing custom DSDT ASL for every mainboard.
The root device acpi_name is defined as "\\_SB" and is used to start
the path when building a fully qualified name.
This requires SOC support to provide handlers for returning the ACPI
name for devices that it owns, and those names must match the objects
declared in the DSDT. The handler can be done either in each device
driver or with a global handler for the entire SOC.
Simplified example of how this can be used for an i2c device declared
in devicetree.cb with:
chip soc/intel/skylake # "\_SB" (from root device)
device domain 0 on # "PCI0"
device pci 19.2 on # "I2C4"
chip drivers/i2c/test0
device i2c 1a.0 on end # "TST0"
end
end
end
end
And basic SSDT generating code in the device driver:
acpigen_write_scope(acpi_device_scope(dev));
acpigen_write_device(acpi_device_name(dev));
acpigen_write_string("_HID", "TEST0000");
acpigen_write_byte("_UID", 0);
acpigen_pop_len(); /* device */
acpigen_pop_len(); /* scope */
Will produce this ACPI code:
Scope (\_SB.PCI0.I2C4) {
Device (TST0) {
Name (_HID, "TEST0000")
Name (_UID, 0)
}
}
Change-Id: Ie149595aeab96266fa5f006e7934339f0119ac54
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14840
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
acpigen_write_uuid() will generate a ToUUID() 128-bit buffer object for a
common universally unique identifier that is passed as a string. The
resulting buffer is the UUID in byte format with a specific order of the
bytes as described in the ACPI specification:
ToUUID (uuid)
Compiles to:
Buffer (16) { uuid[3], uuid[2], uuid[1], uuid[0], uuid[5], uuid[4],
uuid[7], uuid[6], uuid[8], uuid[9], uuid[10], uuid[11],
uuid[12], uuid[13], uuid[14], uuid[15] }
Change-Id: Ibbeff926883532dd78477aaa2d26ffffb6ef30c0
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14838
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
timestamp.c was not included in bootblock and postcar. This means that
these two stages would use the weak implementation in lib/timestamp.c
instead of the arch-specific implementation based on rdtsc.
This resulted in using timer_monotonic_get() which resets the
timestamps from 0. timer_monotonic_get() only provides per-stage
incrementing semantics on x86 because lapic implementation has
counting down values. A globally incrementing counter like rdtsc
provides the semantics like every other non-x86.
On the test configuration, the weak implementation of timestamp_get()
returned zero, resulting in wrong timestamps coming from the bootblock,
while romstage and ramstage used the arch implementation and returned
correct timestamps.
This is a great example of why weak functions are dangerous, and how
easy it is to miss subtle yet strong interactions between subsystems
and the coreboot buildsystem.
Change-Id: I656f9bd58a6fc179d9dbbc496c5b684ea9288eb5
Signed-off-by: Alexandru Gagniuc <alexandrux.gagniuc@intel.com>
Reviewed-on: https://review.coreboot.org/14860
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
strlen(string) was on the "negative" side of the selection operator, the
side where string is NULL.
Change-Id: Ic421a5406ef788c504e30089daeba61a195457ae
Reported-by: Coverity Scan (CID 1355263)
Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Reviewed-on: https://review.coreboot.org/14867
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
Reviewed-by: Duncan Laurie <dlaurie@google.com>
Add helper functions for generating some common objects:
acpigen_write_STA(status) will generate a status method that will
indicate the device status as provided:
Method (_STA) { Return (status) }
Full status byte configuration is possible and macros are provided for
the common status bytes used for generated code:
ACPI_STATUS_DEVICE_ALL_OFF = 0x0
ACPI_STATUS_DEVICE_ALL_ON = 0xF
acpigen_write_PRW() will generate a Power Resoruce for Wake that describes
the GPE that will wake a particular device:
Name (_PRW, Package (2) { wake, level }
Change-Id: I10277f0f3820d272d3975abf34b9a8de577782e5
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14795
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
In order to produce smaller AML and not rely on the caller to size the
output type appropriately add a helper function that will output an
appropriately sized integer.
To complete this also add helper functions for outputting the single
OpCode for Zero and One and Ones.
And finally add "name" variants of the helpers that will output a
complete sequence like "Name (_UID, Zero)".
Change-Id: I7ee4bc0a6347d15b8d49df357845a8bc2e517407
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14794
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Add helper function to emit a string into the SSDT AML bytestream with a
NULL terminator. Also add a helper function to emit the string OpCode
followed by the string itself.
acpigen_emit_string(string) /* Raw string output */
acpigen_write_string(string) /* OpCode followed by raw string */
Change-Id: I4a3a8728066e0c41d7ad6429fad983e6ae6962fe
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14793
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
Add helpers for writing word and dword values in acpigen and use them
throughout the file to clean things up:
acpigen_emit_word - write raw word
acpigen_emit_dword - write raw dword
acpigen_write_word - write word opcode and value
Change-Id: Ia758d4dd25d0ae5b31be7d51b33866dddd96a473
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: https://review.coreboot.org/14792
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
BUG=chrome-os-partner:49249
TEST=None. Initial code not sure if it will even compile
BRANCH=none
Change-Id: Ib0fccfe2d103710c006cb3950c65b11b8d596912
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: 9be5f58bb89ec43d4eb264c94c3f745dcade35dd
Original-Change-Id: If50efb55d4974dfcab07d3ae6488c2413b505a1f
Original-Signed-off-by: Varadarajan Narayanan <varada@codeaurora.org>
Original-Reviewed-on: https://chromium-review.googlesource.com/333301
Original-Reviewed-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/14657
Reviewed-by: Julius Werner <jwerner@chromium.org>
Tested-by: build bot (Jenkins)
The skylake-based Chromebooks use a separate verstage which runs
just after bootblock and prior to romstage. The normal path for
romstage would be to reload the gdt, however in the previously
described scenario has verstage performing that work. Therefore,
provide that path under those conditions. The only difference
from the C_ENVIRONMENT_BOOTBLOCK scenario is that the stack
should not be reloaded since there's no way to know the top
of the stack.
Change-Id: Ic39ab52a856233d3042ac02a15ae4816ddfe07c7
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14548
Reviewed-by: Furquan Shaikh <furquan@google.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-by: Leroy P Leahy <leroy.p.leahy@intel.com>
The path that just clears CAR_GLOBAL variables and jumps
to the stage entry point needs another condition for
separate verstage just after bootblock. However, the
current conditional is a negative conditional so
swap the logic around to make it easier to extend.
Change-Id: Iab6682498054715a6eaa0476390da6355238b9bc
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14547
Tested-by: build bot (Jenkins)
Reviewed-by: Furquan Shaikh <furquan@google.com>
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-by: Leroy P Leahy <leroy.p.leahy@intel.com>
Stefan and others have discussed their interest in only
including options in Kconfig that are directly associated
with building a coreboot image. There are variables that
are architecture dependent that are utilized in the
coreboot infrastructure. To meet that goal, introduce
<arch/cbconfig.h> header file which defines variables
for the coreboot infrastructure that are architecture
dependent but utilized in common infrastructure.
Change-Id: Ic4cb9e81bab042797539dce004db0f7ee8526ea6
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14454
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Tested-by: build bot (Jenkins)
C_ENVIRONMENT_BOOTBLOCK on x86 is like romstage and uses cache-as-ram
separately. It does not use any data/bss sections.
Change-Id: I8957f467f01e754fa2d95783466a01daa6c4e51a
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: https://review.coreboot.org/14533
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Leroy P Leahy <leroy.p.leahy@intel.com>
In order to de-duplicate common patterns implement one write_tables()
function. The new write_tables() replaces all the architecture-specific
ones that were largely copied. The callbacks are put in place to
handle any per-architecture requirements.
Change-Id: Id3d7abdce5b30f5557ccfe1dacff3c58c59f5e2b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14436
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Add a architecture specific function, arch_write_tables(), that
allows an architecture to add its required tables for booting.
This callback helps write_tables() to be de-duplicated.
Change-Id: I805c2f166b1e75942ad28b6e7e1982d64d2d5498
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14435
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
A architecture-specific function, named bootmem_arch_add_ranges(),
is added so that each architecture can add entries into the bootmem
memory map. This allows for a common write_tables() implementation
to avoid code duplication.
Change-Id: I834c82eae212869cad8bb02c7abcd9254d120735
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14434
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
In addition to being consistent with all other architectures,
all chipsets support cbmem so the low coreboot table path is
stale and never taken. Also it's important to note the memory
written in to that low area of memory wasn't automatically
reserved unless that path was taken. To that end remove
low coreboot table support for x86.
Change-Id: Ib96338cf3024e3aa34931c53a7318f40185be34c
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14432
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
There were quite a number of #if/#endif guards in the
write_tables() code. Clean up that function by splitting
up the subcomponents into their own individual functions.
The same ordering and logic is kept maintained.
The changes also benefit the goal of using a common core
write_tables() logic so that other architectures don't
duplicate large swaths of code.
Change-Id: I93f6775d698500f25f72793cbe3fd4eb9d01a20c
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14431
Tested-by: build bot (Jenkins)
Reviewed-by: Furquan Shaikh <furquan@google.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Each arch was calling cbmem_list() in their own write_tables()
function. Consolidate that call and place it in common code
in write_coreboot_table().
Change-Id: If0d4c84e0f8634e5cef6996b2be4a86cc83c95a9
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14430
Tested-by: build bot (Jenkins)
Reviewed-by: Furquan Shaikh <furquan@google.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Instead of hard coding a #define in each architecture's
tables.c for the coreboot table size in cbmem use a Kconfig
varible. This aids in aligning on a common write_tables()
implementation instead of duplicating the code for each
architecture.
Change-Id: I09c0f56133606ea62e9a9c4c6b9828bc24dcc668
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14429
Tested-by: build bot (Jenkins)
Reviewed-by: Furquan Shaikh <furquan@google.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Apparently the memo was missed about the write_tables()
signature. Fix the confusion.
Change-Id: I8ef367345dd54584c57e9d5cd8cc3d81ce109fef
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14421
Tested-by: build bot (Jenkins)
Reviewed-by: Nico Huber <nico.h@gmx.de>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Apparently the memo was missed about the write_tables()
signature. Fix the confusion.
Change-Id: I63924be47d3507d2d7ed006a553414f4ac60d2f9
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14420
Tested-by: build bot (Jenkins)
Reviewed-by: Nico Huber <nico.h@gmx.de>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This used to build, but will not with newer toolchains.
Change-Id: I0f397839eb85977ba18328b0e32040b15a6c3b0f
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: https://review.coreboot.org/14296
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
In order to not muddle arch vs chipset implementations provide
a generic prog_segment_loaded() which calls platform_segment_loaded()
and arch_segment_loaded() in that order. This allows the arch variants
to live in src/arch while the chipset/platform code can implement
their own.
Change-Id: I17b6497219ec904d92bd286f18c9ec96b2b7af25
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14214
Reviewed-by: Furquan Shaikh <furquan@google.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
While rmodule_load() calls arch_segment_loaded() when it's done
loading any pieces of code which further modify it, like changing
parameters within the program itself, need to notify the rest of
the system.
Change-Id: Ia3374b58488120ba6279592a77d7f9c6217f1215
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14213
Reviewed-by: Furquan Shaikh <furquan@google.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
As a follow up to Change-Id: I1fb3fc139e0a813acf9d70f14386a9603c9f9ede,
use as builtin compiler hint instead of inline assembly to allow the
compiler to generate more efficient code.
Change-Id: I690514ac6d8988a6494ad3a77690709d932802b0
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Signed-off-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-on: https://review.coreboot.org/12083
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Julius Werner <jwerner@chromium.org>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Certain chipsets don't have a memory-mapped boot media
so their code execution for stages prior to DRAM initialization
is backed by SRAM or cache-as-ram. The postcar stage/phase
handles the cache-as-ram situation where in order to tear down
cache-as-ram one needs to be executing out of a backing
store that isn't transient. By current definition, cache-as-ram
is volatile and tearing it down leads to its contents disappearing.
Therefore provide a shim layer, postcar, that's loaded into
memory and executed which does 2 things:
1. Tears down cache-as-ram with a chipset helper function.
2. Loads and runs ramstage.
Because those 2 things are executed out of ram there's no issue
of the code's backing store while executing the code that
tears down cache-as-ram. The current implementation makes no
assumption regarding cacheability of the DRAM itself. If the
chipset code wishes to cache DRAM for loading of the postcar
stage/phase then it's also up to the chipset to handle any
coherency issues pertaining to cache-as-ram destruction.
Change-Id: Ia58efdadd0b48f20cfe7de2f49ab462306c3a19b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/14140
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: Furquan Shaikh <furquan@google.com>
The previous implementation assumed the CPU physical address size to
be 40 which is not true of all platforms. Use an existing function to
obtain the correct CPU physical address to report in the DMAR ACPI
table.
Change-Id: Ia79e9dadecc3f5f6a86ce3789b213222bef482b3
Signed-off-by: Jacob Laska <jlaska91@gmail.com>
Reviewed-on: https://review.coreboot.org/14102
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
Reviewed-by: Nico Huber <nico.h@gmx.de>
This option is no longer needed, as FMAP support has been
fully integrated in coreboot
Change-Id: I6121b31bf946532717ba15e12f5c63d2baa95ab2
Signed-off-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-on: https://review.coreboot.org/14078
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Different DIMM modules give different SMBIOS type 17 lengths, so we
can't use `meminfo->dimm_cnt*len' for entry struct size, otherwise
it'll give a wrong SMBIOS size when two or more different DIMMs are
installed on the machine.
Change-Id: I0e33853f6aa4b30da547eb433839a397d451a8cf
Signed-off-by: Iru Cai <mytbk920423@gmail.com>
Reviewed-on: https://review.coreboot.org/14008
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
On non-x86 platforms, coreboot uses the memlayout.ld mechanism to
statically allocate the different memory regions it needs and guarantees
at build time that there are no dangerous overlaps between them. At the
end of its (ramstage) execution, however, it usually loads a payload
(and possibly other platform-specific components) that is not integrated
into the coreboot build system and therefore cannot provide the same
overlap guarantees through memlayout.ld. This creates a dangerous memory
hazard where a new component could be loaded over memory areas that are
still in use by the code-loading ramstage and lead to arbitrary memory
corruption bugs.
This patch fills this gap in our build-time correctness guarantees by
adding the necessary checks as a new intermediate Makefile target on
route to assembling the final image. It will parse the memory footprint
information of the payload (and other platform-specific post-ramstage
components) from CBFS and compare it to a list of memory areas known to
be still in use during late ramstage, generating a build failure in case
of a possible hazard.
BUG=chrome-os-partner:48008
TEST=Built Oak while moving critical regions in the way of BL31 or the
payload, observing the desired build-time errors. Built Nyan, Jerry and
Falco without issues for good measure.
Change-Id: I3ebd2c1caa4df959421265e26f9cab2c54909b68
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/13949
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This adds a few assembly lines that are generic enough to be shared
between romstage and verstage that are ran in CAR. The GDT reload
is bypassed and the stack is reloaded with the CAR stack defined
in car.ld. The entry point for all those stages is car_stage_entry().
Change-Id: Ie7ef6a02f62627f29a109126d08c68176075bd67
Signed-off-by: Andrey Petrov <andrey.petrov@intel.com>
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Signed-off-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-on: https://review.coreboot.org/13861
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Attempt to better document the symbol usage in car.ld for
cache-as-ram usage. Additionally, add _car_region_[start|end]
that completely covers the entire cache-as-ram region. The
_car_data_[start|end] symbols were renamed to
_car_relocatable_data_[start|end] in the hopes of making it
clearer that objects within there move. Lastly, all these
symbols were added to arch/symbols.h.
Change-Id: I1f1af4983804dc8521d0427f43381bde6d23a060
Signed-off-by: Andrey Petrov <andrey.petrov@intel.com>
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13804
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
Reviewed-by: Furquan Shaikh <furquan@google.com>
Those options have no effect or lead to compile error on ARM due
to fundamental incompatibilities. Add proper "depends on" clauses
to hide them.
Change-Id: I860fbd331439c25efd8aa92023195fda3add2e2c
Signed-off-by: Vladimir Serbinenko <phcoder@gmail.com>
Reviewed-on: https://review.coreboot.org/13904
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Martin Roth <martinroth@google.com>
Instead of keeping track of all the combinations of entry points
depending on the stage and other options just use _start. That way,
there's no need to update the arch/header.ld for complicated cases
as _start is always the entry point for a stage.
Change-Id: I7795a5ee1caba92ab533bdb8c3ad80294901a48b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13882
Tested-by: build bot (Jenkins)
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
In order to align the entry points for the various stages
on x86 to _start one needs to rename the reset_vector symbol.
The section is the same; it's just a symbol change.
Change-Id: I0e6bbf1da04a6e248781a9c222a146725c34268a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13881
Tested-by: build bot (Jenkins)
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
Until recently x86 romstage used to be linked at some default
address. The address itself is not meaningful because the code
was normally relocated at address calculated during insertion
in CBFS. Since some newer SoC run romstage at CAR it became
useful to link romstage code at some address in CAR and avoid
relocation during build/run time altogether.
Change-Id: I11bec142ab204633da0000a63792de7057e2eeaf
Signed-off-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-on: https://review.coreboot.org/13860
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
For C_ENVIRONMENT_BOOTBLOCK, memlayout.ld is added by call to
early_x86_stage. Remove redundant addition of memlayout.ld in this
case.
Change-Id: Ibb5ce690ac4e63f7ff5063d5bd04daeeb731e4d7
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: https://review.coreboot.org/13777
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
Only i386 has code to support bounce buffer. For others coreboot
would silently discard part of binary which doesn't work and is a hell to debug.
Instead just die.
Change-Id: I37ae24ea5d13aae95f9856a896700a0408747233
Signed-off-by: Vladimir Serbinenko <phcoder@gmail.com>
Reviewed-on: https://review.coreboot.org/13750
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This builds and produces an image.
The next step is to get a 'halt' instruction into the boot block and then attach with qemu.
I can't get the powerpc64le-linux-gnu-ld.bfd to recognize any output arch but
powerpc. That makes no sense to me.
Change-Id: Ia2a5fe07a1457e7b6974ab1473539c7447d7a449
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: https://review.coreboot.org/13704
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
The 8254 (Programmable Interrupt Timer) is becoming optional
on x86 platforms -- either from saving power or not including it
at all. To allow a payload to still use a TSC without doing
calibration provide the TSC frequency information in the coreboot
tables. That data is provided by code/logic already employed
by platform. If tsc_freq_mhz() returns 0 or
CONFIG_TSC_CONSTANT_RATE is not selected the coreboot table
record isn't created.
BUG=chrome-os-partner:50214
BRANCH=glados
TEST=With all subsequent patches confirmed TSC is picked up in
libpayload.
Change-Id: Iaeadb85c2648587debcf55f4fa5351d0c287e971
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13670
Tested-by: build bot (Jenkins)
Reviewed-by: Furquan Shaikh <furquan@google.com>
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
Add lb_arch_add_records() to allow the architecture code to
generically hook into the coreboot table generation.
BUG=chrome-os-partner:50214
BRANCH=glados
TEST=With all subsequent patches confirmed lb_arch_add_records() is
called when a strong symbol is provided.
Change-Id: I7c69c0ff0801392bbcf5aef586a48388b624afd4
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13669
Tested-by: build bot (Jenkins)
Reviewed-by: Furquan Shaikh <furquan@google.com>
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
Update ATF codebase to a version that supports passing a timestamp and
fix the format to what it accepts now (including quotes).
This provides reproducible builds.
Change-Id: I12a0a2ba1ee7921ad93a3a877ea50309136ab1ab
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: https://review.coreboot.org/13726
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
On certain platforms, the boot media is either not memory-mapped, or
not mapped at the top of 4G. This makes the default mmap_boot
implementation unsuitable. Add an option to allow such platforms to
define their own mapping implementation.
Change-Id: I8293126fd9cc1fd3d75072f7811e659765348e4a
Signed-off-by: Alexandru Gagniuc <alexandrux.gagniuc@intel.com>
Reviewed-on: https://review.coreboot.org/13319
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Certain platforms may need to limit their bootblock size to within
a given size because specific constraints. Allow the size to be
provided by the mainboard or chipset by way of the arch Kconfig
being processed after those.
Change-Id: I46cc6315918cde575070fa2d3e2514f28008f575
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13691
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
Reviewed-by: Andrey Petrov <andrey.petrov@intel.com>
This patch generalizes the approach previously used for ARM32
TTB_SUBTABLES to "auto-detect" whether a certain region was defined in
memlayout.ld. This allows us to get rid of the explicit Kconfig for the
TIMESTAMP region, reducing configuration redundancy and avoiding
confusion when setting up future boards.
(Removing armv4/bootblock_simple.c because it references this Kconfig
and it is a dead file that I just forgot to remove in CL:12076.)
BRANCH=None
BUG=None
TEST=Booted Oak and confirmed that all pre-RAM timestamps are still
there. Built Nyan and Falco.
Change-Id: I557a4b263018511d17baa4177963130a97ea310a
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/13652
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
It is silly to have a single header to declare the main()
symbol, however some of the arches provided it while
lib/bootblock.c relied on the arch headers to declare it. Just
move the declaration into its own header file and utilize it.
Change-Id: I743b4c286956ae047c17fe46241b699feca73628
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13681
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Tested-by: build bot (Jenkins)
jmp_to_elf_entry() is not defined anywhere. Remove it.
Change-Id: I68f996a735f2ef3dd60cf69f9b72c3f1481cbb55
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13680
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Currently x86s select BOOTBLOCK_CUSTOM by default. With this
change BOOTBLOCK_CUSTOM is selected only if C bootblock isn't.
Change-Id: I218f3b4044175b89697790c82c384b0f85a27ade
Signed-off-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-on: https://review.coreboot.org/13642
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
Since cbmem is not initialized in bootblock, CAR_GLOBAL variables
can only be accessed directly similar to verstage.
Change-Id: Ifc705016290807c49dc8c49b581864cac2ad3f80
Signed-off-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-on: https://review.coreboot.org/13641
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
Some platforms may want to use C code in bootblock so they need
writable memory and CAR can be used for it. This change reserves
memory in CAR that can be used by bootblock and other CAR stages.
Change-Id: I8dec768cf8763dbe235f0ba1339079ebc49cbd9a
Signed-off-by: Andrey Petrov <andrey.petrov@intel.com>
Reviewed-on: https://review.coreboot.org/13640
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
The PSTATE mask bits for Debug exceptions, external Aborts, Interrupts
and Fast interrupts are usually best left unset: under normal
circumstances none of those exceptions should occur in firmware, and if
they do it's better to get a crash close to the code that caused it
(rather than much later when the kernel first unmasks them). For this
reason arm64_cpu_init unmasks them right after boot. However, the EL2
payload was still running with all mask bits set, which this patch
fixes.
BL31, on the other hand, explicitly wants to be entered with all masks
set (see calling convention in docs/firmware-design.md), which we had
previously not been doing. It doesn't seem to make a difference at the
moment, but since it's explicitly specified we should probably comply.
BRANCH=None
BUG=None
TEST=Booted Oak, confirmed with raw_read_daif() in payload that mask
bits are now cleared.
Change-Id: I04406da4c435ae7d44e2592c41f9807934bbc802
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: 6ba55bc23fbde962d91c87dc0f982437572a69a8
Original-Change-Id: Ic5fbdd4e1cd7933c8b0c7c5fe72eac2022c9553c
Original-Signed-off-by: Julius Werner <jwerner@chromium.org>
Original-Reviewed-on: https://chromium-review.googlesource.com/325056
Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13596
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
On ARM64, the memory type for accessing page table descriptors during
address translation is governed by the Translation Control Register
(TCR). When the MMU code accesses the same descriptors to change page
mappings, it uses the standard memory type rules (defined by the page
table descriptor for the page that contains that table, or 'device' if
the MMU is off).
Accessing the same memory with different memory types can lead to all
kinds of fun and hard to debug effects. In particular, if the TCR says
"cacheable" and the page tables say "uncacheable", page table walks will
pull stale entries into the cache and later mmu_config_range() calls
will write directly to memory, bypassing those cache lines. This means
the translations will not get updated even after a TLB flush, and later
cache flushes/evictions may write the stale entries back to memory.
Since page table configuration is currently always done from SoC code,
we can't generally ensure that the TTB is always mapped as cacheable.
We can however save developers of future SoCs a lot of headaches and
time by spot checking the attributes when the MMU gets enabled, as this
patch does.
BRANCH=None
BUG=None
TEST=Booted Oak. Manually tested get_pte() with a few addresses.
Change-Id: I3afd29dece848c4b5f759ce2f00ca2b7433374da
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: f3947f4bb0abf4466006d5e3a962bbcb8919b12d
Original-Change-Id: I1008883e5ed4cc37d30cae5777a60287d3d01af0
Original-Signed-off-by: Julius Werner <jwerner@chromium.org>
Original-Reviewed-on: https://chromium-review.googlesource.com/323862
Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13595
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Instead of instructing users to edit xcompile when they want to build
a quark platform, give the build a way to set -march=586 so that
the quark code will build correctly. The Quark processor does not
support the instructions introduced with the Pentium 6 architecture.
Change-Id: I0ed69aadc515f86f76800180e0e33bcd75feac5a
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/13552
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Tested-by: build bot (Jenkins)
Reviewed-by: Leroy P Leahy <leroy.p.leahy@intel.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: FEI WANG <wangfei.jimei@gmail.com>
Some newer x86 systems can boot from non-memory-mapped boot media
(e.g. EMMC). The bootblock may be backed by small amounts of SRAM, or
other memory, similar to how most ARM chipsets work. In such cases, we
may not have enough code space for romstage very early on. This means
that CAR setup and early boot media (e.g. SPI, EMMC) drivers need to
be implemented within the limited amount memory of storage available.
Since the reset vector has to be contained in this early code memory,
the bootblock is the best place to implement loading of other stages.
Implement a bootblock which does the minimal initialization, up to,
and including switch to protected mode. This then transfers control
to platform-specific code. No stack is needed, and control is
transferred via a "jmp" such that no stack operations are involved.
Change-Id: I009b42b9a707cf11a74493bd4d8c189dc09b8ace
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-on: https://review.coreboot.org/13485
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
bootblock.S was used strictly for setting up the system so that the
assembly generated by ROMCC could be executed. Since the
infrastructure now exists to run a bootblock wihtout ROMCC, rename
this file accordingly. this is done to prevent any future confusion.
Change-Id: Icbf5804b66b9517f9ceb352bed86978dcf92228f
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-on: https://review.coreboot.org/11784
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
If coreboot's build process is reproducible (eg. using the latest git
timestamp as source), bl31 is, too.
This requires an arm-trusted-firmware side merge first (in progress) and
an update of our reference commit for the submodule, but it also doesn't
hurt anything because it merely sets a variable that currently goes
unused.
Change-Id: If139538a2fab5b3a70c67f4625aa2596532308f7
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: https://review.coreboot.org/13497
Tested-by: build bot (Jenkins)
Reviewed-by: Alexander Couzens <lynxis@fe80.eu>
Instead of tagging object files with .<class>, move them to a <class>
directory below $(obj)/. This way we can keep a 1:1 mapping between
source- and object-file names.
The 1:1 mapping is a prerequisite for Ada, where the compiler refuses
any other object-file name.
Tested by verifying that the resulting coreboot.rom files didn't change
for all of Jenkins' abuild configurations.
Change-Id: Idb7a8abec4ea0a37021d9fc24cc8583c4d3bf67c
Signed-off-by: Nico Huber <nico.h@gmx.de>
Reviewed-on: https://review.coreboot.org/13181
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
There were several spots in the tree where the path to a per class
object file was hardcoded. To make use of the src-to-obj macro for
this, it had to be moved before the inclusion of subdirs. Which is
fine, as it doesn't have dependencies beside $(obj).
Tested by verifying that the resulting coreboot.rom files didn't change
for all of Jenkins' abuild configurations.
Change-Id: I2eb1beeb8ae55872edfd95f750d7d5a1cee474c4
Signed-off-by: Nico Huber <nico.h@gmx.de>
Reviewed-on: https://review.coreboot.org/13180
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
It's unused, so get rid of it.
Change-Id: I28c6dc0208686edc3aabaf624773ea70350c1c8f
Signed-off-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-on: https://review.coreboot.org/13177
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
For the coreboot license header, we want to use two paragraphs.
See the section 'Common License Header' in the coreboot wiki
for more details.
Change-Id: I4a43f3573364a17b5d7f63b1f83b8ae424981b18
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/13118
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
It ended up in .data, and that doesn't seem to be actually necessary.
Change-Id: Ib17d6f9870379d1b7ad7bbd3f16a0839b28f72c8
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: https://review.coreboot.org/13134
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
When C_ENVIRONMENT_BOOTBLOCK is selected link bootblock using the
memlayout.ld scripts and infrastructure. This allows bootblock on
x86 to utilize all the other coreboot infrastructure without
relying romcc.
Change-Id: Ie3e077d553360853bf33f30cf8a347ba1df1e389
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/13069
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Replace with the more familiar AT&T syntax.
Tested by sha1sum(1)ing the object files, and checking the objdump that
the code in question was actually compiled.
Change-Id: Ie85b8ee5dad1794864c18683427e32f055745221
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: https://review.coreboot.org/13132
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Add more code to verstage
[pg: split downstream commit into multiple commits]
Change-Id: I578a69a1e43aad8c90c3914efd09d556920f728e
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: 2827aa08ff8712c0245a22378f3ddb0ca054255d
Original-Change-Id: I94a9ee2c00e25a37a92133f813d0cd11a3503656
Original-Signed-off-by: Yidi Lin <yidi.lin@mediatek.com>
Original-Reviewed-on: https://chromium-review.googlesource.com/292662
Original-Reviewed-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/12612
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
This provides symbols needed by CBFS and FMAP APIs, and allows running
run_romstage() in an x86 bootblock. Note that console-related files
are not added in this patch, as they are not essential for the
functinality on an x86 environment bootbock.
Change-Id: I36558b672a926ab22bc9018cd51aee32213792c2
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-on: https://review.coreboot.org/12880
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Instead of depending BOOTBLOCK_CONSOLE on a set of architectures,
allow the arch or platform to specify whether it can provide a C
environment. This simplifies the selection logic.
Change-Id: Ia3e41796d9aea197cee0a073acce63761823c3aa
Signed-off-by: Alexandru Gagniuc <alexandrux.gagniuc@intel.com>
Reviewed-on: https://review.coreboot.org/12871
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This header is only used for the bootblock compiled with ROMCC. As the
follow-on patches introduce a bootblock which does not make use of
ROMCC, rename this header to prevent confusion.
Change-Id: Id29c5bc6928c11cc7cb922fcfac71e5a3dcd113c
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-on: https://review.coreboot.org/12867
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Trivial fix for syntax highlighting in editors. Some get confused by
the double quote that doesn't have a close quote and stop highlighting
at that point. This comment closes the quote and the paren pair so
that they can recover.
Change-Id: I2bdb7c953a86905fc302d77eb9ad1200958800b7
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/13017
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This just updates existing guard name comments on the header files
to match the actual #define name.
As a side effect, if there was no newline at the end of these files,
one was added.
Change-Id: Ia2cd8057f2b1ceb0fa1b946e85e0c16a327a04d7
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12900
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Most of these files are original to coreboot and get the standard
coreboot GPL header.
encoding.h and atomic.h are from the riscv codebase and have their
license.
Change-Id: I32506b0ecf88be2f5794dc1e312a6cd9b2a271ad
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12906
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This was breaking the build on OS X, but also wasn't working correctly
under linux anymore either. It wouldn't print the illegal symbols
when it failed.
- Split the generation of the offenders file from the actual check for
offending symbols and just send all output to /dev/null.
- Rewrite the check for offending symbols in a way that works with OS X.
Tested by adding a global variable to romstage and verifying the
failure is shown correctly. Verified that it works correctly with no
illegal variables.
Change-Id: I5b3ac32448851884d78c3b3449508ffe014119ab
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/13018
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
These were mostly written as part of the coreboot project, so get
the standard coreboot license header.
memmove.c came from the linux kernel, so also gets the standard
coreboot v2 license header, but gets the added attribution that it
was derived from the linux kernel. Unlike many coreboot files,
this file may not be re-licensed as GPL V3.
Change-Id: I1fdc26b543e059f7a42d4b886f7222f4c74b959d
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12916
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
These were all written as part of the coreboot project, so get
the standard coreboot license header.
Change-Id: I51e1e504b3bc7be2a00c9356d8775b87f2a1db5a
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12912
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
These were all written as part of the coreboot project, so get
the standard coreboot license header.
Change-Id: I4fccc8055755816be64e9e1a185f1e6fcb2b89ae
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12911
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
These were all written as part of the coreboot project, so get
the standard coreboot license header.
Change-Id: I74438e8032c84f4190ef49f306969f7157234001
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12910
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
When microcode updates are enabled, this fixes an issue identical
to that described in GIT hash 7b22d84d:
* drivers/pc80: Add optional spinlock for nvram CBFS access
Change-Id: Ib7e8cb171f44833167053ca98a85cca23021dfba
Signed-off-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-on: https://review.coreboot.org/12063
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
This reverts commit 65e33c08a9.
This was the wrong logic to fix the master header.
Change-Id: I4688034831f09ac69abfd0660c76112deabd62ec
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/12824
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Martin Roth <martinroth@google.com>
When used with a U-boot payload it will need this region
identity mapped also, so we're defining it in preparation
for that functionality.
Change-Id: I27cee5b58cb899433b52bd06df07b5f2105212af
Signed-off-by: Ionela Voinescu <ionela.voinescu@imgtec.com>
Reviewed-on: https://review.coreboot.org/12768
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Since the introduction of the new (interim?) master header, coreboot
searches the whole ROM for CBFS entries. Fix that by aligning it on top
of the ROM.
Change-Id: I080cd4b746169a36462a49baff5e114b1f6f224a
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: https://review.coreboot.org/12810
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Martin Roth <martinroth@google.com>
In order for a U-boot payload to work properly the soc_registers
region (device registers) needs to be mapped as uncached.
Therefore, add a coherency argument to the identity mapping funcion
which will establish the type of mapping.
Change-Id: I26fc546378acda4f4f8f4757fbc0adb03ac7db9f
Signed-off-by: Ionela Voinescu <ionela.voinescu@imgtec.com>
Reviewed-on: https://review.coreboot.org/12769
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
When enabling the IOMMU on certain systems dmesg is spammed with I/O page faults like the following:
AMD-Vi: Event logged [IO_PAGE_FAULT device=00:14.0 domain=0x000a address=0x000000fdf9103300 flags=0x0030]
Decoding the faulting address:
0x000000fdf9103300
fdf91x Hypertransport system management region
33 SysMgtCmd (System Management Command) = 0x33
3 Base Command Type = 0x3: STPCLK (Stop Clock request)
3 SMAF (System Management Action Field) = [3:1] = 0x1
1 Signal State Bit Map = [0] = 0x1
Therefore, the error appears to be triggered by an upstream C1E request.
This was eventually traced to concurrent access to the SP5100's SPI Flash controller by
multiple APs during startup. Calls to the nvram read functions get_option and read_option
call CBFS functions, which in turn make near-simultaneous requests to the SPI Flash
controller, thus placing the SP5100 in an invalid state. This limitation is not documented
in any public AMD errata, and was only discovered through considerable debugging effort.
Change-Id: I4e61b1ab767b1b7958ac7c1cf20eee41d2261bef
Signed-off-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-on: https://review.coreboot.org/12061
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
Section 6.1.3 (Text Strings) of the SMBIOS specification states:
If a string field references no string, a null (0) is placed in that
string field.
Change smbios_add_string() to do that.
Change-Id: I9c28cb89dcfe2c8ef2366c23ee6203e15b7c2513
Signed-off-by: Ben Gardner <gardner.ben@gmail.com>
Reviewed-on: https://review.coreboot.org/12697
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
$(objgenerated)/empty would touch files before the directory
is created on parallel builds.
Thanks to reproducible-builds.org for hitting this bug.
Change-Id: I7565e9fe130b4e9deaf1c7b9d568ff90b00dda52
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
Reviewed-on: https://review.coreboot.org/12717
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
The ALIGN_CURRENT macro relied on a local variable name
as well as being defined in numerous compilation units.
Replace those instances with an acpi_align_current()
inline function.
Change-Id: Iab453f2eda1addefad8a1c37d265f917bd803202
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/12707
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This paves the way for AP printk spinlock on AMD platforms
Change-Id: Ice42a0d3177736bf6e1bc601092e413601866f20
Signed-off-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-on: https://review.coreboot.org/11958
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
Now that only CBFS access is supported for finding resources
within the boot media the assets infrastructure can be removed.
Remove it.
BUG=chromium:445938
BRANCH=None
TEST=Built and ran on glados.
Change-Id: I383fd6579280cf9cfe5a18c2851baf74cad004e9
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/12690
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
The Chrome OS verified boot path supported multiple CBFS
instances in the boot media as well as stand-alone assets
sitting in each vboot RW slot. Remove the support for the
stand-alone assets and always use CBFS accesses as the
way to retrieve data.
This is implemented by adding a cbfs_locator object which
is queried for locating the current CBFS. Additionally, it
is also signalled prior to when a program is about to be
loaded by coreboot for the subsequent stage/payload. This
provides the same opportunity as previous for vboot to
hook in and perform its logic.
BUG=chromium:445938
BRANCH=None
TEST=Built and ran on glados.
CQ-DEPEND=CL:307121,CL:31691,CL:31690
Change-Id: I6a3a15feb6edd355d6ec252c36b6f7885b383099
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/12689
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
In coreboot, bool, hex, and int type symbols are ALWAYS defined.
Change-Id: I58a36b37075988bb5ff67ac692c7d93c145b0dbc
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12560
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
- Move initialization of entry to later in main.
- Make boot_mode an unsigned char - no need to use int.
- Remove unnecessary variable filenames.
- Only get and try to boot fallback once.
Change-Id: I823092c60dd8c2de0a36ec7fdbba3e68f6b7567a
Test: compiled.
Signed-off-by: Martin Roth <martinroth@google.com>
Reviewed-on: https://review.coreboot.org/12574
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
We need mmu interfaces in these two stages for,
1. bootblock: to support mmu initialization in bootblock
2. romstage: to be able to add dram range to mmu table
BRANCH=none
BUG=none
TEST=build pass
Change-Id: I56dea5f958a48b875579f546ba17a5dd6eaf159c
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: cf72736bda2233f8e0bdd7a8ca3245f1d941ee86
Original-Change-Id: I1e27c0a0a878f7bc0ff8712bee640ec3fd8dbb8b
Original-Signed-off-by: Jimmy Huang <jimmy.huang@mediatek.com>
Original-Reviewed-on: https://chromium-review.googlesource.com/292665
Original-Commit-Ready: Yidi Lin <yidi.lin@mediatek.com>
Original-Tested-by: Yidi Lin <yidi.lin@mediatek.com>
Original-Reviewed-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/12585
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Tested-by: build bot (Jenkins)
verstage, romstage, and payload can be added through infrastructure now.
Change-Id: Ib9e612ae35fb8c0230175f5b8bca1b129f366f4b
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: https://review.coreboot.org/12549
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
We currently race in SMM init on Atom 230 (and potentially
other CPUs). At least on the 230, this leads to a hang on
RSM, likely because both hyperthreads mess around with
SMBASE and other SMM state variables in parallel without
coordination. The same behaviour occurs with Atom D5xx.
Change it so first APs are spun up and sent to sleep, then
BSP initializes SMM, then every CPU, one after another.
Only do this when SERIALIZE_SMM_INITIALIZATION is set.
Set the flag for Atom CPUs.
Change-Id: I1ae864e37546298ea222e81349c27cf774ed251f
Signed-off-by: Patrick Georgi <patrick@georgi-clan.de>
Signed-off-by: Damien Zammit <damien@zamaudio.com>
Reviewed-on: https://review.coreboot.org/6311
Tested-by: build bot (Jenkins)
Tested-by: BSI firmware lab <coreboot-labor@bsi.bund.de>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Instead of having to remember to strip the quotes everywhere so that
string comparisons (of which there are a few) match up, do it right at
the beginning.
Fixes building the image with a .config where CONFIG_CBFS_PREFIX
contains quotes.
Change-Id: I4d63341cd9f0bc5e313883ef7b5ca6486190c124
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: https://review.coreboot.org/12578
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Martin Roth <martinroth@google.com>
Reviewed-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Instead of having to have an ifeq() all across the code base,
use $(target-objcopy). And correct target-objcopy to a value
that objcopy actually understands.
Change-Id: Id5dea6420bee02a044dc488b5086d109e806d605
Signed-off-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-on: http://review.coreboot.org/11090
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This patch removes the old arm64/stage_entry.S code that was too
specific to the Tegra SoC boot flow, and replaces it with code that
hides the peculiarities of switching to a different CPU/arch in ramstage
in the Tegra SoC directories.
BRANCH=None
BUG=None
TEST=Built Ryu and Smaug. !!!UNTESTED!!!
Change-Id: Ib3a0448b30ac9c7132581464573efd5e86e03698
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: http://review.coreboot.org/12078
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This patch expands the existing ENV_<stage> macros in <rules.h> with a
set of ENV_<arch> macros which can be used to detect which architecture
the current compilation unit is built for. These are more consistent
than compiler-defined macros (like '#ifdef __arm__') and will make it
easier to write small, architecture-dependent differences in common code
(where we currently often use IS_ENABLED(CONFIG_ARCH_...), which is
technically incorrect in a world where every stage can run on a
different architecture, and merely kinda happened to work out for now).
Also remove a vestigal <arch/rules.h> from ARM64 which was no longer
used, and genericise ARM subarchitecture Makefiles a little to make
things like __COREBOOT_ARM_ARCH__ available from all file types
(including .ld).
BUG=None
TEST=Compiled Falco, Blaze, Jerry and Smaug.
Change-Id: Id51aeb290b5c215c653e42a51919d0838e28621f
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: http://review.coreboot.org/12433
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
The existing arm64 architecture code has been developed for the Tegra132
and Tegra210 SoCs, which only start their ARM64 cores in ramstage. It
interweaves the stage entry point with code that initializes a CPU (and
should not be run again if that CPU already ran a previous stage). It
also still contains some vestiges of SMP/secmon support (such as setting
up stacks in the BSS instead of using the stage-peristent one from
memlayout).
This patch splits those functions apart and makes the code layout
similar to how things work on ARM32. The default stage_entry() symbol is
a no-op wrapper that just calls main() for the current stage, for the
normal case where a stage ran on the same core as the last one. It can
be overridden by SoC code to support special cases like Tegra.
The CPU initialization code is split out into armv8/cpu.S (similar to
what arm_init_caches() does for ARM32) and called by the default
bootblock entry code. SoCs where a CPU starts up in a later stage can
call the same code from a stage_entry() override instead.
The Tegra132 and Tegra210 code is not touched by this patch to make it
easier to review and validate. A follow-up patch will bring those SoCs
in line with the model.
BRANCH=None
BUG=None
TEST=Booted Oak with a single mmu_init()/mmu_enable(). Built Ryu and
Smaug.
Change-Id: I28302a6ace47e8ab7a736e089f64922cef1a2f93
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: http://review.coreboot.org/12077
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This patch adds CC6 power save support to the AMD Family 15h
support code. As CC6 is a complex power saving state that
relies heavily on CPU, northbridge, and southbridge cooperation,
this patch alters significant amounts of code throughout the
tree simultaneously.
Allowing the CPU to enter CC6 allows the second level of turbo
boost to be reached, and also provides significant power savings
when the system is idle due to the complete core shutdown.
Change-Id: I44ce157cda97fb85f3e8f3d7262d4712b5410670
Signed-off-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-on: http://review.coreboot.org/11979
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
When we first added ARM support to coreboot, it was clear that the
bootblock would need to do vastly different tasks than on x86, so we
moved its main logic under arch/. Now that we have several more
architectures, it turns out (as with so many things lately) that x86 is
really the odd one out, and all the others are trying to do pretty much
the same thing. This has already caused maintenance issues as the ARM32
bootblock developed and less-mature architectures were left behind with
old cruft.
This patch tries to address that problem by centralizing that logic
under lib/ for use by all architectures/SoCs that don't explicitly
opt-out (with the slightly adapted existing BOOTBLOCK_CUSTOM option).
This works great out of the box for ARM32 and ARM64. It could probably
be easily applied to MIPS and RISCV as well, but I don't have any of
those boards to test so I'll mark them as BOOTBLOCK_CUSTOM for now and
leave that for later cleanup.
BRANCH=None
BUG=None
TEST=Built Jerry and Falco, booted Oak.
Change-Id: Ibbf727ad93651e388aef20e76f03f5567f9860cb
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: http://review.coreboot.org/12076
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins)
In order to have a proper runtime-modifyable page table API (e.g. to
remap DRAM after it was intialized), we need to remove any external
bookkeeping kept in global variables (which do not persist across
stages) from the MMU code. This patch implements this in a similar way
as it has recently been done for ARM32 (marking free table slots with a
special sentinel value in the first PTE that cannot occur as part of a
normal page table).
Since this requires the page table buffer to be known at compile-time,
we have to remove the option of passing it to mmu_init() at runtime
(which I already kinda deprecated before). The existing Tegra chipsets
that still used it are switched to instead define it in memlayout in a
minimally invasive change. This might not be the best way to design this
overall (I think we should probably just throw the tables into SRAM like
on all other platforms), but I don't have a Tegra system to test so I'd
rather keep this change low impact and leave the major redesign for
later.
Also inlined some single-use one-liner functions in mmu.c that I felt
confused things more than they cleared up, and fixed an (apparently
harmless?) issue with forgetting to mask out the XN page attribute bit
when casting a table descriptor to a pointer.
BRANCH=None
BUG=None
TEST=Compiled Ryu and Smaug. Booted Oak.
Change-Id: Iad71f97f5ec4b1fc981dbc8ff1dc88d96c8ee55a
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: http://review.coreboot.org/12075
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Among its other restrictions (which are noted in a comment above the
function prototype and stay in place), our makeshift fine-grained page
table support for ARM32 has the undocumented feature that it relies on
a global bookkeeping variable, causing all sorts of fun surprises when
you try to use it from multiple stages during the same boot. This patch
redesigns the bookkeeping to stay completely inline in the (persistent)
TTB which should resolve the issue. (This had not been a problem on any
of our platforms for now... I just noticed this because I was trying to
solve the same issue on ARM64.)
BRANCH=None
BUG=None
TEST=Booted veyron_jerry. Mapped a second fine-grained memory range
from romstage, confirmed that it finds the next free spot and leaves the
bootblock table in place.
Change-Id: I325866828b4ff251142e1131ce78b571edcc9cf9
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: http://review.coreboot.org/12074
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Since, SMP support is removed for ARM64, there is no need for CPU
initialization to be performed via device-tree.
Change-Id: I0534e6a93c7dc8659859eac926d17432d10243aa
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/11913
Tested-by: build bot (Jenkins)
Reviewed-by: Julius Werner <jwerner@chromium.org>
As ARM Trusted Firmware is the only first class citizen for
booting arm64 multi-processor in coreboot remove SMP
support. If SoCs want to bring up MP then ATF needs to be
ported and integrated.
Change-Id: Ife24d53eed9b7a5a5d8c69a64d7a20a55a4163db
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/11909
Tested-by: build bot (Jenkins)
Reviewed-by: Julius Werner <jwerner@chromium.org>
As ARM Trusted Firmware is the only first class citizen for
booting arm64 multi-processor in coreboot remove spintable
support. If SoCs want to bring up MP then ATF needs to be
ported and integrated.
Change-Id: I1f38b8d8b0952eee50cc64440bfd010b1dd0bff4
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11908
Tested-by: build bot (Jenkins)
Reviewed-by: Julius Werner <jwerner@chromium.org>
With the removal of secmon from coreboot there are no
power down operations required. As such remove the
A57 power down support.
Change-Id: I8eebb0ecd87b5e8bb3eaac335d652689d7f57796
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11898
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Furquan Shaikh <furquan@google.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
It's been decided to only support ARM Trusted Firmware for
any EL3 monitor. That means any SoC that requires PSCI
needs to add its support for ATF otherwise multi-processor
bring up won't work.
Change-Id: Ic931dbf5eff8765f4964374910123a197148f0ff
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11897
Tested-by: build bot (Jenkins)
Reviewed-by: Julius Werner <jwerner@chromium.org>
PMIOxEE is for setting USB3 power rail. Set it to S0, otherwise
going into hibernation can not be wake up.
Change-Id: I692497bad24d745738d670897e725a568c1db114
Signed-off-by: Zheng Bao <zheng.bao@amd.com>
Signed-off-by: Zheng Bao <fishbaozi@gmail.com>
Reviewed-on: http://review.coreboot.org/11373
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Tested-by: build bot (Jenkins)
Refactor acpi_create_dmar_drhd_ds_pci() and add similar functions for
I/O-APICs and MSI capable HPETs. We violate the spec [1] here, which
talks about 16-bit source-ids spread over start_bus and path entries.
Intel actually uses bus/dev/fn identification for those devices too,
and so do we.
[1] Intel Virtualization Technology for Directed I/O
Architecture Specification
Document-Number: D51397
Change-Id: I0fce075961762610d44b5552b71e010511871fc2
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: http://review.coreboot.org/12192
Tested-by: build bot (Jenkins)
Reviewed-by: Duncan Laurie <dlaurie@google.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Add a parameter to acpi_create_dmar() for the flags field and define
flags given by the spec [1].
[1] Intel Virtualization Technology for Directed I/O
Architecture Specification
Document-Number: D51397
Change-Id: I03ae32f13bb0061bd3b9bef607db175d9b0bc5e1
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: http://review.coreboot.org/12191
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins)
Reviewed-by: Duncan Laurie <dlaurie@google.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Fix a function call in the normal path using the original function
name and arguments in code that was changed in commit 3bfd7cc6
(drivers/pc80: Rework normal / fallback selector code)
This commit reworked most of the fallback / normal code,
however the normal code paths were not fully tested by Jenkins,
so this was missed.
Change-Id: Ied66334977272a13b7a7307ff4d9f34eb22040aa
Signed-off-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-on: http://review.coreboot.org/12315
Reviewed-by: Martin Roth <martinroth@google.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: Nico Huber <nico.h@gmx.de>
Tested-by: build bot (Jenkins)
It encourages users from writing to the FSF without giving an address.
Linux also prefers to drop that and their checkpatch.pl (that we
imported) looks out for that.
This is the result of util/scripts/no-fsf-addresses.sh with no further
editing.
Change-Id: Ie96faea295fe001911d77dbc51e9a6789558fbd6
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: http://review.coreboot.org/11888
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
On x86_64 we need to leave long mode before we can switch to 16bit
mode. Oh joy! When's my 64bit resume pointer coming?
Why didn't this get caught earlier? Seems the Asrock E350M2 didn't
do Suspend/Resume?
Yes, I know it's Intel syntax. Will be converted to AT&T syntax
as soon as the whole thing actually works.. 8)
Change-Id: Ic51869cf67d842041f8842cd9964d72a024c335f
Signed-off-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-on: http://review.coreboot.org/11106
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Some registers only allow word-sized or half-word-sized operations and will
cause a data fault when accessed with byte-sized operations.
However, the compiler may or may not break such an operation into smaller
(byte-sized) chunks. Thus, we need to reliably perform word-sized operations for
32 bit read/write and half-word-sized operations for 16 bit read/write.
This is particularly the case on the rk3288 SRAM registers, where the watchdog
tombstone is stored. Moving to GCC 5.2.0 introduced a change of strategy in the
compiler, where a 32 bit read would be broken into byte-sized chunks, which
caused a data fault when accessing the watchdog tombstone register.
The definitions for byte-sized memory operations are also adapted to stay
consistent with the rest.
Change-Id: I1fb3fc139e0a813acf9d70f14386a9603c9f9ede
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Reviewed-on: http://review.coreboot.org/11698
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
To support x86 verstage one needs a working buffer for
vboot. That buffer resides in the cache-as-ram region
which persists across verstage and romstage. The current
assumption is that verstage brings cache-as-ram up
and romstage tears cache-as-ram down. The timestamp,
cbmem console, and the vboot work buffer are persistent
through in both romstage and verstage. The vboot
work buffer as well as the cbmem console are permanently
destroyed once cache-as-ram is torn down. The timestamp
region is migrated. When verstage is enabled the assumption
is that _start is the romstage entry point. It's currently
expected that the chipset provides the entry point to
romstage when verstage is employed. Also, the car_var_*()
APIs use direct access when in verstage since its expected
verstage does not tear down cache-as-ram. Lastly, supporting
files were added to verstage-y such that an x86 verstage
will build and link.
BUG=chrome-os-partner:44827
BRANCH=None
TEST=Built and booted glados using separate verstage.
Change-Id: I097aa0b92f3bb95275205a3fd8b21362c67b97aa
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11822
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>