Applied function attribute to function definition to avoid 'conflicting type' warning.
Function declaration is in src/include/cpu.h
void secondary_cpu_init(unsigned int cpu_index)__attribute__((regparm(0)));
But function definition in lapic_cpu_init.c is missing the "__attribute__" part.
Change-Id: Idb7cd00fda5a2d486893f9866920929c685d266e
Signed-off-by: Han Shen <shenhan@google.com>
Reviewed-on: http://review.coreboot.org/1784
Tested-by: build bot (Jenkins)
Reviewed-by: Anton Kochkov <anton.kochkov@gmail.com>
The VMX MSR may come up with random values and needs to be
initialized to zero. This was done incorrectly in finalize_smm.
It must be done on a per core basis in the general CPU init.
This touches all Sandybridge and Ivybridge configs.
Change-Id: I015352d0f8e2ebe55ac0a5e9c5bbff83bd2ff86b
Signed-off-by: Marc Jones <marc.jones@se-eng.com>
Reviewed-on: http://review.coreboot.org/1794
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
The MSR for VMX can start with a random value and needs to be
cleared by coreboot. I am reverting this change, as
it handles almost everything and doing a follow-on change to fix
the improper clearing of the MSR.
Change-Id: Ibad7a27b03f199241c52c1ebdd2b6d4e81a18a4e
Signed-off-by: Marc Jones <marc.jones@se-eng.com>
Reviewed-on: http://review.coreboot.org/1793
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
The reporting of cores and threads in the system was a bit
ambiguous. This patch makes it clearer.
Change-Id: Ia05838a53f696fbaf78a1762fc6f4bf348d4ff0e
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1786
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
To allow easy experimentation with thermals, leave power control
registers unlocked.
Change-Id: Ia53065f3f220c2faed58e7d53e60c3f169ae58ec
Signed-off-by: Sameer Nanda <snanda@chromium.org>
Reviewed-on: http://review.coreboot.org/1688
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marcj303@gmail.com>
All of these capabilities exist on all CPUs supported on
this socket.
Change-Id: I54f34e48e34bb6ab5b9954ab7ece8c2c3a1a8e67
Signed-off-by: Patrick Georgi <patrick.georgi@secunet.com>
Reviewed-on: http://review.coreboot.org/1664
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This adds proper support for turbo and super-low-frequency modes.
Calculation of the p-states has been rewritten and moved into an
extra file speedstep.c so it can be used for non-acpi stuff like
EMTTM table generation.
It has been tested with a Core2Duo T9400 (Penryn) and a Core Duo T2300
(Yonah) processor.
Change-Id: I5f7104fc921ba67d85794254f11d486b6688ecec
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: http://review.coreboot.org/1658
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
add this code according to src/include/cpu/x86/cache.h ,line 92,
functin enable_cache()
Change-Id: Ida96a98397eeed98dd61ca979e8c5a33bf00f9e5
Signed-off-by: Siyuan Wang <SiYuan.Wang@amd.com>
Signed-off-by: Siyuan Wang <wangsiyuanbuaa@gmail.com>
Reviewed-on: http://review.coreboot.org/1662
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marcj303@gmail.com>
We parsed the MSR the wrong way, and didn't support some valid values.
Change-Id: Ia42e3de05dd76b6830aaa310ec82031d36def3a0
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: http://review.coreboot.org/1656
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
We had only some MSR definitions in there, which are used in speedstep
related code. I think speedstep.h is the better and less confusing place
for these.
Change-Id: I1eddea72c1e2d3b2f651468b08b3c6f88b713149
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: http://review.coreboot.org/1655
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Also deletes files not included in build:
src/southbridge/amd/cimx/sb700/chip_name.c
src/southbridge/amd/cimx/sb800/chip_name.c
src/southbridge/amd/cimx/sb900/chip_name.c
Change-Id: I2068e3859157b758ccea0ca91fa47d09a8639361
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1473
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Marc Jones <marcj303@gmail.com>
Currently the C32 has some legacy boards which use the old C32 code. We need to seperate them.
CONFIG_CPU_AMD_SOCKET_C32 was used in legacy code before.
But it is not a good idea, so we change the code as follows:
So we use CONFIG_CPU_AMD_SOCKET_C32 to identify mainboard which uses agesa code,
and use CONFIG_CPU_AMD_SOCKET_C32_NON_AGESA to identify mainboard which uses legacy code.
Change-Id: If6114bf8912e78b7732f25a1adfb2e4d8eb10ee4
Signed-off-by: Siyuan Wang <SiYuan.Wang@amd.com>
Signed-off-by: Siyuan Wang <wangsiyuanbuaa@gmail.com>
Reviewed-on: http://review.coreboot.org/1497
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marcj303@gmail.com>
Add code to do the following for the VIA Nano CPUs
- Update microcode
- Set maximum frequency
- Initialize power states
- Set up cache
Attempting to change the voltage or frequency of the CPU without
applying the microcode update will hang the CPU, so we only do
transitions if we can verify the microcode has been updated.
The microcode is updated directly from CBFS. No microcode is
included in ramstage. The microcode is not included in this
commit.
To get the microcode, run bios_extract on the manufacturer supplied
BIOS, and look for the file marked "P6 Microcode". Include this
file in CBFS.
You can have the build system include this file automatically by
selecting Expert Mode, then look under
'Chipset' -> 'Include CPU microcode in CBFS' ->
Include external microcode file (check)
'Path and filename of CPU microcode' should contain the location of
the microcode file previously extracted.
Change-Id: I586aaca5715e047b42ef901d66772ace0e6b655e
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-on: http://review.coreboot.org/1257
Tested-by: build bot (Jenkins)
This patch aims to improve the microcode in CBFS handling that was
brought by the last patches from Stefan and the Chromium team.
Choices in Kconfig
- 1) Generate microcode from tree (default)
- 2) Include external microcode file
- 3) Do not put microcode in CBFS
The idea is to give the user full control over including non-free
blobs in the final ROM image.
MICROCODE_INCLUDE_PATH Kconfig variable is eliminated. Microcode
is handled by a special class, cpu_microcode, as such:
cpu_microcode-y += microcode_file.c
MICROCODE_IN_CBFS should, in the future, be eliminated. Right now it is
needed by intel microcode updating. Once all intel cpus are converted to
cbfs updating, this variable can go away.
These files are then compiled and assembled into a binary CBFS file.
The advantage of doing it this way versus the current method is that
1) The rule is CPU-agnostic
2) Gives user more control over if and how to include microcode blobs
3) The rules for building the microcode binary are kept in
src/cpu/Makefile.inc, and thus would not clobber the other makefiles,
which are already overloaded and very difficult to navigate.
Change-Id: I38d0c9851691aa112e93031860e94895857ebb76
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-on: http://review.coreboot.org/1245
Tested-by: build bot (Jenkins)
Reviewed-by: Anton Kochkov <anton.kochkov@gmail.com>
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
There are hyper-threading Atom CPUs, those would not enable L2
cache with model_6ex CAR code. Switch to code that can handle
different number of threads and cores.
Change-Id: I57328c231f8998f45f7b0d26c63b24585f8476dd
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1384
Tested-by: build bot (Jenkins)
Reviewed-by: Anton Kochkov <anton.kochkov@gmail.com>
Reviewed-by: James Laird <jhl@mafipulation.org>
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
The name is derived directly from the device path.
Change-Id: If2053d14f0e38a5ee0159b47a66d45ff3dff649a
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1471
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Anton Kochkov <anton.kochkov@gmail.com>
The search loop for UMA resource was only used to check for the highest
RAM address below 4GB. The cached values from BSP CPU can now be used
for the replication.
Change-Id: I5244ffa6f8a93f5ff5aaf8a71bd006b0f9cd518a
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1388
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Take a copy of BSP CPU's TOP_MEM and TOP_MEM2 MSRs to be distributed
to AP CPUs and factor out the debugging info from setup_uma_memory().
Change-Id: I1acb4eaa3fe118aee223df1ebff997289f5d3a56
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1387
Tested-by: build bot (Jenkins)
Reviewed-by: Zheng Bao <zheng.bao@amd.com>
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
The CPU can arbitrarily reorder calls to rdtsc, significantly
reducing the precision of timing using the CPUs time stamp counter.
Unfortunately the method of synchronizing rdtsc is different
on AMD and Intel CPUs. There is a generic method, using the cpuid
instruction, but that uses up a lot of registers, and is very slow.
Hence, use the correct lfence/mfence instructions (for CPUs that
we know support it)
Change-Id: I17ecb48d283f38f23148c13159aceda704c64ea5
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1422
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
The function is a noop for all but amd/serengeti_cheetah.
Change-Id: I09e2e710aa964c2f31e35fcea4f14856cc1e1dca
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1184
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
We thought about two ways to do this change. The way we decided to try
was to
1. drop all ops from devices in romstage
2. constify all devices in romstage (make them read-only) so we can
compile static.c into romstage
3. the device tree "devices" can be used to read configuration from
the device tree (and nothing else, really)
4. the device tree devices are accessed through struct device * in
romstage only. device_t stays the typedef to int in romstage
5. Use the same static.c file in ramstage and romstage
We declare structs as follows:
ROMSTAGE_CONST struct bus dev_root_links[];
ROMSTAGE_CONST is const in romstage and empty in ramstage; This
forces all of the device tree into the text area.
So a struct looks like this:
static ROMSTAGE_CONST struct device _dev21 = {
#ifndef __PRE_RAM__
.ops = 0,
#endif
.bus = &_dev7_links[0],
.path = {.type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x1c,3)}}},
.enabled = 0,
.on_mainboard = 1,
.subsystem_vendor = 0x1ae0,
.subsystem_device = 0xc000,
.link_list = NULL,
.sibling = &_dev22,
#ifndef __PRE_RAM__
.chip_ops = &southbridge_intel_bd82x6x_ops,
#endif
.chip_info = &southbridge_intel_bd82x6x_info_10,
.next=&_dev22
};
Change-Id: I722454d8d3c40baf7df989f5a6891f6ba7db5727
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1398
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Detection for a hyper-threading CPU was not compatible with multicore
CPUs. When using CPUID eax==4, also need to set ecx=0.
CAR init tested on real hardware with hyper-threading model_f25 and
under qemu 0.15.1 with multicore CPU.
Change-Id: I28ac8790f94652e4ba8ff88fe7812c812f967608
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1172
Tested-by: build bot (Jenkins)
Reviewed-by: Anton Kochkov <anton.kochkov@gmail.com>
Reserved memory resources will get removed from memory table at
the end of write_coreboot_table(),
Change-Id: I02711b4be4f25054bd3361295d8d4dc996b2eb3e
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/1372
Tested-by: build bot (Jenkins)
Reviewed-by: Anton Kochkov <anton.kochkov@gmail.com>
This reverts commit 042c1461fb.
It turned out that sending IPIs via broadcast doesn't work on
Sandybridge. We tried to come up with a solution, but didn't
found any so far. So revert the code for now until we have
a working solution.
Change-Id: I7dd1cba5a4c1e4b0af366b20e8263b1f6f4b9714
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Reviewed-on: http://review.coreboot.org/1381
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This reverts commit 78efc4c36c.
The broadcast patch was reverted, so this commit should also
be reverted. The reason for reverting the broadcast patch:
It turned out that sending IPIs via broadcast doesn't work on
Sandybridge. We tried to come up with a solution, but didn't
found any so far. So revert the code for now until we have
a working solution.
Change-Id: I05c27dec55fa681f455215be56dcbc5f22808193
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Reviewed-on: http://review.coreboot.org/1380
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The default TCC activation offset is 0, which means TCC
activation starts at Tj_max. For devices with limited
cooling ability it may be desired to lower TCC activation.
This adds an option that can be declared in the devicetree
to set the TCC activation to a non-zero value.
Enable tcc_offset=15 in devicetree.cb and build/boot
the BIOS and check that the value is set in the MSR:
> and $(shr $(rdmsr 0 0x1a2) 24) 0xf
0xf
Change-Id: I88f6857b40fd354f70fa9d5d9c1d8ceaea6dfcd1
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1343
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Split this behavior out from PNOT() so the OS can
update _PPC limit without re-reading C-state tables.
Change-Id: I81b9111a4866f6b9916f74ac57a3caefaa77c565
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1342
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The existing NVS variable for PPCM will be used to
select a dynamic max P-state.
By itself this does not change existing behavior because
the NVS PPCM variable is initialized to zero.
PPCM can be tested by building and booting a modified BIOS
that sets gnvs->ppcm to a value greater than 1 and checking
from the OS that the P-state is limited to that value.
Change-Id: Ia7b3bbc6b84c1aa42349bb236abee5cc92486561
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1341
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
EHCI debug allows to send message with 8 bytes length, but
we're only sending one byte in each transaction. Buffer up
to 8 bytes to speed up debug output.
Change-Id: I9dbb406833c4966c3afbd610e1b13a8fa3d62f39
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Reviewed-on: http://review.coreboot.org/1357
Tested-by: build bot (Jenkins)
Reviewed-by: Nico Huber <nico.huber@secunet.com>
On SandyBridge systems configured to work with Panther Point the CPU
would wrongly be described as IvyBridge. Fix this issue and drop an
unneeded Kconfig variable at the same time.
Change-Id: I501a4fa00613e589cd315cfee61b2f9561dfcb4d
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1335
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
When fixing the SMM state table for SandyBridge/IvyBridge CPUs
the wrong table was used for older 64bit capable CPUs.
Change-Id: Ia7dff21aa3f0e5aa61575634fc839777de6bef10
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1353
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
On both SandyBridge and IvyBridge BCLK is fixed at 100MHz. Have the
comment reflect that.
Change-Id: Ia81c3501dc3e68cf3143c3bc864dfbf88901f9f9
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1336
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
.. in case the system has pluggable CPUs or might come in different SKUs.
Change-Id: I7a7cd95b4de5dd78370355f448688e8d000434c1
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1333
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Date and time are mixed up:
microcode: updated to revision 0x12 date=2012-12-04
should be
microcode: updated to revision 0x12 date=2012-04-12
Change-Id: I85f9100f31d88bb831bef07131f361c92c7ef34e
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1334
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
The LAPIC timer is running at BCLK (100MHz) on Sandy Bridge and Ivy
Bridge systems. However, the current timer code assumed that the clock
would run at 200MHz instead. This made all delays twice as long as
needed.
Change-Id: I41b1186daee11cfd9a25b3a9d5ebdeeb271293c7
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1330
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Tested-by: build bot (Jenkins)
CPUs with configurable TDP will run the TSC at the max non-turbo
ratio for the maximum TDP value, which can cause issues if another
TDP is desired. To deal with this we set the flex ratio to the
nominal TDP ratio early in the boot and then configure the Soft
Reset Data registers so the PCH can tell the CPU what frequency
to run at after a reset.
This is done very early in the bootblock because it is necessary
to reset the system after setting a flex ratio.
The end result is that the TSC will now increment at the max
non-turbo frequency for the nominal TDP.
On some system with 1.8GHz CPU ensure that the kernel
detects the CPU speed as ~1800mhz rather than ~2300mhz:
> dmesg | grep "MHz processor"
[ 0.004000] Detected 1795.801 MHz processor.
Change-Id: I8436dced9199003b6423186a2b041e3f7b84ab8c
Signed-off-by: Duncan Laurie <dlaurie@google.com>
Reviewed-on: http://review.coreboot.org/1329
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
There are enough differences that it is worth defining the
proper map for the sandybridge/ivybridge CPUs. The state
save map was not being addressed properly for TSEG and
needs to use the right offset instead of pointing in ASEG.
To do this properly add a required southbridge export to
return the TSEG base and use that where appropriate.
Change-Id: Idad153ed6c07d2633cb3d53eddd433a3df490834
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1309
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
In order to support SPI and ELOG drivers the SMM region
needs to be able to be larger than the previous allocation
below 0x7400. Now that we have support for 4M TSEG we do
not need to live in this region.
This change adds a 16KB heap region abofe the save state area
at TSEG+64KB and moves the C handler above this.
The heap region is then available for malloc and the C handler
can grow to support flash and event log features.
While updating the memory map comment in assembly stub I also
added a pause instruction to the cpu spin lock as this was
added to the C code in latest upstream rebase.
Dump sympbols from smm.elf binary to see the new regions:
00010000 B _heap
00014000 B _eheap
00014000 T _smm_c_handler_start
0001b240 T _smm_c_handler_end
Change-Id: I45f0ab4df1fdef3b626f877094a58587476ac634
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1308
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The BWG says ivybridge current limit for PP1 is 50A.
Verify the PP1 current limit value on link device:
> echo $(( ( $(rdmsr 0 0x602) & 0x1fff ) >> 3 ))
50
Change-Id: I946269d21ef605f2525fe03993f569d69128294b
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1305
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Ivybridge B0+ CPUs are capable of supporting multiple TDP levels.
This complicates the default case because now the registers that
were reporting max non-turbo ratio are reporting that value for
the highest possible TDP level.
For now this change just forces everything to use the Nominal TDP
values instead of the higher (or lower) levels.
- When building P-state tables, determine the P[1] (max non turbo)
ratio based on the Nominal ratio if available.
- Set the turbo activation ratio to the Nominal max ratio.
- Mirror the power level settings in new MCHBAR register after
they are written, which happens after BIOS_RESET_CPL is set.
- Set the current ratio to Nominal ratio at boot.
1) Verify that P-state table is generated properly with
P[0]=1801MHz (ratio 0x1C) and P[1]=1800MHz (ratio 0x12)
PSS: 1801MHz power 17000 control 0x1c00 status 0x1c00
PSS: 1800MHz power 17000 control 0x1200 status 0x1200
2) Verify power limits in MCHBAR match PKG_POWER_LIMIT:
> rdmsr 0 0x610
0x800080aa00dc8088
> mmio_read32 0xfed159a4
0x000080aa
> mmio_read32 0xfed159a0
0x00dc8088
3) Verify turbo activation ratio is set to nominal ratio:
> rdmsr 0 0x64c
0x0000000000000012
4) Check that proper ratio was set at boot on one core only:
> grep 'frequency set to' /sys/firmware/log
model_x06ax: frequency set to 1800
model_x06ax: frequency set to 1800
model_x06ax: frequency set to 1800
model_x06ax: frequency set to 1800
Change-Id: I592e60a7740f31b140986a8269dca91b4adbb270
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/1304
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
... and don't require it to specify a cache type.
This function is only used on romcc boards, and should go away
(because all boards should be switched to CAR)
Change-Id: Ic32ca3be1afffc773c72c140e88b338d48a0c8ca
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1288
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Nothing is yet enabled, this is just a config skeleton change.
The MICROCODE_INCLUDE_PATH definition is going to be used by the
Makefile building the microcode blob for CBFS inclusion.
Change-Id: I7868db3cfd4b181500e361706e5f4dc08ca1c87d
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1292
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
When microcode storage in CBFS is enabled, the make system is supposed
to generate the microcode blob and place it into the generated ROM
image as a CBFS component.
The microcode source representation does not change: it is still an
array of 32 bit constants. This new addition compiles the array into a
separate object file and then strips all sections but data.
The raw data section is then included into CBFS as a file named
'microcode_blob.bin' of type 0x53, which is assigned to microcode
storage.
Change-Id: I84ae040be52f520b106e3471c7e391e64d7847d9
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1295
Tested-by: build bot (Jenkins)
When CONFIG_MICROCODE_IN_CBFS is enabled, find the microcode blob in
CBFS and pass it to intel_update_microcode() instead of using the
compiled in array.
CBFS accesses in pre-RAM and 'normal' environments are provided
through different API.
Change-Id: I35c1480edf87e550a7b88c4aadf079cf3ff86b5d
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/1296
Tested-by: build bot (Jenkins)